Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Diabetic Nephropathy (DN) is the leading cause of the end-stage renal disease (ESRD). Finerenone (with the molecular formula CHNO) is an oral non-steroidal mineralocorticoid antagonist (ns-MRA) that is both highly potent and has strong selectivity for the MR. At present, it has been used to treat DN. However, the molecular mechanism of finerenone in the treatment of diabetic nephropathy remains unclear.

Objective

In this study, we employed bioinformatics approaches to investigate the molecular mechanism of finerenone as a novel therapeutic agent for the treatment of DN.

Methods

We examined a number of databases, including GEO, DisGeNET, Genecards, and OMIM, to find putative genes linked to DN. We then employed the PubChem database and PharmMapper service platform to identify targets of finerenone. Further analysis was conducted using the DAVID database for enrichment analysis and the STRING database for protein-protein interaction (PPI) networks. Molecular docking (MD) was performed using AutoDockTools software, and results were visualized using PyMOL software.

Results

In total, we identified 82 drug-disease targets, primarily associated with lipid and atherosclerosis, diabetic cardiomyopathy, MAPK signaling pathway, and PI3K-Akt signaling pathway. Our PPI network analysis and docking studies demonstrated good binding ability of finerenone to specific targets such as AKT1, MMP-9, IGF1, EGFR, CASP3, PPARG, ESR1, MMP-2, and KDR.

Conclusion

Finerenone has the potential to reduce the progression of DN through various pathways, including lipid and atherosclerosis, diabetic cardiomyopathy, MAPK signaling pathway, and PI3K-Akt signaling pathway. Moreover, it could exert anti-inflammatory and antifibrotic effects on specific targets, such as AKT1, MMP-9, IGF1, EGFR, CASP3, PPARG, ESR1, MMP-2, and KDR.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808354285241109140805
2024-11-14
2025-07-06
Loading full text...

Full text loading...

References

  1. HanQ. ZhuH. ChenX. LiuZ. Non-genetic mechanisms of diabetic nephropathy.Front. Med.201711331933210.1007/s11684‑017‑0569‑928871454
    [Google Scholar]
  2. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/149744934307650
    [Google Scholar]
  3. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease.Kidney Int.20221025SS1S12736272764
    [Google Scholar]
  4. WadaJ. MakinoH. Inflammation and the pathogenesis of diabetic nephropathy.Clin. Sci. (Lond.)2013124313915210.1042/CS2012019823075333
    [Google Scholar]
  5. DongY. ZhaoQ. WangY. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy.Sci. Rep.20211111949610.1038/s41598‑021‑98925‑634593896
    [Google Scholar]
  6. FramptonJ.E. Finerenone: First approval.Drugs202181151787179410.1007/s40265‑021‑01599‑734519996
    [Google Scholar]
  7. BakrisG.L. AgarwalR. AnkerS.D. PittB. RuilopeL.M. RossingP. KolkhofP. NowackC. SchloemerP. JosephA. FilippatosG. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes.N. Engl. J. Med.2020383232219222910.1056/NEJMoa202584533264825
    [Google Scholar]
  8. RuilopeL.M. AgarwalR. AnkerS.D. BakrisG.L. FilippatosG. NowackC. KolkhofP. JosephA. MentenichN. PittB. Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial.Am. J. Nephrol.201950534535610.1159/00050371231665733
    [Google Scholar]
  9. KolkhofP. BordenS.A. Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics.Mol. Cell. Endocrinol.2012350231031710.1016/j.mce.2011.06.02521771637
    [Google Scholar]
  10. BärfackerL. KuhlA. HillischA. GrosserR. Figueroa-PérezS. HeckrothH. NitscheA. ErgüdenJ.K. Gielen-HaertwigH. SchlemmerK.H. MittendorfJ. PaulsenH. PlatzekJ. KolkhofP. Discovery of BAY 94-8862: A nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases.ChemMedChem2012781385140310.1002/cmdc.20120008122791416
    [Google Scholar]
  11. AgarwalR. FilippatosG. PittB. AnkerS.D. RossingP. JosephA. KolkhofP. NowackC. GebelM. RuilopeL.M. BakrisG.L. FidelioD.K.D. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis.Eur. Heart J.202243647448410.1093/eurheartj/ehab77735023547
    [Google Scholar]
  12. PalanisamyS. Funes HernandezM. ChangT.I. MahaffeyK.W. Cardiovascular and Renal outcomes with Finerenone, a selective Mineralocorticoid receptor antagonist.Cardiol. Ther.202211333735410.1007/s40119‑022‑00269‑335737275
    [Google Scholar]
  13. TaoZ. ShiA. LiR. WangY. WangX. ZhaoJ. Microarray bioinformatics in cancer- a review.J. Balkan Union Oncol.201722483884329155508
    [Google Scholar]
  14. WoollerS.K. Benstead-HumeG. ChenX. AliY. PearlF.M.G. Bioinformatics in translational drug discovery.Biosci. Rep.2017374BSR2016018010.1042/BSR2016018028487472
    [Google Scholar]
  15. KatoM. NatarajanR. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory.Nat. Rev. Nephrol.201915632734510.1038/s41581‑019‑0135‑630894700
    [Google Scholar]
  16. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT. I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards Suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics2016541.30.11.30.33
    [Google Scholar]
  17. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  18. CloughE. BarrettT. The gene expression omnibus database.Methods Mol. Biol.201614189311010.1007/978‑1‑4939‑3578‑9_527008011
    [Google Scholar]
  19. AmbergerJ. S. HamoshA. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr Protoc Bioinformatics2017581.2.11.2.12
    [Google Scholar]
  20. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab10833839742
    [Google Scholar]
  21. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  22. LiuX. OuyangS. YuB. LiuY. HuangK. GongJ. ZhengS. LiZ. LiH. JiangH. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach Nucleic Acids Res, 2010,38(Web Server issue)W609W61410.1093/nar/gkq300
    [Google Scholar]
  23. UszkoreitJ. WinkelhardtD. BarkovitsK. WulfM. RoockeS. MarcusK. EisenacherM. MaCPepDB: A database to quickly access all tryptic peptides of the UniProtKB.J. Proteome Res.20212042145215010.1021/acs.jproteome.0c0096733724838
    [Google Scholar]
  24. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  25. LiJ. MiaoB. WangS. DongW. XuH. SiC. WangW. DuanS. LouJ. BaoZ. ZengH. YangZ. ChengW. ZhaoF. ZengJ. LiuX.S. WuR. ShenY. ChenZ. ChenS. WangM. HiplotC. Hiplot: A comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization.Brief. Bioinform.2022234bbac26110.1093/bib/bbac26135788820
    [Google Scholar]
  26. FengH. GuZ.Y. LiQ. LiuQ.H. YangX.Y. ZhangJ.J. Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis.J. Ovarian Res.20191213510.1186/s13048‑019‑0508‑231010415
    [Google Scholar]
  27. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_2628573592
    [Google Scholar]
  28. NithyaC. KiranM. NagarajaramH.A. Hubs and bottlenecks in protein-protein interaction networks.Methods Mol. Biol.2024271922724810.1007/978‑1‑0716‑3461‑5_13
    [Google Scholar]
  29. DasM. SelvakumarK. AlphonseP.J.A. Analyzing and comparing omicron lineage variants protein–protein interaction network using centrality measure.SN Comput. Sci.20234329910.1007/s42979‑023‑01685‑537016628
    [Google Scholar]
  30. CheaE. LivesayD.R. How accurate and statistically robust are catalytic site predictions based on closeness centrality?BMC Bioinformatics20078115310.1186/1471‑2105‑8‑15317498304
    [Google Scholar]
  31. LiB. RuiJ. DingX. YangX. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy.J. Ethnopharmacol.201923315816810.1016/j.jep.2018.12.03330590198
    [Google Scholar]
  32. SanajouD. Ghorbani HaghjoA. ArganiH. AslaniS. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.Eur. J. Pharmacol.201883315816410.1016/j.ejphar.2018.06.00129883668
    [Google Scholar]
  33. TuttleK.R. AgarwalR. AlpersC.E. BakrisG.L. BrosiusF.C. KolkhofP. UribarriJ. Molecular mechanisms and therapeutic targets for diabetic kidney disease.Kidney Int.2022102224826010.1016/j.kint.2022.05.01235661785
    [Google Scholar]
  34. LiA. PengR. SunY. LiuH. PengH. ZhangZ. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling.Cell Death Dis.20189546110.1038/s41419‑018‑0527‑829700282
    [Google Scholar]
  35. SinghA.K. SinghA. SinghR. MisraA. Finerenone in diabetic kidney disease: A systematic review and critical appraisal.Diabetes Metab. Syndr.2022161010263810.1016/j.dsx.2022.10263836223666
    [Google Scholar]
  36. KuwabaraT. MoriK. MukoyamaM. KasaharaM. YokoiH. SaitoY. OgawaY. ImamakiH. KawanishiT. IshiiA. KogaK. MoriK.P. KatoY. SugawaraA. NakaoK. Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice.Diabetologia20125582256226610.1007/s00125‑012‑2578‑122610400
    [Google Scholar]
  37. KuwabaraT. MoriK. MukoyamaM. KasaharaM. YokoiH. NakaoK. Macrophage-mediated glucolipotoxicity via myeloid-related protein 8/toll-like receptor 4 signaling in diabetic nephropathy.Clin. Exp. Nephrol.201418458459210.1007/s10157‑013‑0922‑524357461
    [Google Scholar]
  38. PoznyakA. GrechkoA.V. PoggioP. MyasoedovaV.A. AlfieriV. OrekhovA.N. The diabetes Mellitus–Atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation.Int. J. Mol. Sci.2020215183510.3390/ijms2105183532155866
    [Google Scholar]
  39. GaoQ. SarkarA. ChenY. XuB. ZhuX. YuanY. GuanT. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.Exp. Ther. Med.20181522054206129434805
    [Google Scholar]
  40. YeJ. LiL. HuZ. Exploring the molecular mechanism of action of yinchen wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation.BioMed Res. Int.2021202111410.1155/2021/996590634746316
    [Google Scholar]
  41. RangaswamiJ. BhallaV. BlairJ.E.A. ChangT.I. CostaS. LentineK.L. LermaE.V. MezueK. MolitchM. MullensW. RoncoC. TangW.H.W. McCulloughP.A. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the american heart association.Circulation201913916e840e87810.1161/CIR.000000000000066430852913
    [Google Scholar]
  42. BraunwaldE. Diabetes, heart failure, and renal dysfunction: The vicious circles.Prog. Cardiovasc. Dis.201962429830210.1016/j.pcad.2019.07.00331377223
    [Google Scholar]
  43. KaneJ.P. PullingerC.R. GoldfineI.D. MalloyM.J. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus.Curr. Opin. Pharmacol.202161212710.1016/j.coph.2021.08.01334562838
    [Google Scholar]
  44. ChenY. LuM. FengY. GaoQ. The effect and safety of low-dose Tripterygium wilfordii in patients with type 2 diabetic nephropathy: A meta-analysis.Medicine (Baltimore)202210152e3250410.1097/MD.000000000003250436596065
    [Google Scholar]
  45. MaL. WuF. ShaoQ. ChenG. XuL. LuF. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway.Drug Des. Devel. Ther.2021153207322110.2147/DDDT.S31926034321869
    [Google Scholar]
  46. MalikS. SuchalK. KhanS.I. BhatiaJ. KishoreK. DindaA.K. AryaD.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.Am. J. Physiol. Renal Physiol.20173132F414F42210.1152/ajprenal.00393.201628566504
    [Google Scholar]
  47. SchultzeS.M. HemmingsB.A. NiessenM. TschoppO. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis.Expert Rev. Mol. Med.201214e110.1017/S146239941100210922233681
    [Google Scholar]
  48. EstradaC.C. MaldonadoA. MallipattuS.K. Therapeutic inhibition of VEGF signaling and associated Nephrotoxicities.J. Am. Soc. Nephrol.201930218720010.1681/ASN.201808085330642877
    [Google Scholar]
  49. HuangW. LiuW. XiaoY. ZhengH. XiaoY. JiaQ. JiangH. ZhuZ. XiaC. HanX. SunR. NanH. FengZ. WangS. ZhaoJ. Tripterygium and its extracts for diabetic nephropathy: Efficacy and pharmacological mechanisms.Biomed. Pharmacother.202012110959910.1016/j.biopha.2019.10959931707345
    [Google Scholar]
  50. SakaiN. WadaT. FuruichiK. IwataY. YoshimotoK. KitagawaK. KokuboS. KobayashiM. HaraA. YamahanaJ. OkumuraT. TakasawaK. TakedaS.I. YoshimuraM. KidaH. YokoyamaH. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy.Am. J. Kidney Dis.2005451546510.1053/j.ajkd.2004.08.03915696444
    [Google Scholar]
  51. PatelR.K. MohanC. PI3K/AKT signaling and systemic autoimmunity.Immunol. Res.2005311475610.1385/IR:31:1:4715591622
    [Google Scholar]
  52. Acosta-MartinezM. CabailM.Z. The PI3K/Akt Pathway in Meta-Inflammation.Int. J. Mol. Sci.202223231533010.3390/ijms23231533036499659
    [Google Scholar]
  53. BenchoulaK. ParharI.S. WongE.H. The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes.Arch. Biochem. Biophys.202169810874310.1016/j.abb.2020.10874333382998
    [Google Scholar]
  54. ZhangL. HanL. WangX. WeiY. ZhengJ. ZhaoL. TongX. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.Biosci. Rep.2021416BSR2020352010.1042/BSR2020352033634308
    [Google Scholar]
  55. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.2717330263000
    [Google Scholar]
  56. YuY. JiaY.Y. WangM. MuL. LiH.J. PTGER3 and MMP-2 play potential roles in diabetic nephropathy via competing endogenous RNA mechanisms.BMC Nephrol.20212212710.1186/s12882‑020‑02194‑w33435900
    [Google Scholar]
  57. WangM. LiuX. WangZ. XuQ. The extract of Polygala fallax Hemsl. slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro.Phytomedicine202210415425110.1016/j.phymed.2022.15425135717806
    [Google Scholar]
  58. StabouliS. KotsisV. MaliachovaO. PrintzaN. ChainoglouA. ChristoforidisA. TaparkouA. DotisJ. FarmakiE. ZafeiriouD. Matrix metalloproteinase −2, −9 and arterial stiffness in children and adolescents: The role of chronic kidney disease, diabetes, and hypertension.Int. J. Cardiol. Hypertens.2020410002510.1016/j.ijchy.2020.10002533447754
    [Google Scholar]
  59. HawkinsP.T. StephensL.R. PI3K signalling in inflammation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851688289710.1016/j.bbalip.2014.12.00625514767
    [Google Scholar]
  60. LiJ. WangT. LiuP. YangF. WangX. ZhengW. SunW. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD.Food Funct.20211293898391810.1039/D0FO02736G33977953
    [Google Scholar]
  61. RossertJ. Terraz-DurasnelC. BrideauG. Growth factors, cytokines, and renal fibrosis during the course of diabetic nephropathy.Diabetes Metab.200026Suppl. 4162410922969
    [Google Scholar]
  62. SegevY. EshetR. YakirO. HaimN. PhillipM. LandauD. Systemic and renal growth hormone–IGF1 axis involvement in a mouse model of type 2 diabetes.Diabetologia20075061327133410.1007/s00125‑007‑0663‑717443310
    [Google Scholar]
  63. GurevichE. SegevY. LandauD. Growth hormone and IGF1 actions in kidney development and function.Cells20211012337110.3390/cells1012337134943879
    [Google Scholar]
  64. LiY. PanY. CaoS. SasakiK. WangY. NiuA. FanX. WangS. ZhangM.Z. HarrisR.C. Podocyte EGFR inhibits autophagy through upregulation of Rubicon in type 2 diabetic nephropathy.Diabetes202170256257610.2337/db20‑066033239448
    [Google Scholar]
  65. KimS. KangS.W. JooJ. HanS.H. ShinH. NamB.Y. ParkJ. YooT.H. KimG. LeeP. ParkJ.T. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions.Cell Death Dis.202112216010.1038/s41419‑021‑03452‑x33558472
    [Google Scholar]
  66. ShahzadK. BockF. Al-DabetM.M. GadiI. KohliS. NazirS. GhoshS. RanjanS. WangH. MadhusudhanT. NawrothP.P. IsermannB. Caspase-1, but Not Caspase-3, promotes diabetic nephropathy.J. Am. Soc. Nephrol.20162782270227510.1681/ASN.201506067626832955
    [Google Scholar]
  67. ZhengW. QianC. XuF. ChengP. YangC. LiX. LuY. WangA. Fuxin Granules ameliorate diabetic nephropathy in db/db mice through TGF-β1/Smad and VEGF/VEGFR2 signaling pathways.Biomed. Pharmacother.202114111180610.1016/j.biopha.2021.11180634246190
    [Google Scholar]
  68. ZhaoX.C. LivingstonM.J. LiangX.L. DongZ. Cell apoptosis and autophagy in renal fibrosis.Adv. Exp. Med. Biol.2019116555758410.1007/978‑981‑13‑8871‑2_2831399985
    [Google Scholar]
  69. BhattacharjeeN. BarmaS. KonwarN. DewanjeeS. MannaP. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.Eur. J. Pharmacol.201679182410.1016/j.ejphar.2016.08.02227568833
    [Google Scholar]
  70. GaoY. GuoZ. LiuY. Analysis of the potential molecular biology of triptolide in the treatment of diabetic nephropathy: A narrative review.Medicine (Baltimore)202210148e3194110.1097/MD.000000000003194136482625
    [Google Scholar]
  71. LohmüllerM. RoeckB.F. SzaboT.G. SchapflM.A. PegkaF. HerzogS. VillungerA. SchulerF. The SKP2 ‐p27 axis defines susceptibility to cell death upon CHK1 inhibition.Mol. Oncol.202216152771278710.1002/1878‑0261.1326435673965
    [Google Scholar]
  72. Ibarra-LaraM.L. Sánchez-AguilarM. SoriaE. Torres-NarváezJ.C. Del Valle-MondragónL. Cervantes-PérezL.G. Pérez-SeverianoF. Ramírez-OrtegaM.C. Pastelín-HernándezG. Oidor-ChanV.H. Sánchez-MendozaA. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction.Can. J. Physiol. Pharmacol.201694663464210.1139/cjpp‑2015‑035627050838
    [Google Scholar]
  73. ChengH.S. TanW.R. LowZ.S. MarvalimC. LeeJ.Y.H. TanN.S. Exploration and development of PPAR modulators in health and disease: An update of clinical evidence.Int. J. Mol. Sci.20192020505510.3390/ijms2020505531614690
    [Google Scholar]
  74. KeeneK.L. MychaleckyjJ.C. SmithS.G. LeakT.S. PerlegasP.S. LangefeldC.D. HerringtonD.M. FreedmanB.I. RichS.S. BowdenD.W. SaleM.M. Comprehensive evaluation of the estrogen receptor α gene reveals further evidence for association with type 2 diabetes enriched for nephropathy in an African American population.Hum. Genet.2008123433334110.1007/s00439‑008‑0482‑z18305958
    [Google Scholar]
  75. CheX. ZhaoR. XuH. LiuX. ZhaoS. MaH. Differently expressed genes (DEGs) relevant to type 2 diabetes mellitus identification and pathway analysis via integrated bioinformatics analysis.Med. Sci. Monit.2019259237924410.12659/MSM.91840731797865
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808354285241109140805
Loading
/content/journals/lddd/10.2174/0115701808354285241109140805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test