Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

This study investigates the efficacy of α7-nicotinic acetylcholine receptor (α7nAChR) agonists in mitigating postoperative cognitive dysfunction (POCD) in a rat model. This investigation aimed to elucidate the therapeutic potential of α7nAChR agonists in modulating neuroinflammatory pathways to improve cognitive outcomes post-surgery.

Objective

Serum levels of pro-inflammatory cytokines IL-1β and IL-18 were measured as markers of systemic inflammation, while the expression levels of NLRP3 mRNA were quantified to evaluate pyroptosis and NLRP3 inflammasome activation.

Methods

Adult male Sprague-Dawley rats were divided into control (no surgery), POCD (surgery-induced), and POCD treated with an α7nAChR agonist. Cognitive function was assessed using the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests.

Results

The results showed a notable cognitive impairment in the group with POCD, as shown by increased escape latency noted in the MWM test and decreased discrimination index in the NOR test, while controls had no change. However, treatment with the α7nAChR agonist led to a significant improvement in cognitive performance among the POCD rats such that it closely matched those of the controls. Furthermore, the POCD group exhibited elevated serum levels of IL-1β and IL-18 and increased expression of pyroptosis-related markers, indicating enhanced neuroinflammation and inflammasome activation.

Conclusion

These findings highlighted the therapeutic efficacy of α7nAChR agonists in mitigating neuroinflammation and improving cognitive outcomes post-surgery. Our study supports the potential of targeting the cholinergic anti-inflammatory pathway, emphasizing clinical evaluation of α7nAChR agonists in postoperative patients.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808340483241119064321
2024-11-22
2025-05-31
The full text of this item is not currently available.

References

  1. EveredL.A. SilbertB.S. Postoperative cognitive dysfunction and noncardiac surgery.Anesth. Analg.2018127249650510.1213/ANE.000000000000351429889707
    [Google Scholar]
  2. SkvarcD.R. BerkM. ByrneL.K. DeanO.M. DoddS. LewisM. MarriottA. MooreE.M. MorrisG. PageR.S. GrayL. Post-operative cognitive dysfunction: An exploration of the inflammatory hypothesis and novel therapies.Neurosci. Biobehav. Rev.20188411613310.1016/j.neubiorev.2017.11.01129180259
    [Google Scholar]
  3. SinghG. KumarS. PandaS.R. KumarP. RaiS. VermaH. SinghY.P. KumarS. SrikrishnaS. NaiduV.G.M. ModiG. Design, synthesis, and biological evaluation of ferulic acid-piperazine derivatives targeting pathological hallmarks of Alzheimer’s Disease.ACS Chem. Neurosci.202415152756277810.1021/acschemneuro.4c0013039076038
    [Google Scholar]
  4. AtzoriM. Garcia-OscosF. AriasH.R. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory actions modulate brain functions.Neurotransmitter20163e1303
    [Google Scholar]
  5. LiJ. MathieuS.L. HarrisR. JiJ. AndersonD.J. MalyszJ. BunnelleW.H. WaringJ.F. MarshK.C. MurtazaA. OlsonL.M. GopalakrishnanM. Role of α7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonists.J. Neuroimmunol.20112391-2374310.1016/j.jneuroim.2011.08.00721911260
    [Google Scholar]
  6. WangH. YuM. OchaniM. AmellaC.A. TanovicM. SusarlaS. LiJ.H. WangH. YangH. UlloaL. Al-AbedY. CzuraC.J. TraceyK.J. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation.Nature2003421692138438810.1038/nature0133912508119
    [Google Scholar]
  7. YoussefM.E. ElsaidM. Molecular mechanisms of α7-nAchR-mediated anti-inflammatory effects.Indian J. Physiol. Pharmacol.2020643158159
    [Google Scholar]
  8. LiuL. WuH. CaoQ. GuoZ. RenA. DaiQ. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells.Mediators Inflamm.20172017111210.1155/2017/240102729348704
    [Google Scholar]
  9. Aguiriano-MoserV. SvejdaB. LiZ.X. SturmS. StuppnerH. IngolicE. Ursolic acid from Trailliaedoxa gracilis induces apoptosis in medullary thyroid carcinoma cells.Molecul. Med. Rep.201512747
    [Google Scholar]
  10. PapatriantafyllouM. Lipid metabolism linked to anti-inflammatory functions.Nat. Rev. Immunol.2012121174774710.1038/nri3336
    [Google Scholar]
  11. WangQ. PengY. ChenS. GouX. HuB. DuJ. LuY. XiongL. Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system.Stroke20094062157216410.1161/STROKEAHA.108.54149019372445
    [Google Scholar]
  12. PavlovV.A. TraceyK.J. The vagus nerve and the inflammatory reflex—linking immunity and metabolism.Nat. Rev. Endocrinol.201281274375410.1038/nrendo.2012.18923169440
    [Google Scholar]
  13. ZhuC. XuC. WangD. ZhuJ. LiuG. Anti-inflammatory effects of α7-nicotinic ACh receptors are exerted through interactions with adenylyl cyclase-6.Biomed. Pharmacother.202316711558210.1016/j.biopha.2023.115582
    [Google Scholar]
  14. ChenY. ChenJ. XingZ. PengC. LiD. Autophagy in neuroinflammation: a focus on epigenetic regulation.Aging Dis.202415273975410.14336/AD.2023.0718‑137548945
    [Google Scholar]
  15. GeY. MingL. XuD. Sevoflurane-induced cognitive effect on α7-nicotine receptor and M 1 acetylcholine receptor expression in the hippocampus of aged rats.Neurol. Res.202446759360410.1080/01616412.2024.233803138747300
    [Google Scholar]
  16. FaulF. ErdfelderE. LangA.G. BuchnerA. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences.Behav. Res. Methods200739217519110.3758/BF0319314617695343
    [Google Scholar]
  17. KurzA. WöhrM. WalterM. BoninM. AuburgerG. GispertS. SchwartingR.K.W. Alpha-synuclein deficiency affects brain Foxp1 expression and ultrasonic vocalization.Neuroscience2010166378579510.1016/j.neuroscience.2009.12.05420056137
    [Google Scholar]
  18. LeenaarsC.H.C. A step-by-step guide to conducting behavioural experiments in rodents.Bio Protoc.201994e317210.21769/BioProtoc.317233654978
    [Google Scholar]
  19. TraceyK.J. Physiology and immunology of the cholinergic antiinflammatory pathway.J. Clin. Invest.2007117228929610.1172/JCI3055517273548
    [Google Scholar]
  20. XieZ. DongY. MaedaU. AlfilleP. CulleyD.J. CrosbyG. TanziR.E. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels.Anesthesiology2006104598899410.1097/00000542‑200605000‑0001516645451
    [Google Scholar]
  21. StranahanA.M. KhalilD. GouldE. Social isolation delays the positive effects of running on adult neurogenesis.Nat. Neurosci.20069452653310.1038/nn166816531997
    [Google Scholar]
  22. TurnerP.V. BrabbT. PekowC. VasbinderM.A. Administration of substances to laboratory animals: routes of administration and factors to consider.J. Am. Assoc. Lab. Anim. Sci.201150560061322330705
    [Google Scholar]
  23. TerrandoN. MonacoC. MaD. FoxwellB.M.J. FeldmannM. MazeM. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline.Proc. Natl. Acad. Sci. USA201010747205182052210.1073/pnas.101455710721041647
    [Google Scholar]
  24. AntunesM. BialaG. The novel object recognition memory: neurobiology, test procedure, and its modifications.Cogn. Process.20121329311010.1007/s10339‑011‑0430‑z22160349
    [Google Scholar]
  25. ParkJ.E. LeeS.H. ParkD.J. SeoY.J. KimS.K. In vitro time-lapse live-cell imaging to explore cell migration toward the organ of corti.J. Vis. Exp.2020166166e6194733346204
    [Google Scholar]
  26. EckenhoffM.F. CunninghamC. Animal testing neurocognitive models of perioperative and disorders cognitive. In: The Perioperative Neurocognitive Disorders.Cambridge University Press2019
    [Google Scholar]
  27. BorovikovaL.V. IvanovaS. ZhangM. YangH. BotchkinaG.I. WatkinsL.R. WangH. AbumradN. EatonJ.W. TraceyK.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.Nature2000405678545846210.1038/3501307010839541
    [Google Scholar]
  28. HenekaM.T. KummerM.P. StutzA. DelekateA. SchwartzS. Vieira-SaeckerA. GriepA. AxtD. RemusA. TzengT.C. GelpiE. HalleA. KorteM. LatzE. GolenbockD.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice.Nature2013493743467467810.1038/nature1172923254930
    [Google Scholar]
  29. KayagakiN. StoweI.B. LeeB.L. O’RourkeK. AndersonK. WarmingS. CuellarT. HaleyB. Roose-GirmaM. PhungQ.T. LiuP.S. LillJ.R. LiH. WuJ. KummerfeldS. ZhangJ. LeeW.P. SnipasS.J. SalvesenG.S. MorrisL.X. FitzgeraldL. ZhangY. BertramE.M. GoodnowC.C. DixitV.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.Nature2015526757566667110.1038/nature1554126375259
    [Google Scholar]
  30. SwansonK.V. DengM. TingJ.P.Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics.Nat. Rev. Immunol.201919847748910.1038/s41577‑019‑0165‑031036962
    [Google Scholar]
  31. ShiJ. GaoW. ShaoF. Pyroptosis: Gasdermin-mediated programmed necrotic cell death.Trends Biochem. Sci.201742424525410.1016/j.tibs.2016.10.00427932073
    [Google Scholar]
  32. LiT. ZengZ. ZhaoQ. WangT. HuangK. LiJ. LiY. WeiZ. WangY. SunZ. CaoY. PKCδ-mediated phosphorylation of α7nAChR contributes to inflammation-associated amyloidogenic processing of APP.Cell Death Dis.2011211e19910.1038/cddis.2011.80
    [Google Scholar]
  33. GłombikK. TrojanE. KurekA. BudziszewskaB. Basta-KaimA. Inflammatory consequences of maternal diabetes on the offspring brain: a hippocampal organotypic culture study.Neurotox. Res.201936235737510.1007/s12640‑019‑00070‑631197747
    [Google Scholar]
  34. GaladanciA.A. DeBaunM.R. GaladanciN.A. Neurologic complications in children under five years with sickle cell disease.Neurosci. Lett.201970620120610.1016/j.neulet.2019.04.03031039424
    [Google Scholar]
  35. BaiH. ZhangQ. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease.Front. Immunol.20211270128210.3389/fimmu.2021.70128234381452
    [Google Scholar]
  36. RibeiroA.M. ArantesA. CruzC.O. Barriers to the adoption of modular construction in Portugal: An interpretive structural modeling approach.Buildings20221210150910.3390/buildings12101509
    [Google Scholar]
  37. HollisF. KabbajM. Social defeat as an animal model for depression.ILAR J.201455222123210.1093/ilar/ilu00225225302
    [Google Scholar]
  38. WangM. ZongH.F. ChangK.W. HanH. Yasir RizviM. Iffat NehaS. LiZ.Y. YangW.N. QianY.H. RETRACTED: 5-HT1AR alleviates Aβ-induced cognitive decline and neuroinflammation through crosstalk with NF-κB pathway in mice.Int. Immunopharmacol.20208210635410.1016/j.intimp.2020.10635432143008
    [Google Scholar]
  39. YinL. BaoF. WuJ. LiK. NLRP3 inflammasome-dependent pyroptosis is proposed to be involved in the mechanism of age-dependent isoflurane-induced cognitive impairment.J. Neuroinflammation201815126610.1186/s12974‑018‑1299‑x30217191
    [Google Scholar]
  40. OrserB.A. WilsonC.R. RotsteinA.J. IglesiasS.J. SpainB.T. RanganathanP. MacDonaldW.A. NgV. O’LearyS. LafontaineA. Improving access to safe anesthetic care in rural and remote communities in affluent countries.Anesth. Analg.2019129129430010.1213/ANE.000000000000408330855341
    [Google Scholar]
  41. LiZ. ZhuY. KangY. QinS. ChaiJ. Neuroinflammation as the underlying mechanism of postoperative cognitive dysfunction and therapeutic strategies.Front. Cell. Neurosci.20221684306910.3389/fncel.2022.84306935418837
    [Google Scholar]
  42. AnnuK. Effect of Sepsis on Dynamics of Hippocampal Oscillations and CA1 Cells, 2024. PhD thesis, Charles University2024
    [Google Scholar]
  43. LiuP. GaoT. LiT. YangY. XuY. XuZ. MiW. Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome.Neurosci. Lett.202174013546110.1016/j.neulet.2020.13546133115643
    [Google Scholar]
  44. VerdonkF. CambrielA. HedouJ. GanioE. BellanG. GaudilliereD. 2024An immune signature of postoperative cognitive decline in elderly patients.bioRxiv10.1101/2024.03.02.582845
    [Google Scholar]
  45. SajidS. Development of egg yolk-based polyclonal antibodies and immunoprophylactic potential of antigen-antibody complex against infectious bursal disease. Veterinary and Animal Science, 23, 100326.Liu, X., Ma, Y., Ouyang, R., Zeng, Z., Zhan, Z., Lu, H.,... & Chen, Y. (2020). The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome.J. Neuroinflammation202417117
    [Google Scholar]
  46. SajidS. RahmanS.U. MahmoodS. BashirS. HabibM. Fundamentals of Cellular and Molecular Biology. Bentham Science Publishers. Just-Borràs, L., Hurtado, E., Cilleros-Mañé, V., Biondi, O., Charbonnier, F., Tomàs, M.,... & Tomàs, J. (2019). Overview of impaired BDNF signaling, their coupled downstream serine-threonine kinases and SNARE/SM complex in the neuromuscular junction of the amyotrophic lateral sclerosis model SOD1-G93A mice.Mol. Neurobiol.20245668566872
    [Google Scholar]
  47. ZhangS. LiuC. SunJ. LiY. LuJ. XiongX. HuL. ZhaoH. ZhouH. Bridging the gap: Investigating the link between Inflammasomes and postoperative cognitive dysfunction.Aging Dis.20231461981200210.14336/AD.2023.050137450925
    [Google Scholar]
  48. ZhouJ. ZhangC. FangX. ZhangN. ZhangX. ZhuZ. Activation of autophagy inhibits the activation of NLRP3 inflammasome and alleviates sevoflurane-induced cognitive dysfunction in elderly rats.BMC Neurosci.2023241910.1186/s12868‑023‑00777‑536709248
    [Google Scholar]
  49. LiJ. LiL. HeJ. XuJ. BaoF. The NLRP3 inflammasome is a potential mechanism and therapeutic target for perioperative neurocognitive disorders.Front. Aging Neurosci.202314107200310.3389/fnagi.2022.107200336688154
    [Google Scholar]
  50. SajidS. RahmanS. Mohsin GilaniM. SindhuZ.D. AliM.B. HedfiA. AlmalkiM. MahmoodS. Molecular characterization and demographic study on infectious bursal disease virus in faisalabad district.PLoS One2021168e025460510.1371/journal.pone.025460534398875
    [Google Scholar]
  51. SarfrazM. SajidS. AshrafM.A. Prevalence and pattern of dyslipidemia in hyperglycemic patients and its associated factors among Pakistani population.Saudi J. Biol. Sci.201623676176610.1016/j.sjbs.2016.03.00127872574
    [Google Scholar]
  52. HanC.L. GeM. LiuY.P. ZhaoX.M. WangK.L. ChenN. MengW.J. HuW. ZhangJ.G. LiL. MengF.G. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy.J. Neuroinflammation201815110310.1186/s12974‑018‑1139‑z29636074
    [Google Scholar]
  53. PiescheM. RoosJ. KühnB. FettelJ. HellmuthN. BratC. MaucherI.V. AwadO. MatroneC. Comerma SteffensenS.G. ManolikakesG. HeinickeU. ZacharowskiK.D. SteinhilberD. MaierT.J. The emerging therapeutic potential of nitro fatty acids and other Michael acceptor-containing drugs for the treatment of inflammation and cancer.Front. Pharmacol.202011129710.3389/fphar.2020.0129733013366
    [Google Scholar]
  54. SagarkarS. BalasubramanianN. MishraS. ChoudharyA.G. KokareD.M. SakharkarA.J. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats.Brain Res.2019171118319210.1016/j.brainres.2019.01.02230664848
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808340483241119064321
Loading
/content/journals/lddd/10.2174/0115701808340483241119064321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test