Skip to content
2000
image of Lidocaine Induces Neurotoxicity by Activating the CaMKII and p38 MAPK Signaling Pathways through an Increase in Intracellular Calcium Ions

Abstract

Background

Lidocaine is extensively utilized as an anesthetic in clinical settings; however, it has demonstrated significant neurotoxicity when administered for spinal anesthesia. The specific mechanisms underlying lidocaine-induced neurotoxicity are poorly understood.

Objective

This study aimed to investigate the mechanisms through which lidocaine induces neurotoxicity, focusing on its effects on intracellular calcium release and the activation of CaMKII and MAPKs pathways, as well as to evaluate the potential protective effects of cilnidipine.

Methods

The investigation has employed both cell models and mouse models to conduct the experiments. Neuronal cell viability has been assessed following lidocaine treatment, and neurological function has been evaluated in mice after intrathecal injection of lidocaine. Intracellular calcium levels, CaMKII activation, and the phosphorylation of p38 and p65 have been measured in cultured hippocampal neuronal cells and mouse brain tissues. The effects of the calcium channel blocker cilnidipine on these parameters have also been examined.

Results

Lidocaine treatment led to a reduction in cell viability in cultured neuronal cells and induced neurological dysfunction in mice. It increased intracellular Ca2+ levels and activated CaMKII in both cultured neuronal cells and mouse brain tissues. Lidocaine also elevated the phosphorylation levels of p38 and p65 in neuronal cells. These effects have been suppressed by cilnidipine, indicating a calcium-dependent mechanism.

Conclusion

This study suggests that lidocaine induces neurotoxicity through a calcium-dependent activation of CaMKII and MAPK pathways, leading to neuronal apoptosis and dysfunction. Cilnidipine has been found to exhibit promise as a protective agent against lidocaine-induced neurotoxicity.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808355819241118115155
2024-11-22
2024-12-26
Loading full text...

Full text loading...

References

  1. Luo H. Xiang Y. Qu X. Liu H. Liu C. Li G. Han L. Qin X. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of bdnf-trkb signaling pathway. Front. Pharmacol. 2019 10 395 10.3389/fphar.2019.00395 31040784
    [Google Scholar]
  2. Dai B. Wu Q. Zeng C. Zhang J. Cao L. Xiao Z. Yang M. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J. Ethnopharmacol. 2016 192 382 389 10.1016/j.jep.2016.07.024 27401286
    [Google Scholar]
  3. Cheng M. Li T. Hu E. Yan Q. Li H. Wang Y. Luo J. Tang T. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage. J. Ethnopharmacol. 2024 319 Pt 1 117123 10.1016/j.jep.2023.117123 37673200
    [Google Scholar]
  4. Hui Z. Lai-Fa W. Xue-Qin W. Ling D. Bin-Sheng H. Li J.M. Mechanisms and therapeutic potential of chinonin in nervous system diseases. J. Asian Nat. Prod. Res. 2024 2024 1 16 10.1080/10286020.2024.2371040 38975978
    [Google Scholar]
  5. Hu E. Li Z. Li T. Yang X. Ding R. Jiang H. Su H. Cheng M. Yu Z. Li H. Tang T. Wang Y. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: The effects of Astragaloside IV on intracerebral hemorrhage as an example. Chin. Med. 2023 18 1 40 10.1186/s13020‑023‑00745‑5 37069580
    [Google Scholar]
  6. Verlinde M. Hollmann M. Stevens M. Hermanns H. Werdehausen R. Lirk P. Local anesthetic-induced neurotoxicity. Int. J. Mol. Sci. 2016 17 3 339 10.3390/ijms17030339 26959012
    [Google Scholar]
  7. Radwan I.A.M. Saito S. Goto F. The neurotoxicity of local anesthetics on growing neurons: A comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine. Anesth. Analg. 2002 94 2 319 324 10.1213/00000539‑200202000‑00016 11812691
    [Google Scholar]
  8. Cherng C.H. Wong C.S. Wu C.T. Yeh C.C. Glutamate release and neurologic impairment after intrathecal administration of lidocaine and bupivacaine in the rat. Reg. Anesth. Pain Med. 2011 36 5 452 456 10.1097/AAP.0b013e318228cdb0 21857271
    [Google Scholar]
  9. Tan Y. Wang Q. Zhao B. She Y. Bi X. GNB2 is a mediator of lidocaine-induced apoptosis in rat pheochromocytoma PC12 cells. Neurotoxicology 2016 54 53 64 10.1016/j.neuro.2016.03.015 27018092
    [Google Scholar]
  10. Hu E. Li T. Li Z. Su H. Yan Q. Wang L. Li H. Zhang W. Tang T. Wang Y. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury. Pharm. Biol. 2023 61 1 1054 1064 10.1080/13880209.2023.2229379 37416997
    [Google Scholar]
  11. Zhang Y. Zheng X. Liu Y. Fang L. Pan Z. Bao M. Huang P. Effect of oridonin on cytochrome p450 expression and activities in HepaRG Cell. Pharmacology 2018 101 5-6 246 254 10.1159/000486600 29393278
    [Google Scholar]
  12. Camins A. Verdaguer E. Folch J. Pallàs M. Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev. 2006 12 2 135 148 10.1111/j.1527‑3458.2006.00135.x 16958987
    [Google Scholar]
  13. Jiang C. Xie N. Sun T. Ma W. Zhang B. Li W. Xanthohumol inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway. Drug Des. Devel. Ther. 2020 14 5431 5439 10.2147/DDDT.S282206 33324040
    [Google Scholar]
  14. Hao S. Xin Q. Xiaomin Z. Jiali P. Xiaoqin W. Rong Y. Cenlin Z. Group membership modulates the hold-up problem: aAn event-related potentials and oscillations study. Soc. Cogn. Affect. Neurosci. 2023 18 1 nsad071 10.1093/scan/nsad071 37990077
    [Google Scholar]
  15. Hao S. Jiali P. Xiaomin Z. Xiaoqin W. Lina L. Xin Q. Qin L. Group identity modulates bidding behavior in repeated lottery contest: neural signatures from event-related potentials and electroencephalography oscillations. Front. Neurosci. 2023 17 1184601 10.3389/fnins.2023.1184601 37425015
    [Google Scholar]
  16. Ding C. Wu Y. Dabas H. Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022 11 e73557 10.7554/eLife.73557 35285800
    [Google Scholar]
  17. Gaertner T.R. Kolodziej S.J. Wang D. Kobayashi R. Koomen J.M. Stoops J.K. Waxham M.N. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem. 2004 279 13 12484 12494 10.1074/jbc.M313597200 14722083
    [Google Scholar]
  18. Zalcman G. Federman N. Romano A. CaMKII isoforms in learning and memory: Localization and function. Front. Mol. Neurosci. 2018 11 445 10.3389/fnmol.2018.00445 30564099
    [Google Scholar]
  19. Zhang C. Ge H. Zhang S. Liu D. Jiang Z. Lan C. Li L. Feng H. Hu R. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage. Neurol. Ther. 2021 10 2 1001 1013 10.1007/s40120‑021‑00279‑8 34515953
    [Google Scholar]
  20. Zhou Y. Li L. Yu Z. Gu X. Pan R. Li Q. Yuan C. Cai F. Zhu Y. Cui Y. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IgE-binding in asthmatic children, and immunogenicity. Pediat. Allergy. Immunol. 2022 33 8 e13835
    [Google Scholar]
  21. Tian S. Chen X. Wu W. Lin H. Qing X. Liu S. Wang B. Xiao Y. Shao Z. Peng Y. Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway. Exp. Mol. Med. 2024 56 2 408 421 10.1038/s12276‑024‑01168‑4 38316963
    [Google Scholar]
  22. Chen S. Xu Y. Xu B. Guo M. Zhang Z. Liu L. Ma H. Chen Z. Luo Y. Huang S. Chen L. CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J. Neurochem. 2011 119 5 1108 1118 10.1111/j.1471‑4159.2011.07493.x 21933187
    [Google Scholar]
  23. El Rawas R. Amaral I.M. Hofer A. Is p38 MAPK associated to drugs of abuse-induced abnormal behaviors? Int. J. Mol. Sci. 2020 21 14 4833 10.3390/ijms21144833 32650599
    [Google Scholar]
  24. He Y. She H. Zhang T. Xu H. Cheng L. Yepes M. Zhao Y. Mao Z. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J. Cell Biol. 2018 217 1 315 328 10.1083/jcb.201701049 29196462
    [Google Scholar]
  25. Wettschureck N. Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 2005 85 4 1159 1204 10.1152/physrev.00003.2005 16183910
    [Google Scholar]
  26. Johnson M.E. Potential neurotoxicity of spinal anesthesia with lidocaine. Mayo Clin. Proc. 2000 75 9 921 932 10.4065/75.9.921 10994828
    [Google Scholar]
  27. Foo I. Macfarlane A.J.R. Srivastava D. Bhaskar A. Barker H. Knaggs R. Eipe N. Smith A.F. The use of intravenous lidocaine for postoperative pain and recovery: International consensus statement on efficacy and safety. Anaesthesia 2021 76 2 238 250 10.1111/anae.15270 33141959
    [Google Scholar]
  28. Woolums B.M. McCray B.A. Sung H. Tabuchi M. Sullivan J.M. Ruppell K.T. Yang Y. Mamah C. Aisenberg W.H. Saavedra-Rivera P.C. Larin B.S. Lau A.R. Robinson D.N. Xiang Y. Wu M.N. Sumner C.J. Lloyd T.E. TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2+. Nat. Commun. 2020 11 1 2679 10.1038/s41467‑020‑16411‑5 32471994
    [Google Scholar]
  29. Saha R. N. Jana M. Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J. Immunol. 2007 179 10 7101 7109
    [Google Scholar]
  30. Chandra K.S. Ramesh G. The fourth-generation Calcium channel blocker: Cilnidipine. Indian Heart J. 2013 65 6 691 695 10.1016/j.ihj.2013.11.001 24407539
    [Google Scholar]
  31. Yamashita T. Kamikaseda S. Tanaka A. Tozaki-Saitoh H. Caaveiro J.M.M. Inoue K. Tsuda M. New inhibitory effects of cilnidipine on microglial P2X7 receptors and IL-1β release: An involvement in its alleviating effect on neuropathic pain. Cells 2021 10 2 434 10.3390/cells10020434 33670748
    [Google Scholar]
  32. Liang H. Hu H. Shan D. Lyu J. Yan X. Wang Y. Jian F. Li X. Lai W. Long H. CGRP modulates orofacial pain through mediating neuron-glia crosstalk. J. Dent. Res. 2021 100 1 98 105 10.1177/0022034520950296 32853530
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808355819241118115155
Loading
/content/journals/lddd/10.2174/0115701808355819241118115155
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cilnidipine ; calcium ; p38 MAPK ; neurotoxicity ; Lidocaine ; CaMKII
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test