Skip to content
2000
image of Molecular Mechanism of Finerenone in Treating Diabetic Nephropathy Based on Bioinformatics

Abstract

Background

Diabetic Nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). Finerenone (with the molecular formula CHNO) is an oral non-steroidal mineralocorticoid antagonist (ns-MRA) that is both highly potent and has strong selectivity for the MR. At present, it has been used to treat DN. However, the molecular mechanism of finerenone in the treatment of diabetic nephropathy remains unclear.

Objective

In this study, we employed bioinformatics approaches to investigate the molecular mechanism of finerenone as a novel therapeutic agent for the treatment of DN.

Methods

We examined a number of databases, including GEO, DisGeNET, Genecards, and OMIM, to find putative genes linked to DN. We then employed the PubChem database and PharmMapper service platform to identify targets of finerenone. Further analysis was conducted using the DAVID database for enrichment analysis and the STRING database for protein-protein interaction (PPI) networks. Molecular docking (MD) was performed using AutoDockTools software, and results were visualized using PyMOL software.

Results

In total, we identified 82 drug-disease targets, primarily associated with lipid and atherosclerosis, diabetic cardiomyopathy, MAPK signaling pathway, and PI3K-Akt signaling pathway. Our PPI network analysis and docking studies demonstrated good binding ability of finerenone to specific targets such as AKT1, MMP-9, IGF1, EGFR, CASP3, PPARG, ESR1, MMP-2, and KDR.

Conclusion

Finerenone has the potential to reduce the progression of DN through various pathways, including lipid and atherosclerosis, diabetic cardiomyopathy, MAPK signaling pathway, and PI3K-Akt signaling pathway. Moreover, it could exert anti-inflammatory and antifibrotic effects on specific targets, such as AKT1, MMP-9, IGF1, EGFR, CASP3, PPARG, ESR1, MMP-2, and KDR.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808354285241109140805
2024-11-14
2024-12-26
Loading full text...

Full text loading...

References

  1. Han Q. Zhu H. Chen X. Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front. Med. 2017 11 3 319 332 10.1007/s11684‑017‑0569‑9 28871454
    [Google Scholar]
  2. Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021 2021 1 17 10.1155/2021/1497449 34307650
    [Google Scholar]
  3. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2022 102 5S S1 S127 36272764
    [Google Scholar]
  4. Wada J. Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. (Lond.) 2013 124 3 139 152 10.1042/CS20120198 23075333
    [Google Scholar]
  5. Dong Y. Zhao Q. Wang Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci. Rep. 2021 11 1 19496 10.1038/s41598‑021‑98925‑6 34593896
    [Google Scholar]
  6. Frampton J.E. Finerenone: First approval. Drugs 2021 81 15 1787 1794 10.1007/s40265‑021‑01599‑7 34519996
    [Google Scholar]
  7. Bakris G.L. Agarwal R. Anker S.D. Pitt B. Ruilope L.M. Rossing P. Kolkhof P. Nowack C. Schloemer P. Joseph A. Filippatos G. FIDELIO-DKD Investigators Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 2020 383 23 2219 2229 10.1056/NEJMoa2025845 33264825
    [Google Scholar]
  8. Ruilope L.M. Agarwal R. Anker S.D. Bakris G.L. Filippatos G. Nowack C. Kolkhof P. Joseph A. Mentenich N. Pitt B. Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial. Am. J. Nephrol. 2019 50 5 345 356 10.1159/000503712 31665733
    [Google Scholar]
  9. Kolkhof P. Borden S.A. Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Mol. Cell. Endocrinol. 2012 350 2 310 317 10.1016/j.mce.2011.06.025 21771637
    [Google Scholar]
  10. Bärfacker L. Kuhl A. Hillisch A. Grosser R. Figueroa-Pérez S. Heckroth H. Nitsche A. Ergüden J.K. Gielen-Haertwig H. Schlemmer K.H. Mittendorf J. Paulsen H. Platzek J. Kolkhof P. Discovery of BAY 94-8862: A nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem 2012 7 8 1385 1403 10.1002/cmdc.201200081 22791416
    [Google Scholar]
  11. Agarwal R. Filippatos G. Pitt B. Anker S.D. Rossing P. Joseph A. Kolkhof P. Nowack C. Gebel M. Ruilope L.M. Bakris G.L. Fidelio D.K.D. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022 43 6 474 484 10.1093/eurheartj/ehab777 35023547
    [Google Scholar]
  12. Palanisamy S. Funes Hernandez M. Chang T.I. Mahaffey K.W. Cardiovascular and Renal outcomes with Finerenone, a selective Mineralocorticoid receptor antagonist. Cardiol. Ther. 2022 11 3 337 354 10.1007/s40119‑022‑00269‑3 35737275
    [Google Scholar]
  13. Tao Z. Shi A. Li R. Wang Y. Wang X. Zhao J. Microarray bioinformatics in cancer- a review. J. Balkan Union Oncol. 2017 22 4 838 843 29155508
    [Google Scholar]
  14. Wooller S.K. Benstead-Hume G. Chen X. Ali Y. Pearl F.M.G. Bioinformatics in translational drug discovery. Biosci. Rep. 2017 37 4 BSR20160180 10.1042/BSR20160180 28487472
    [Google Scholar]
  15. Kato M. Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019 15 6 327 345 10.1038/s41581‑019‑0135‑6 30894700
    [Google Scholar]
  16. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The GeneCards Suite: From gene data mining to disease genome sequence analyses Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33
    [Google Scholar]
  17. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 31680165
    [Google Scholar]
  18. Clough E. Barrett T. The gene expression omnibus database. Methods Mol. Biol. 2016 1418 93 110 10.1007/978‑1‑4939‑3578‑9_5 27008011
    [Google Scholar]
  19. Amberger J. S. Hamosh A. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes Curr Protoc Bioinformatics 2017 58 1.2.1 1.2.12
    [Google Scholar]
  20. Jia A. Xu L. Wang Y. Venn diagrams in bioinformatics. Brief. Bioinform. 2021 22 5 bbab108 10.1093/bib/bbab108 33839742
    [Google Scholar]
  21. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  22. Liu X. Ouyang S. Yu B. Liu Y. Huang K. Gong J. Zheng S. Li Z. Li H. Jiang H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach Nucleic Acids Res 2010 38 Web Server issue W609 W614 10.1093/nar/gkq300
    [Google Scholar]
  23. Uszkoreit J. Winkelhardt D. Barkovits K. Wulf M. Roocke S. Marcus K. Eisenacher M. MaCPepDB: A database to quickly access all tryptic peptides of the UniProtKB. J. Proteome Res. 2021 20 4 2145 2150 10.1021/acs.jproteome.0c00967 33724838
    [Google Scholar]
  24. Dennis G. Jr Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 P3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  25. Li J. Miao B. Wang S. Dong W. Xu H. Si C. Wang W. Duan S. Lou J. Bao Z. Zeng H. Yang Z. Cheng W. Zhao F. Zeng J. Liu X.S. Wu R. Shen Y. Chen Z. Chen S. Wang M. Hiplot C. Hiplot: A comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Brief. Bioinform. 2022 23 4 bbac261 10.1093/bib/bbac261 35788820
    [Google Scholar]
  26. Feng H. Gu Z.Y. Li Q. Liu Q.H. Yang X.Y. Zhang J.J. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J. Ovarian Res. 2019 12 1 35 10.1186/s13048‑019‑0508‑2 31010415
    [Google Scholar]
  27. Burley S.K. Berman H.M. Kleywegt G.J. Markley J.L. Nakamura H. Velankar S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol. 2017 1607 627 641 10.1007/978‑1‑4939‑7000‑1_26 28573592
    [Google Scholar]
  28. Nithya C. Kiran M. Nagarajaram H.A. Hubs and bottlenecks in protein-protein interaction networks Methods Mol Biol 2024 2719 227 248 10.1007/978‑1‑0716‑3461‑5_13
    [Google Scholar]
  29. Das M. Selvakumar K. Alphonse P.J.A. Analyzing and comparing omicron lineage variants protein–protein interaction network using centrality measure. SN Comput. Sci. 2023 4 3 299 10.1007/s42979‑023‑01685‑5 37016628
    [Google Scholar]
  30. Chea E. Livesay D.R. How accurate and statistically robust are catalytic site predictions based on closeness centrality? BMC Bioinformatics 2007 8 1 153 10.1186/1471‑2105‑8‑153 17498304
    [Google Scholar]
  31. Li B. Rui J. Ding X. Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J. Ethnopharmacol. 2019 233 158 168 10.1016/j.jep.2018.12.033 30590198
    [Google Scholar]
  32. Sanajou D. Ghorbani Haghjo A. Argani H. Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur. J. Pharmacol. 2018 833 158 164 10.1016/j.ejphar.2018.06.001 29883668
    [Google Scholar]
  33. Tuttle K.R. Agarwal R. Alpers C.E. Bakris G.L. Brosius F.C. Kolkhof P. Uribarri J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022 102 2 248 260 10.1016/j.kint.2022.05.012 35661785
    [Google Scholar]
  34. Li A. Peng R. Sun Y. Liu H. Peng H. Zhang Z. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. Cell Death Dis. 2018 9 5 461 10.1038/s41419‑018‑0527‑8 29700282
    [Google Scholar]
  35. Singh A.K. Singh A. Singh R. Misra A. Finerenone in diabetic kidney disease: A systematic review and critical appraisal. Diabetes Metab. Syndr. 2022 16 10 102638 10.1016/j.dsx.2022.102638 36223666
    [Google Scholar]
  36. Kuwabara T. Mori K. Mukoyama M. Kasahara M. Yokoi H. Saito Y. Ogawa Y. Imamaki H. Kawanishi T. Ishii A. Koga K. Mori K.P. Kato Y. Sugawara A. Nakao K. Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice. Diabetologia 2012 55 8 2256 2266 10.1007/s00125‑012‑2578‑1 22610400
    [Google Scholar]
  37. Kuwabara T. Mori K. Mukoyama M. Kasahara M. Yokoi H. Nakao K. Macrophage-mediated glucolipotoxicity via myeloid-related protein 8/toll-like receptor 4 signaling in diabetic nephropathy. Clin. Exp. Nephrol. 2014 18 4 584 592 10.1007/s10157‑013‑0922‑5 24357461
    [Google Scholar]
  38. Poznyak A. Grechko A.V. Poggio P. Myasoedova V.A. Alfieri V. Orekhov A.N. The diabetes Mellitus–Atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020 21 5 1835 10.3390/ijms21051835 32155866
    [Google Scholar]
  39. Gao Q. Sarkar A. Chen Y. Xu B. Zhu X. Yuan Y. Guan T. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury. Exp. Ther. Med. 2018 15 2 2054 2061 29434805
    [Google Scholar]
  40. Ye J. Li L. Hu Z. Exploring the molecular mechanism of action of yinchen wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation. BioMed Res. Int. 2021 2021 1 14 10.1155/2021/9965906 34746316
    [Google Scholar]
  41. Rangaswami J. Bhalla V. Blair J.E.A. Chang T.I. Costa S. Lentine K.L. Lerma E.V. Mezue K. Molitch M. Mullens W. Ronco C. Tang W.H.W. McCullough P.A. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the american heart association. Circulation 2019 139 16 e840 e878 10.1161/CIR.0000000000000664 30852913
    [Google Scholar]
  42. Braunwald E. Diabetes, heart failure, and renal dysfunction: The vicious circles. Prog. Cardiovasc. Dis. 2019 62 4 298 302 10.1016/j.pcad.2019.07.003 31377223
    [Google Scholar]
  43. Kane J.P. Pullinger C.R. Goldfine I.D. Malloy M.J. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr. Opin. Pharmacol. 2021 61 21 27 10.1016/j.coph.2021.08.013 34562838
    [Google Scholar]
  44. Chen Y. Lu M. Feng Y. Gao Q. The effect and safety of low-dose Tripterygium wilfordii in patients with type 2 diabetic nephropathy: A meta-analysis. Medicine (Baltimore) 2022 101 52 e32504 10.1097/MD.0000000000032504 36596065
    [Google Scholar]
  45. Ma L. Wu F. Shao Q. Chen G. Xu L. Lu F. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug Des. Devel. Ther. 2021 15 3207 3221 10.2147/DDDT.S319260 34321869
    [Google Scholar]
  46. Malik S. Suchal K. Khan S.I. Bhatia J. Kishore K. Dinda A.K. Arya D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol. 2017 313 2 F414 F422 10.1152/ajprenal.00393.2016 28566504
    [Google Scholar]
  47. Schultze S.M. Hemmings B.A. Niessen M. Tschopp O. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev. Mol. Med. 2012 14 e1 10.1017/S1462399411002109 22233681
    [Google Scholar]
  48. Estrada C.C. Maldonado A. Mallipattu S.K. Therapeutic inhibition of VEGF signaling and associated Nephrotoxicities. J. Am. Soc. Nephrol. 2019 30 2 187 200 10.1681/ASN.2018080853 30642877
    [Google Scholar]
  49. Huang W. Liu W. Xiao Y. Zheng H. Xiao Y. Jia Q. Jiang H. Zhu Z. Xia C. Han X. Sun R. Nan H. Feng Z. Wang S. Zhao J. Tripterygium and its extracts for diabetic nephropathy: Efficacy and pharmacological mechanisms. Biomed. Pharmacother. 2020 121 109599 10.1016/j.biopha.2019.109599 31707345
    [Google Scholar]
  50. Sakai N. Wada T. Furuichi K. Iwata Y. Yoshimoto K. Kitagawa K. Kokubo S. Kobayashi M. Hara A. Yamahana J. Okumura T. Takasawa K. Takeda S.I. Yoshimura M. Kida H. Yokoyama H. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am. J. Kidney Dis. 2005 45 1 54 65 10.1053/j.ajkd.2004.08.039 15696444
    [Google Scholar]
  51. Patel R.K. Mohan C. PI3K/AKT signaling and systemic autoimmunity. Immunol. Res. 2005 31 1 47 56 10.1385/IR:31:1:47 15591622
    [Google Scholar]
  52. Acosta-Martinez M. Cabail M.Z. The PI3K/Akt Pathway in Meta-Inflammation. Int. J. Mol. Sci. 2022 23 23 15330 10.3390/ijms232315330 36499659
    [Google Scholar]
  53. Benchoula K. Parhar I.S. Wong E.H. The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch. Biochem. Biophys. 2021 698 108743 10.1016/j.abb.2020.108743 33382998
    [Google Scholar]
  54. Zhang L. Han L. Wang X. Wei Y. Zheng J. Zhao L. Tong X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep. 2021 41 6 BSR20203520 10.1042/BSR20203520 33634308
    [Google Scholar]
  55. Huang X. Liu G. Guo J. Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018 14 11 1483 1496 10.7150/ijbs.27173 30263000
    [Google Scholar]
  56. Yu Y. Jia Y.Y. Wang M. Mu L. Li H.J. PTGER3 and MMP-2 play potential roles in diabetic nephropathy via competing endogenous RNA mechanisms. BMC Nephrol. 2021 22 1 27 10.1186/s12882‑020‑02194‑w 33435900
    [Google Scholar]
  57. Wang M. Liu X. Wang Z. Xu Q. The extract of Polygala fallax Hemsl. slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro. Phytomedicine 2022 104 154251 10.1016/j.phymed.2022.154251 35717806
    [Google Scholar]
  58. Stabouli S. Kotsis V. Maliachova O. Printza N. Chainoglou A. Christoforidis A. Taparkou A. Dotis J. Farmaki E. Zafeiriou D. Matrix metalloproteinase −2, −9 and arterial stiffness in children and adolescents: The role of chronic kidney disease, diabetes, and hypertension. Int. J. Cardiol. Hypertens. 2020 4 100025 10.1016/j.ijchy.2020.100025 33447754
    [Google Scholar]
  59. Hawkins P.T. Stephens L.R. PI3K signalling in inflammation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 6 882 897 10.1016/j.bbalip.2014.12.006 25514767
    [Google Scholar]
  60. Li J. Wang T. Liu P. Yang F. Wang X. Zheng W. Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021 12 9 3898 3918 10.1039/D0FO02736G 33977953
    [Google Scholar]
  61. Rossert J. Terraz-Durasnel C. Brideau G. Growth factors, cytokines, and renal fibrosis during the course of diabetic nephropathy. Diabetes Metab. 2000 26 Suppl. 4 16 24 10922969
    [Google Scholar]
  62. Segev Y. Eshet R. Yakir O. Haim N. Phillip M. Landau D. Systemic and renal growth hormone–IGF1 axis involvement in a mouse model of type 2 diabetes. Diabetologia 2007 50 6 1327 1334 10.1007/s00125‑007‑0663‑7 17443310
    [Google Scholar]
  63. Gurevich E. Segev Y. Landau D. Growth hormone and IGF1 actions in kidney development and function. Cells 2021 10 12 3371 10.3390/cells10123371 34943879
    [Google Scholar]
  64. Li Y. Pan Y. Cao S. Sasaki K. Wang Y. Niu A. Fan X. Wang S. Zhang M.Z. Harris R.C. Podocyte EGFR inhibits autophagy through upregulation of Rubicon in type 2 diabetic nephropathy. Diabetes 2021 70 2 562 576 10.2337/db20‑0660 33239448
    [Google Scholar]
  65. Kim S. Kang S.W. Joo J. Han S.H. Shin H. Nam B.Y. Park J. Yoo T.H. Kim G. Lee P. Park J.T. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis. 2021 12 2 160 10.1038/s41419‑021‑03452‑x 33558472
    [Google Scholar]
  66. Shahzad K. Bock F. Al-Dabet M.M. Gadi I. Kohli S. Nazir S. Ghosh S. Ranjan S. Wang H. Madhusudhan T. Nawroth P.P. Isermann B. Caspase-1, but Not Caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 2016 27 8 2270 2275 10.1681/ASN.2015060676 26832955
    [Google Scholar]
  67. Zheng W. Qian C. Xu F. Cheng P. Yang C. Li X. Lu Y. Wang A. Fuxin Granules ameliorate diabetic nephropathy in db/db mice through TGF-β1/Smad and VEGF/VEGFR2 signaling pathways. Biomed. Pharmacother. 2021 141 111806 10.1016/j.biopha.2021.111806 34246190
    [Google Scholar]
  68. Zhao X.C. Livingston M.J. Liang X.L. Dong Z. Cell apoptosis and autophagy in renal fibrosis. Adv. Exp. Med. Biol. 2019 1165 557 584 10.1007/978‑981‑13‑8871‑2_28 31399985
    [Google Scholar]
  69. Bhattacharjee N. Barma S. Konwar N. Dewanjee S. Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol. 2016 791 8 24 10.1016/j.ejphar.2016.08.022 27568833
    [Google Scholar]
  70. Gao Y. Guo Z. Liu Y. Analysis of the potential molecular biology of triptolide in the treatment of diabetic nephropathy: A narrative review. Medicine (Baltimore) 2022 101 48 e31941 10.1097/MD.0000000000031941 36482625
    [Google Scholar]
  71. Lohmüller M. Roeck B.F. Szabo T.G. Schapfl M.A. Pegka F. Herzog S. Villunger A. Schuler F. The SKP2 ‐p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol. Oncol. 2022 16 15 2771 2787 10.1002/1878‑0261.13264 35673965
    [Google Scholar]
  72. Ibarra-Lara M.L. Sánchez-Aguilar M. Soria E. Torres-Narváez J.C. Del Valle-Mondragón L. Cervantes-Pérez L.G. Pérez-Severiano F. Ramírez-Ortega M.C. Pastelín-Hernández G. Oidor-Chan V.H. Sánchez-Mendoza A. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction. Can. J. Physiol. Pharmacol. 2016 94 6 634 642 10.1139/cjpp‑2015‑0356 27050838
    [Google Scholar]
  73. Cheng H.S. Tan W.R. Low Z.S. Marvalim C. Lee J.Y.H. Tan N.S. Exploration and development of PPAR modulators in health and disease: An update of clinical evidence. Int. J. Mol. Sci. 2019 20 20 5055 10.3390/ijms20205055 31614690
    [Google Scholar]
  74. Keene K.L. Mychaleckyj J.C. Smith S.G. Leak T.S. Perlegas P.S. Langefeld C.D. Herrington D.M. Freedman B.I. Rich S.S. Bowden D.W. Sale M.M. Comprehensive evaluation of the estrogen receptor α gene reveals further evidence for association with type 2 diabetes enriched for nephropathy in an African American population. Hum. Genet. 2008 123 4 333 341 10.1007/s00439‑008‑0482‑z 18305958
    [Google Scholar]
  75. Che X. Zhao R. Xu H. Liu X. Zhao S. Ma H. Differently expressed genes (DEGs) relevant to type 2 diabetes mellitus identification and pathway analysis via integrated bioinformatics analysis. Med. Sci. Monit. 2019 25 9237 9244 10.12659/MSM.918407 31797865
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808354285241109140805
Loading
/content/journals/lddd/10.2174/0115701808354285241109140805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test