Skip to content
2000
image of Bioinformatic Analysis and Molecular Docking to Elucidate the Anticancer Effect of Silver Nanoparticles in Hepatocellular Carcinoma

Abstract

Background

Hepatocellular carcinoma is the cancer with the highest mortality rate worldwide. Currently, existing treatments are not very effective for this disease. Different science areas have focused on developing new therapies, including nanomedicine. studies have reported the anticancer activity of silver nanoparticles, particularly those coated with polyvinylpyrrolidone (AgNPs-PVP).

Aims

Characterize the effect of AgNPs on the HepG2 by bioinformatics analysis.

Methods

From a list of proteins, we performed analysis to predict protein-protein interaction, hub gene, gene ontology, KEGG pathways, hub gene expression, protein expression, survival, cell infiltration immune, and molecular docking of AgNPs-PVP to target proteins. Cytoscape and UCSF Chimera software, DAVID, UALCAN, TISIDB, and HDOCK databases were included in the predictive analysis.

Results

Gene ontology and KEGG pathways showed that AgNP exposure causes cellular organelles dysregulation and deregulation of protein production mechanisms.

Additionally, metabolic pathways were altered, including glycolysis, gluconeogenesis, and amino acid biosynthesis. Hub genes , , , , and showed differential expression for gene expression, protein, and survival analysis. Furthermore, and were positively correlated with CD8+ T cell infiltration, and RPLP0, EEF1B2, and were negatively correlated with NK cell infiltration. Finally, molecular docking showed that AgNPs-PVP interacts highly with the target proteins.

Conclusion

AgNPs cause alterations in cell viability. Furthermore, the deregulation of hub genes and the modulation of the immune system are associated with anticancer effects, and molecular docking demonstrated high interaction with the target proteins that should be studied experimentally.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808352454241115065851
2024-11-22
2024-12-26
Loading full text...

Full text loading...

References

  1. Janevska D. Chaloska-Ivanova V. Janevski V. Hepatocellular carcinoma: Risk factors, diagnosis and treatment. Open Access Maced. J. Med. Sci. 2015 3 4 732 736 10.3889/oamjms.2015.111 27275318
    [Google Scholar]
  2. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Zucman-Rossi J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  3. Zhang X. Guan L. Tian H. Zeng Z. Chen J. Huang D. Sun J. Guo J. Cui H. Li Y. Risk factors and prevention of viral hepatitis-related hepatocellular carcinoma. Front. Oncol. 2021 11 686962 10.3389/fonc.2021.686962 34568017
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Tejeda-Maldonado J. García-Juárez I. Aguirre-Valadez J. González-Aguirre A. Vilatobá-Chapa M. Armengol-Alonso A. Escobar-Penagos F. Torre A. Sánchez-Ávila J.F. Carrillo-Pérez D.L. Diagnosis and treatment of hepatocellular carcinoma: An update. World J. Hepatol. 2015 7 3 362 376 10.4254/wjh.v7.i3.362 25848464
    [Google Scholar]
  6. Daher S. Massarwa M. Benson A.A. Khoury T. Current and future treatment of hepatocellular carcinoma: An updated comprehensive review. J. Clin. Transl. Hepatol. 2018 6 1 1 10 10.14218/JCTH.2017.00031 29607307
    [Google Scholar]
  7. Raza A. Sood G.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World J. Gastroenterol. 2014 20 15 4115 4127 10.3748/wjg.v20.i15.4115 24764650
    [Google Scholar]
  8. Ahmadian E. Dizaj S.M. Rahimpour E. Hasanzadeh A. Eftekhari A. Hosain zadegan H. Halajzadeh J. Ahmadian H. Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mater. Sci. Eng. C 2018 93 465 471 10.1016/j.msec.2018.08.027 30274079
    [Google Scholar]
  9. Shyamalagowri S. Charles P. Manjunathan J. Kamaraj M. Anitha R. Pugazhendhi A. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines. Process Biochem. 2022 116 17 25 10.1016/j.procbio.2022.02.022
    [Google Scholar]
  10. Al-Khedhairy A.A. Wahab R. Silver nanoparticles: An instantaneous solution for anticancer activity against human liver (HepG2) and breast (MCF-7) cancer cells. Metals (Basel) 2022 12 1 148 10.3390/met12010148
    [Google Scholar]
  11. Blanco J. Lafuente D. Gómez M. García T. Domingo J.L. Sánchez D.J. Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: Time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Arch. Toxicol. 2017 91 2 651 666 10.1007/s00204‑016‑1773‑0 27387714
    [Google Scholar]
  12. Moors E. Sharma V. Tian F. Javed B. Surface-modified silver nanoparticles and their encapsulation in liposomes can treat MCF-7 breast cancer cells. J. Funct. Biomater. 2023 14 10 509 10.3390/jfb14100509 37888174
    [Google Scholar]
  13. Huang D. W. Sherman B. T. Tan Q. Kir J. Liu D. Bryant D. Guo Y. Stephens R. Baseler M. W. Lane H. C. David bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007 35 Web Server issue W169 W175 10.1093/nar/gkm415
    [Google Scholar]
  14. Otasek D. Morris J.H. Bouças J. Pico A.R. Demchak B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019 20 1 185 10.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  15. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  16. Cao L. Chen Y. Zhang M. Xu D. Liu Y. Liu T. Liu S. Wang P. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ 2018 6 e5180 10.7717/peerj.5180 30002985
    [Google Scholar]
  17. Gollapalli P. Kumari N.S. Shetty P. Gnanasekaran T.S. Molecular basis of AR and STK11 genes associated pathogenesis via AMPK pathway and adipocytokine signalling pathway in the development of metabolic disorders in PCOS women. Beni. Suef Univ. J. Basic Appl. Sci. 2022 11 1 23 10.1186/s43088‑022‑00200‑8
    [Google Scholar]
  18. Selvan G.T. Gollapalli P. Shetty P. Kumari N.S. Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: A systems biology approach. Beni. Suef Univ. J. Basic Appl. Sci. 2022 11 1 77 10.1186/s43088‑022‑00257‑5
    [Google Scholar]
  19. Selvan T.G. Gollapalli P. Kumar S.H.S. Ghate S.D. Early diagnostic and prognostic biomarkers for gastric cancer: Systems-level molecular basis of subsequent alterations in gastric mucosa from chronic atrophic gastritis to gastric cancer. J. Genet. Eng. Biotechnol. 2023 21 1 86 10.1186/s43141‑023‑00539‑0 37594635
    [Google Scholar]
  20. Sekaran T.S.G. Kedilaya V.R. Kumari S.N. Shetty P. Gollapalli P. Exploring the differentially expressed genes in human lymphocytes upon response to ionizing radiation: A network biology approach. Radiat. Oncol. J. 2021 39 1 48 60 10.3857/roj.2021.00045 33794574
    [Google Scholar]
  21. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  22. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  23. Kyrychenko A. Korsun O.M. Gubin I.I. Kovalenko S.M. Kalugin O.N. Atomistic simulations of coating of silver nanoparticles with Poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length. J. Phys. Chem. C 2015 119 14 7888 7899 10.1021/jp510369a
    [Google Scholar]
  24. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  25. Yan Y. Tao H. He J. Huang S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020 15 5 1829 1852 10.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  26. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  27. Fernández M.N. Muñoz-Olivas R. Luque-Garcia J.L. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity. Nanotoxicology 2019 13 6 812 826 10.1080/17435390.2019.1579374 30776931
    [Google Scholar]
  28. Montalvo-Quiros S. Aragoneses-Cazorla G. Garcia-Alcalde L. Vallet-Regí M. González B. Luque-Garcia J.L. Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: Insights into the action mechanisms using quantitative proteomics. Nanoscale 2019 11 10 4531 4545 10.1039/C8NR07667G 30806414
    [Google Scholar]
  29. Miranda R.R. Gorshkov V. Korzeniowska B. Kempf S.J. Neto F.F. Kjeldsen F. Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells. Nanotoxicology 2018 12 7 781 795 10.1080/17435390.2018.1489987 29996704
    [Google Scholar]
  30. Xu M. Yang Q. Xu L. Rao Z. Cao D. Gao M. Liu S. Protein target identification and toxicological mechanism investigation of silver nanoparticles-induced hepatotoxicity by integrating proteomic and metallomic strategies. Part. Fibre Toxicol. 2019 16 1 46 10.1186/s12989‑019‑0322‑4 31775802
    [Google Scholar]
  31. Cruz-Ramírez O.U. Valenzuela-Salas L.M. Blanco-Salazar A. Rodríguez-Arenas J.A. Mier-Maldonado P.A. García-Ramos J.C. Bogdanchikova N. Pestryakov A. Toledano-Magaña Y. Antitumor activity against human colorectal adenocarcinoma of silver nanoparticles: Influence of [Ag]/[PVP] ratio. Pharmaceutics 2021 13 7 1000 10.3390/pharmaceutics13071000 34371692
    [Google Scholar]
  32. Holmila R. Wu H. Lee J. Tsang A.W. Singh R. Furdui C.M. Integrated redox proteomic analysis highlights new mechanisms of sensitivity to silver nanoparticles. Mol. Cell. Proteomics 2021 20 100073 10.1016/j.mcpro.2021.100073 33757833
    [Google Scholar]
  33. Park S. Lee M.J. Lee S.J. Yun S.J. Jang J-Y. Kang H. Kim K. Choi I-H. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species. Int. J. Nanomedicine 2015 11 55 68 10.2147/IJN.S94907 26730190
    [Google Scholar]
  34. Xiao H. Chen Y. Alnaggar M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron 2019 126 102750 10.1016/j.micron.2019.102750 31522088
    [Google Scholar]
  35. AshaRani Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009 10 1 65 10.1186/1471‑2121‑10‑65 19761582
    [Google Scholar]
  36. Tardillo Suárez V. Karepina E. Chevallet M. Gallet B. Cottet-Rousselle C. Charbonnier P. Moriscot C. Michaud-Soret I. Bal W. Fuchs A. Tucoulou R. Jouneau P-H. Veronesi G. Deniaud A. Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environ. Sci. Nano 2020 7 5 1373 1387 10.1039/C9EN01348B
    [Google Scholar]
  37. Martínez-Esquivias F. Gutiérrez-Angulo M. Becerra-Ruiz J.S. Martinez-Perez L.A. de la Cruz-Ahumada C.J. Guzmán-Flores J.M. Bioinformatic analysis of the effect of silver nanoparticles on colorectal cancer cell line. BioMed Res. Int. 2022 2022 1 10 10.1155/2022/6828837 35445138
    [Google Scholar]
  38. Zhu X. Ren J. Xu D. Cheng D. Wang W. Ren J. Xiao Z. Jiang H. Ding Y. Tan Y. Upregulation of translationally controlled tumor protein is associated with cervical cancer progression. Front. Mol. Biosci. 2021 8 686718 10.3389/fmolb.2021.686718 34589516
    [Google Scholar]
  39. Vadivel Gnanasundram S. Fåhraeus R. Translation stress regulates ribosome synthesis and cell proliferation. Int. J. Mol. Sci. 2018 19 12 3757 10.3390/ijms19123757 30486342
    [Google Scholar]
  40. Kosti I. Jain N. Aran D. Butte A.J. Sirota M. Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci. Rep. 2016 6 1 24799 10.1038/srep24799 27142790
    [Google Scholar]
  41. El Khoury W. Nasr Z. Deregulation of ribosomal proteins in human cancers. Biosci. Rep. 2021 41 12 BSR20211577 10.1042/BSR20211577 34873618
    [Google Scholar]
  42. Reza A.M.M.T. Yuan Y.G. microRNAs mediated regulation of the ribosomal proteins and its consequences on the global translation of proteins. Cells 2021 10 1 110 10.3390/cells10010110 33435549
    [Google Scholar]
  43. Pecoraro A. Pagano M. Russo G. Russo A. Ribosome biogenesis and cancer: Overview on ribosomal proteins. Int. J. Mol. Sci. 2021 22 11 5496 10.3390/ijms22115496 34071057
    [Google Scholar]
  44. Kang J. Brajanovski N. Chan K.T. Xuan J. Pearson R.B. Sanij E. Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther. 2021 6 1 323 10.1038/s41392‑021‑00728‑8 34462428
    [Google Scholar]
  45. Muhammad Q. Jang Y. Kang S.H. Moon J. Kim W.J. Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater. Sci. 2020 8 6 1490 1501 10.1039/C9BM01643K 31994542
    [Google Scholar]
  46. Hassan M.K. Kumar D. Naik M. Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018 13 1 e0191377 10.1371/journal.pone.0191377 29342219
    [Google Scholar]
  47. Sajid M. Liu L. Sun C. The dynamic role of NK cells in liver cancers: Role in HCC and HBV associated HCC and its therapeutic implications. Front. Immunol. 2022 13 887186 10.3389/fimmu.2022.887186 35669776
    [Google Scholar]
  48. Martínez-Esquivias F. Guzmán-Flores J.M. Chávez-Díaz I.F. Iñiguez-Muñoz L.E. Reyes-Chaparro A. Pharmacological network study on the effect of 6-gingerol on cervical cancer using computerized databases. J. Biomol. Struct. Dyn. 2023 0 0 1 12 10.1080/07391102.2023.2264943 37776009
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808352454241115065851
Loading
/content/journals/lddd/10.2174/0115701808352454241115065851
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: silver nanoparticles ; HepG2 ; Bioinformatic ; liver ; molecular docking ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test