Skip to content
2000
image of Exploring the Molecular Basis of Anticancer Activity in Various Moss Species Against Colorectal Cancer Cells

Abstract

Background

Mushrooms are shown to protect against the side effects of cancer. Therefore, mushrooms with proven anticancer properties and active ingredients are fascinating in the search for new cancer drugs.

Objective

In this study, the effects of extracts from (M1), (M2), (M3), (M4), and (M5) together on HCT116 were investigated. Mesenchymal stem cells (MSCs) were used to study the effect on healthy cells.

Methods

MTT was used to determine cell viability. Dose-response curves were generated, the IC values of the compounds were calculated, and the effect of the extracts was compared using it. The FTIR was used to analyze the quantitative changes of the cellular components.

Results and Discussion

The evaluation of the IC values of all fungal species showed that they reduced the cell viability of HCT116 cells. In contrast, no significant reduction in cell viability was observed in MSCs. Changes in the ratio of cell membrane lipids, proteins, and cell nucleic acids between control and fungal-treated HCT116 cells were detected by FTIR. Many of the chemotherapeutic agents are of plant origin, and many resources should still be explored to inhibit the side effects of cancer therapy.

Conclusion

The data obtained through this experiment will serve as a reference for studies to be a new source of anticancer drugs in modern pharmacology.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808324049241108063414
2024-11-14
2024-12-26
Loading full text...

Full text loading...

References

  1. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  2. Ruan Y. Yuan P.P. Li P.Y. Chen Y. Fu Y. Gao L.Y. Wei Y.X. Zheng Y.J. Li S.F. Feng W.S. Zheng X.K. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO–CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders. J. Ethnopharmacol. 2023 313 116503 10.1016/j.jep.2023.116503 37116727
    [Google Scholar]
  3. Wong M.C.S. Huang J. Lok V. Wang J. Fung F. Ding H. Zheng Z.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin. Gastroenterol. Hepatol. 2021 19 5 955 966.e61 10.1016/j.cgh.2020.02.026 32088300
    [Google Scholar]
  4. Ming T. Lei J. Peng Y. Wang M. Liang Y. Tang S. Tao Q. Wang M. Tang X. He Z. Liu X. Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother. Res. 2024 38 8 3954 3972 10.1002/ptr.8258 38837315
    [Google Scholar]
  5. Sirisha S. A review on delivery of anticancer drugs by smart nanocarriers: Data obtained from past one decade. Res J Pharm Technol. 2020 12 3 185 190
    [Google Scholar]
  6. Ashrafizadeh M. Dai J. Torabian P. Nabavi N. Aref A.R. Aljabali A.A.A. Tambuwala M. Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell. Mol. Life Sci. 2024 81 1 214 10.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  7. Zhou X. Guo Y. Yang K. Liu P. Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J. Ethnopharmacol. 2022 282 114662 10.1016/j.jep.2021.114662 34555452
    [Google Scholar]
  8. Chaturvedi V.K. Agarwal S. Gupta K.K. Ramteke P.W. Singh M.P. Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 2018 8 8 1 20
    [Google Scholar]
  9. Patel S. Goyal A. Recent developments in mushrooms as anticancer therapeutics: A review. 3 Biotech. 2012 2 1 1 15
    [Google Scholar]
  10. Meng Z. Tan Y. Duan Y. Li M. Monaspin b, a novel cyclohexyl-furan from cocultivation of Monascus purpureus and Aspergillus oryzae, exhibits potent antileukemic activity. J. Agric. Food Chem. 2024 72 2 1114 1123 10.1021/acs.jafc.3c08187 38166364
    [Google Scholar]
  11. Li J. Gu A. Nong X.M. Zhai S. Yue Z.Y. Li M.Y. Liu Y. Six‐Membered Aromatic Nitrogen Heterocyclic Anti‐Tumor Agents: Synthesis and Applications. Chem. Rec. 2023 23 12 e202300293 10.1002/tcr.202300293 38010365
    [Google Scholar]
  12. Zhang M. Otsuki K. Li W. Molecular networking as a natural products discovery strategy. Acta Materia Medica 2023 2 2 126 141 10.15212/AMM‑2023‑0007
    [Google Scholar]
  13. Conchran K.W. Medical effects in the biology and cultivation of Edible Mushrooms. Chung S.T. Hayes W.A. New York Academic Press 1978
    [Google Scholar]
  14. Zhao C. Tang X. Chen X. Jiang Z. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy. ACS Nano 2024 18 27 17852 17868 10.1021/acsnano.4c04022 38939981
    [Google Scholar]
  15. Kaygusuz O. Kaygusuz M. Dodurga Y. Seçme M. Herken E.N. Gezer K. Assessment of the antimicrobial, antioxidant and cytotoxic activities of the wild edible mushroom Agaricus lanipes (F.H. Møller & Jul. Schäff.) Hlaváček. Cytotechnology 2017 69 1 135 144 10.1007/s10616‑016‑0045‑4 28058568
    [Google Scholar]
  16. S W. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002 60 3 258 274 10.1007/s00253‑002‑1076‑7 12436306
    [Google Scholar]
  17. Duan J. Sun J. Jiang T. Ma X. Li X. Wang Y. Zhang F. Liu C. Podophyllotoxin-mediated neurotoxicity via the microbiota-gut-brain axis in SD rats based on the toxicological evidence chain (TEC) concept. Sci. Total Environ. 2024 907 168106 10.1016/j.scitotenv.2023.168106 37884145
    [Google Scholar]
  18. De Silva D.D. Rapior S. Fons F. Bahkali A.H. Hyde K.D. Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers. 2012 55 1 1 35 10.1007/s13225‑012‑0151‑3 23097638
    [Google Scholar]
  19. Blagodatski A. Yatsunskaya M. Mikhailova V. Tiasto V. Kagansky A. Katanaev V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018 9 49 29259 29274 10.18632/oncotarget.25660 30018750
    [Google Scholar]
  20. Biological evaluation of medical devices. 2009 Available from: https://www.iso.org/standard/36406.html(accessed on 23-10-2024)
  21. Özerkan D. Ertik O. Kaya B. Kuruca S.E. Yanardağ R. Ülküseven B. Novel palladium (II) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, in vitro cytotoxicity and xanthine oxidase inhibition. Invest. New Drugs 2019 37 6 1187 1197 10.1007/s10637‑019‑00751‑1 30874940
    [Google Scholar]
  22. Revathi S. Govindarajan R.K. Rameshkumar N. Hakkim F.L. Mohammed A.B. Krishnan M. Kayalvizhi N. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal. Agric. Biotechnol. 2017 11 322 329 10.1016/j.bcab.2017.08.005
    [Google Scholar]
  23. Rai S.N. Mishra D. Singh P. Vamanu E. Singh M.P. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed. Pharmacother. 2021 137 111377 10.1016/j.biopha.2021.111377 33601145
    [Google Scholar]
  24. Song F.Q. Liu Y. Kong X.S. Chang W. Song G. Progress on understanding the anticancer mechanisms of medicinal mushroom: inonotus obliquus. Asian Pac. J. Cancer Prev. 2013 14 3 1571 1578 10.7314/APJCP.2013.14.3.1571 23679238
    [Google Scholar]
  25. Vedenicheva N. Al-Maali G. Bisko N. Kosakivska I. Garmanchuk L. Ostapchenko L. Effect of bioactive extracts with high cytokinin content from micelial biomass of Hericium coralloides and Fomitopsis officinalis on tumor cells in vitro. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology 2019 79 3 31 37 10.17721/1728_2748.2019.79.31‑37
    [Google Scholar]
  26. Zhang J. Zhang J. Zhao L. Shui X. Wang L. Wu Y. Antioxidant and anti-aging activities of ethyl acetate extract of the coral tooth mushroom, Hericium coralloides (Agaricomycetes). Int. J. Med. Mushrooms 2019 21 6 561 570 10.1615/IntJMedMushrooms.2019030840 31679228
    [Google Scholar]
  27. Kosanić M. Ranković B. Rančić A. Stanojković T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Yao Wu Shi Pin Fen Xi 2016 24 3 477 484 28911552
    [Google Scholar]
  28. Ding X. Hou Y. Hou W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohydr. Polym. 2012 89 2 397 402 10.1016/j.carbpol.2012.03.020 24750736
    [Google Scholar]
  29. Sadi G. Kaya A. Yalcin H.A. Emsen B. Kocabas A. Kartal D.I. Altay A. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int. J. Med. Mushrooms 2016 18 1 83 95 10.1615/IntJMedMushrooms.v18.i1.100 27279448
    [Google Scholar]
  30. Özmen A. Değirmenci E.H. In vitro anticancer and apoptotic activity of edible mushroom Lepista nuda (Bull.) Cooke on leukemia and breast cancer compared with protocatechuic acid, paclitaxel and doxorubicin. Indian J. Exp. Biol. 2021 59 03 147 152
    [Google Scholar]
  31. Gu Y.H. Sivam G. Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells. J. Med. Food 2006 9 2 196 204 10.1089/jmf.2006.9.196 16822205
    [Google Scholar]
  32. Ekowati N. Mumpuni A. Muljowati J.S. Effectiveness of Pleurotus ostreatus Extract Through Cytotoxic Test and Apoptosis Mechanism of Cervical Cancer Cells. Biosaintifika. Journal of Biology & Biology Education. 2017 9 1 148 155
    [Google Scholar]
  33. Rossiana N. Nur A.A. Mayawatie B. Andayaningsih P. Cytotoxicity assay of ethyl acetate extract shimeji (Lyophyllum shimeji (Kawam.) Hongo) and white oyster mushroom (Pleurotus ostreatus Jacq.) against HCT-116 cell line. I.O.P. Conference Series: Earth and Environmental Science I.O.P. Publishing 2018
    [Google Scholar]
  34. Kim J.H. Kim S.J. Park H.R. Choi J.I. Ju Y.C. The different antioxidant and anticancer activities depending on the color of oyster mushrooms. J. Med. Plants Res. 2009 3 12 1016 1020
    [Google Scholar]
  35. Xie L. Shen M. Huang R. Liu X. Yu Y. Lu H. Xie J. Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway. Food Sci. Hum. Wellness 2023 12 5 1545 1556 10.1016/j.fshw.2023.02.002
    [Google Scholar]
  36. Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. Stem Cell Engineering. Berlin, Heidelberg Springer 2011 61 77 10.1007/978‑3‑642‑11865‑4_3
    [Google Scholar]
  37. Tonk C.H. Witzler M. Schulze M. Mesenchymal stem cells. Essential Current Concepts in Stem Cell Biology. Cham Springer 2020 21 39 10.1007/978‑3‑030‑33923‑4_2
    [Google Scholar]
  38. Corbeau A. Kuipers S.C. de Boer S.M. Horeweg N. Hoogeman M.S. Godart J. Nout R.A. Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: a systematic review. Radiother. Oncol. 2021 164 128 137 10.1016/j.radonc.2021.09.009 34560187
    [Google Scholar]
  39. Sanmartin M.C. Borzone F.R. Giorello M.B. Pacienza N. Yannarelli G. Chasseing N.A. Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells. Crit. Rev. Oncol. Hematol. 2021 164 103416 10.1016/j.critrevonc.2021.103416 34237436
    [Google Scholar]
  40. Zeng M. Zhang Y. Zhang X. Zhang W. Yu Q. Zeng W. Ma D. Gan J. Yang Z. Jiang X. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression. J. Ethnopharmacol. 2022 289 115028 10.1016/j.jep.2022.115028 35077825
    [Google Scholar]
  41. Chen Y. Chen H. Li Y. Chen Z. Wu Y. McGowan E. Qu X. Lin Y. Sun B. Chinese herbal medicine Guilu erxian jiao attenuates bone marrow suppression following chemotherapy in patients with advanced lung cancer. Translational Metabolic Syndrome Research 2020 3 25 28 10.1016/j.tmsr.2020.05.001
    [Google Scholar]
  42. Kverneland A.H. Borch T.H. Granhøj J. Sengeløv H. Donia M. Svane I.M. Bone marrow toxicity and immune reconstitution in melanoma and non-melanoma solid cancer patients after non-myeloablative conditioning with chemotherapy and checkpoint inhibition. Cytotherapy 2021 23 8 724 729 10.1016/j.jcyt.2021.03.003 33933372
    [Google Scholar]
  43. Broto G.E. Silva P.R.B. Trigo F.C. Victorino V.J. Bonifácio K.L. Pavanelli W.R. Tomiotto-Pelissier F. Garbim M.R. Oliveira S.T. Jumes J.J. Panis C. Barbosa D.S. Impact of the induction phase chemotherapy on cytokines and oxidative markers in peripheral and bone marrow plasma of children with acute lymphocytic leukemia. Current Research in Immunology 2021 2 163 168 10.1016/j.crimmu.2021.09.002 35492386
    [Google Scholar]
  44. Güler G. Acikgoz E. Karabay Yavasoglu N.Ü. Bakan B. Goormaghtigh E. Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst (Lond.) 2018 143 7 1624 1634 10.1039/C8AN00017D 29497718
    [Google Scholar]
  45. Gieroba B. Arczewska M. Sławińska-Brych A. Rzeski W. Stepulak A. Gagoś M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 231 118112 10.1016/j.saa.2020.118112 32014658
    [Google Scholar]
  46. Zhou J. Wang Z. Sun S. Liu M. Zhang H. A rapid method for detecting conformational changes during differentiation and apoptosis of HL60 cells by Fourier‐transform infrared spectroscopy. Biotechnol. Appl. Biochem. 2001 33 2 127 132 10.1042/BA20000074 11277866
    [Google Scholar]
  47. Dreissig I. Machill S. Salzer R. Krafft C. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2009 71 5 2069 2075 10.1016/j.saa.2008.08.008
    [Google Scholar]
  48. Taylor S.E. Cheung K.T. Patel I.I. Trevisan J. Stringfellow H.F. Ashton K.M. Wood N.J. Keating P.J. Martin-Hirsch P.L. Martin F.L. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach. Br. J. Cancer 2011 104 5 790 797 10.1038/sj.bjc.6606094 21326237
    [Google Scholar]
  49. Mossoba M.M. Al-Khaldi S.F. Kirkwood J. Fry F.S. Sedman J. Printing microarrays of bacteria for identification by infrared microspectroscopy. Spectroscopy (Springf.) 2005 38 1 229 235
    [Google Scholar]
  50. Chiriboga L. Xie P. Yee H. Vigorita V. Zarou D. Zakim D. Diem M. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy 1998 4 1 47 53 10.1002/(SICI)1520‑6343(1998)4:1<47::AID‑BSPY5>3.0.CO;2‑P 9547014
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808324049241108063414
Loading
/content/journals/lddd/10.2174/0115701808324049241108063414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test