Skip to content
2000
image of A Review on Biological Activity of Quinoline-based Hybrids

Abstract

The quinoline scaffold has gained attention for its potential applications in organic synthesis and the medical field.The objective has been to identify quinoline-based hybrids with a range of biological activities, including as anti-tuberculosis, anti-cancer, antimalarial, anti-inflammatory, anti-Alzheimer's, antibacterial, and antidiabetic properties. This review provides a critical overview and highlights the latest development of quinoline-based hybrids and their potential bioactivities.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808353391241106042408
2024-11-08
2024-12-26
Loading full text...

Full text loading...

References

  1. Elebiju O.F. Ajani O.O. Oduselu G.O. Ogunnupebi T.A. Adebiyi E. Recent advances in functionalized quinoline scaffolds and hybrids—Exceptional pharmacophore in therapeutic medicine. Front Chem. 2023 10 1074331 10.3389/fchem.2022.1074331 36688036
    [Google Scholar]
  2. Man R.J. Jeelani N. Zhou C. Yang Y.S. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents. Anticancer. Agents Med. Chem. 2021 21 7 825 838 10.2174/1871520620666200516150345 32416703
    [Google Scholar]
  3. Van de Walle T. Cools L. Mangelinckx S. D’hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021 226 113865 10.1016/j.ejmech.2021.113865 34655985
    [Google Scholar]
  4. Hua Y. Zeng K. Liang H. Liang H. Jiang Y. Tu P. Anti-inflammatory quinoline-4(1H)-one derivatives from the aerial parts of Waltheria indica linn Phytochemistry. 2023 214 113746 10.1016/j.phytochem.2023.113746
    [Google Scholar]
  5. Gao P. Wang L. Zhao L. Zhang Q. Zeng K. Zhao M. Jiang Y. Tu P. Guo X. Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus. Phytochemistry 2020 172 112260 10.1016/j.phytochem.2020.112260 31982646
    [Google Scholar]
  6. Li Z.H. Yin L.Q. Zhao D.H. Jin L.H. Sun Y.J. Tan C. SAR studies of quinoline and derivatives as potential treatments for alzheimer’s disease. Arab. J. Chem. 2023 16 2 104502 10.1016/j.arabjc.2022.104502
    [Google Scholar]
  7. Taha M. Sultan S. Imran S. Rahim F. Zaman K. Wadood A. Ur Rehman A. Uddin N. Mohammed Khan K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem. 2019 27 18 4081 4088 10.1016/j.bmc.2019.07.035 31378594
    [Google Scholar]
  8. Nasehi P. Omidkhah N. Ghodsi R. A review of recent advances in quinoline/isoquinoline based hybrids as microtubule targeted cancer therapeutics: Synthesis, binding mode, QSAR and docking studies. J. Mol. Struct. 2024 1295 136720 10.1016/j.molstruc.2023.136720
    [Google Scholar]
  9. Yadav P. Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem. 2021 109 104639 10.1016/j.bioorg.2021.104639 33618829
    [Google Scholar]
  10. Patel A. Patel S. Mehta M. Patel Y. Patel R. Shah D. Patel D. Shah U. Patel M. Patel S. Solanki N. Bambharoliya T. Patel S. Nagani A. Patel H. Vaghasiya J. Shah H. Prajapati B. Rathod M. Bhimani B. Patel R. Bhavsar V. Rakholiya B. Patel M. Patel P. A review on synthetic investigation for quinoline- recent green approaches. Green Chem. Lett. Rev. 2022 15 2 337 372 10.1080/17518253.2022.2064194
    [Google Scholar]
  11. Auti P.S. George G. Paul A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances 2020 10 68 41353 41392 10.1039/D0RA06642G 35516563
    [Google Scholar]
  12. Fröhlich T. Reiter C. Ibrahim M.M. Beutel J. Hutterer C. Zeitträger I. Bahsi H. Leidenberger M. Friedrich O. Kappes B. Efferth T. Marschall M. Tsogoeva S.B. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against Plasmodium falciparum, human cytomegalovirus, and leukemia cells. ACS Omega 2017 2 6 2422 2431 10.1021/acsomega.7b00310 30023664
    [Google Scholar]
  13. Tyagi S. Salahuddin Mazumder A. Kumar R. Datt V. Shabana K. Yar M.S. Ahsan M.J. Synthesis and SAR of potential anti-cancer agents of quinoline analogues: A review. Med. Chem. 2023 19 8 785 812 10.2174/1573406419666230228140619 36852806
    [Google Scholar]
  14. Mehta M. Patel S. Patel A. Patel Y. Shah D. Rathod K. Shah U. Patel M. Bambharoliya T. Molecular docking, in silico admet study and synthesis of quinoline derivatives as dihydrofolate reductase (DHFR) inhibitors: A solvent-free one-pot green approach through sonochemistry. Lett. Drug Des. Discov. 2024 21 3 504 519 10.2174/1570180820666221107090046
    [Google Scholar]
  15. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 2018 Available from: https://www.iarc.who.int/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/
  16. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  17. Taheri S. Nazifi M. Mansourian M. Hosseinzadeh L. Shokoohinia Y. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways. Bioorg. Chem. 2019 91 103147 10.1016/j.bioorg.2019.103147 31377390
    [Google Scholar]
  18. Abdelaziz E. El-Deeb N.M. Zayed M.F. Hasanein A.M. El Sayed I.E.T. Elmongy E.I. Kamoun E.A. Synthesis and in-vitro anti-proliferative with antimicrobial activity of new coumarin containing heterocycles hybrids. Sci. Rep. 2023 13 1 22791 10.1038/s41598‑023‑50170‑9 38123695
    [Google Scholar]
  19. Dayal N. Řezníčková E. Hernandez D.E. Peřina M. Torregrosa-Allen S. Elzey B.D. Škerlová J. Ajani H. Djukic S. Vojáčková V. Lepšík M. Řezáčová P. Kryštof V. Jorda R. Sintim H.O. 3 H -Pyrazolo[4,3- f ]quinoline-based kinase inhibitors inhibit the proliferation of acute myeloid leukemia cells in vivo. J. Med. Chem. 2021 64 15 10981 10996 10.1021/acs.jmedchem.1c00330 34288692
    [Google Scholar]
  20. Güiza F.M. Duarte Y.B. Mendez-Sanchez S.C. Bohórquez A.R.R. Synthesis and in vitro evaluation of substituted tetrahydroquinoline-isoxazole hybrids as anticancer agents. Med. Chem. Res. 2019 28 8 1182 1196 10.1007/s00044‑019‑02363‑z
    [Google Scholar]
  21. Shah S.R. Katariya K.D. Reddy D. Quinoline‐1,3‐Oxazole hybrids: Syntheses, anticancer activity and molecular docking studies. ChemistrySelect 2020 5 3 1097 1102 10.1002/slct.201903763
    [Google Scholar]
  22. Hamdy R. Elseginy S.A. Ziedan N.I. Jones A.T. Westwell A.D. New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules 2019 24 7 1274 10.3390/molecules24071274 30986908
    [Google Scholar]
  23. Kala P. Khasim Sharif S. Murali Krishna C. Ramachandran D. Design, synthesis, and anticancer evaluation of 1,2,4-oxadiazole functionalized quinoline derivatives. Med. Chem. Res. 2020 29 1 136 144 10.1007/s00044‑019‑02467‑6
    [Google Scholar]
  24. Chaitanya V.K. Jalapathi P. Chandar M.R. Vishnu T. Veerabhadraiah M. Raghavender M. Novel hybrid molecules based on triazole-quinoline as potential anticancer agents: screening on MCF-7 cell line, docking studies, and pharmacokinetics evaluation. J. Indian Chem. Soc. 2023 20 4 995 1006 10.1007/s13738‑022‑02737‑y
    [Google Scholar]
  25. El-Miligy M.M.M. Abdelaziz M.E. Fahmy S.M. Ibrahim T.M. Abu-Serie M.M. Mahran M.A. Hazzaa A.A. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J. Enzyme Inhib. Med. Chem. 2023 38 1 2152810 10.1080/14756366.2022.2152810 36629075
    [Google Scholar]
  26. Bangaru M. Kumar Nukala S. Kannekanti P.K. Sirassu N. Manchal R. Swamy Thirukovela N. Synthesis of Quinoline‐Thiazolidine‐2,4‐dione coupled Pyrazoles as in vitro EGFR targeting anti‐breast cancer agents and their in silico studies. ChemistrySelect 2023 8 12 e202204414 10.1002/slct.202204414
    [Google Scholar]
  27. Diaconu D. Antoci V. Mangalagiu V. Amariucai-Mantu D. Mangalagiu I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022 12 1 16988 10.1038/s41598‑022‑21435‑6 36216981
    [Google Scholar]
  28. Tiglani D. Synthesis anticonvulsant and cytotoxic evaluation of benzimidazole-quinoline hybrids Schiff base analogs. Polycycl. Aromat. Compd. 2023 ••• 1 21 10.1080/10406638.2023.2183969
    [Google Scholar]
  29. Kadela-Tomanek M. Jastrzębska M. Chrobak E. Bębenek E. Latocha M. Hybrids of 1,4-Quinone with Quinoline derivatives: Synthesis, biological activity, and molecular docking with DT-Diaphorase (NQO1). Molecules 2022 27 19 6206 10.3390/molecules27196206 36234741
    [Google Scholar]
  30. Fitch M.T. van de Beek D. Drug insight: Steroids in CNS infectious diseases—new indications for an old therapy. Nat. Clin. Pract. Neurol. 2008 4 2 97 104 10.1038/ncpneuro0713 18256681
    [Google Scholar]
  31. Hwang J.L. Weiss R.E. Steroid‐induced diabetes: A clinical and molecular approach to understanding and treatment. Diabetes Metab. Res. Rev. 2014 30 2 96 102 10.1002/dmrr.2486 24123849
    [Google Scholar]
  32. Hartmann K. Koenen M. Schauer S. Wittig-Blaich S. Ahmad M. Baschant U. Tuckermann J.P. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol. Rev. 2016 96 2 409 447 10.1152/physrev.00011.2015 26842265
    [Google Scholar]
  33. Ilovaisky A.I. Scherbakov A.M. Merkulova V.M. Chernoburova E.I. Shchetinina M.A. Andreeva O.E. Salnikova D.I. Zavarzin I.V. Terent’ev A.O. Secosteroid–quinoline hybrids as new anticancer agents. J. Steroid Biochem. Mol. Biol. 2023 228 106245 10.1016/j.jsbmb.2022.106245 36608906
    [Google Scholar]
  34. Kamra N. Rani S. Kumar D. Singh A. Sangwan P.L. Singh S.K. Thakral S. Singh V. Synthesis, biological evaluation and docking studies of quinoline Pyrazolyl‐Chalcone hybrids as anticancer and antimicrobial agents. ChemistrySelect 2021 6 42 11822 11831 10.1002/slct.202103375
    [Google Scholar]
  35. Abbas S.H. Abd El-Hafeez A.A. Shoman M.E. Montano M.M. Hassan H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem. 2019 82 360 377 10.1016/j.bioorg.2018.10.064 30428415
    [Google Scholar]
  36. Othman D.I.A. Selim K.B. El-Sayed M.A.A. Tantawy A.S. Amen Y. Shimizu K. Okauchi T. Kitamura M. Design, synthesis and anticancer evaluation of new substituted Thiophene-Quinoline derivatives. Bioorg. Med. Chem. 2019 27 19 115026 10.1016/j.bmc.2019.07.042 31416740
    [Google Scholar]
  37. Alegaon S.G. Parchure P. Araujo L.D. Salve P.S. Alagawadi K.R. Jalalpure S.S. Kumbar V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem. Lett. 2017 27 7 1566 1571 10.1016/j.bmcl.2017.02.043 28262527
    [Google Scholar]
  38. Binjawhar D.N. Al-Salmi F.A. Abu Ali O.A. Alghamdi M.A. Fayad E. Saleem R.M. Zaki I. Farouk N.A. Design, synthesis and cytotoxic activity of molecular hybrids based on quinolin-8-yloxy and cinnamide hybrids and their apoptosis inducing property. RSC Advances 2024 14 16 11443 11451 10.1039/D4RA01911C 38595714
    [Google Scholar]
  39. Roglic G. WHO global report on diabetes: A summary. Int. J. Noncommun. Dis. 2016 1 1 3 8 10.4103/2468‑8827.184853
    [Google Scholar]
  40. Zimmet P.Z. Magliano D.J. Herman W.H. Shaw J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol. 2014 2 1 56 64 10.1016/S2213‑8587(13)70112‑8 24622669
    [Google Scholar]
  41. Inamdar S. Kulkarni R.J.J.D. Drug related problems in elderly patients with type 2 diabetes mellitus. BMC Public Health 2016 7 1 1 10.1186/1471‑2458‑13‑1192
    [Google Scholar]
  42. Esmaili S. Ebadi A. Khazaei A. Ghorbani H. Faramarzi M.A. Mojtabavi S. Mahdavi M. Najafi Z. Novel Pyrano[3,2- c ]quinoline-1,2,3-triazole hybrids as potential anti-diabetic agents: in vitro α-Glucosidase inhibition, kinetic, and molecular dynamics simulation. ACS Omega 2023 8 26 23412 23424 10.1021/acsomega.3c00133 37426262
    [Google Scholar]
  43. Khan Y. Iqbal S. Shah M. Maalik A. Hussain R. Khan S. Khan I. Pashameah R.A. Alzahrani E. Farouk A.E. Alahmdi M.I. Abd-Rabboh H.S.M. New quinoline-based triazole hybrid analogs as effective inhibitors of α-amylase and α-glucosidase: Preparation, in vitro evaluation, and molecular docking along with in silico studies. Front Chem. 2022 10 995820 10.3389/fchem.2022.995820 36186602
    [Google Scholar]
  44. Avula S.K. Ullah S. Halim S.A. Khan A. Anwar M.U. Csuk R. Al-Harrasi A. Synthesis of novel substituted quinoline derivatives as diabetics II inhibitors and along with their in-silico studies. J. Mol. Struct. 2023 1274 134560 10.1016/j.molstruc.2022.134560
    [Google Scholar]
  45. Abdel-Baky Y.M. Omer A.M. El-Fakharany E.M. Ammar Y.A. Abusaif M.S. Ragab A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: Design and molecular modeling simulation. Sci. Rep. 2023 13 1 22792 10.1038/s41598‑023‑50130‑3 38123716
    [Google Scholar]
  46. Ganesan M.S. Raja K.K. Murugesan S. Kumar B.K. Rajagopal G. Thirunavukkarasu S. Synthesis, biological evaluation, molecular docking, molecular dynamics and DFT studies of quinoline-fluoroproline amide hybrids. J. Mol. Struct. 2020 1217 128360 10.1016/j.molstruc.2020.128360
    [Google Scholar]
  47. Noori M. Rastak M. Halimi M. Ghomi M.K. Mollazadeh M. Mohammadi-Khanaposhtani M. Sayahi M.H. Rezaei Z. Mojtabavi S. Ali Faramarzi M. Larijani B. Biglar M. Amanlou M. Mahdavi M. Design, synthesis, in vitro, and in silico enzymatic evaluations of thieno[2,3-b]quinoline-hydrazones as novel inhibitors for α-glucosidase. Bioorg. Chem. 2022 127 105996 10.1016/j.bioorg.2022.105996 35878449
    [Google Scholar]
  48. Tse E. G. Korsik M. Todd M. H. The past, present and future of anti-malarial medicines. Malar J. 2019 18 1 93 10.1186/s12936‑019‑2724‑z 30902052
    [Google Scholar]
  49. Kumar A. Jain S. Chauhan S. Aggarwal S. Saini D. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction. Chem. Biol. Interact. 2023 373 110379 10.1016/j.cbi.2023.110379 36738914
    [Google Scholar]
  50. Vinindwa B. Dziwornu G.A. Masamba W. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents. Molecules 2021 26 13 4093 10.3390/molecules26134093 34279438
    [Google Scholar]
  51. Charris J.E. Monasterios M.C. Acosta M.E. Rodríguez M.A. Gamboa N.D. Martínez G.P. Rojas H.R. Mijares M.R. De Sanctis J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res. 2019 28 11 2050 2066 10.1007/s00044‑019‑02435‑0
    [Google Scholar]
  52. Feng Y.Y. Dong C.E. Li R. Zhang X.Q. Wang W. Zhang X.R. Liu W.W. Shi D.H. Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents. J. Mol. Struct. 2023 1271 133982 10.1016/j.molstruc.2022.133982
    [Google Scholar]
  53. Reddy P.L. Khan S.I. Ponnan P. Tripathi M. Rawat D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem. 2017 126 675 686 10.1016/j.ejmech.2016.11.057 27936446
    [Google Scholar]
  54. Adigun R.A. Malan F.P. Balogun M.O. October N. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids. Struct. Chem. 2023 34 6 2065 2082 10.1007/s11224‑023‑02142‑y
    [Google Scholar]
  55. Pinheiro L.C.S. Boechat N. Ferreira M.L.G. Júnior C.C.S. Jesus A.M.L. Leite M.M.M. Souza N.B. Krettli A.U. Anti- Plasmodium falciparum activity of quinoline–sulfonamide hybrids. Bioorg. Med. Chem. 2015 23 17 5979 5984 10.1016/j.bmc.2015.06.056 26190461
    [Google Scholar]
  56. Chaudhury A. Duvoor C. Reddy Dendi V.S. Kraleti S. Chada A. Ravilla R. Marco A. Shekhawat N.S. Montales M.T. Kuriakose K. Sasapu A. Beebe A. Patil N. Musham C.K. Lohani G.P. Mirza W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne) 2017 8 6 10.3389/fendo.2017.00006 28167928
    [Google Scholar]
  57. Shah R.B. Valand N.N. Sutariya P.G. Menon S.K. Design, synthesis and characterization of quinoline–pyrimidine linked calix[4]arene scaffolds as anti-malarial agents. J. Incl. Phenom. Macrocycl. Chem. 2016 84 1-2 173 178 10.1007/s10847‑015‑0581‑0
    [Google Scholar]
  58. Kayamba F. Malimabe T. Ademola I.K. Pooe O.J. Kushwaha N.D. Mahlalela M. van Zyl R.L. Gordon M. Mudau P.T. Zininga T. Shonhai A. Nyamori V.O. Karpoormath R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur. J. Med. Chem. 2021 217 113330 10.1016/j.ejmech.2021.113330 33744688
    [Google Scholar]
  59. Maurya S.S. Bahuguna A. Khan S.I. Kumar D. Kholiya R. Rawat D.S. N-Substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. Eur. J. Med. Chem. 2019 162 277 289 10.1016/j.ejmech.2018.11.021 30448417
    [Google Scholar]
  60. Dadgostar P. Antimicrobial resistance: Implications and costs. Infect Drug Resist. 2019 12 3903 3910 10.2147/IDR.S234610
    [Google Scholar]
  61. Patel D.B. Darji D.G. Patel K.R. Rajani D.P. Rajani S.D. Patel H.D. Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties. J. Heterocycl. Chem. 2020 57 3 1183 1200 10.1002/jhet.3855
    [Google Scholar]
  62. Eissa S.I. Farrag A.M. Abbas S.Y. El Shehry M.F. Ragab A. Fayed E.A. Ammar Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem. 2021 110 104803 10.1016/j.bioorg.2021.104803 33761314
    [Google Scholar]
  63. Ammar Y.A. El-Hafez S.M.A.A. Hessein S.A. Ali A.M. Askar A.A. Ragab A. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. J. Mol. Struct. 2021 1242 130748 10.1016/j.molstruc.2021.130748
    [Google Scholar]
  64. Mohamed A. H. Mostafa S. M. Aly A. A. Hassan A. A. Osman E. M. Nayl A. A. Brown A. B. Abdelhafez E. M. N. Novel quinoline/thiazinan-4-one hybrids; design, synthesis, and molecular docking studies as potential anti-bacterial candidates against MRSA. RSC Adv. 2023 13 21 14631 14640 10.1039/D3RA01721D
    [Google Scholar]
  65. Ezelarab H.A.A. Hassan H.A. Abuo-Rahma G.E.D.A. Abbas S.H. Design, synthesis, and biological investigation of quinoline/ciprofloxacin hybrids as antimicrobial and anti-proliferative agents. J. Indian Chem. Soc. 2023 20 3 683 700 10.1007/s13738‑022‑02704‑7
    [Google Scholar]
  66. Diaconu D. Mangalagiu V. Amariucai-Mantu D. Antoci V. Giuroiu C.L. Mangalagiu I.I. Hybrid Quinoline-Sulfonamide complexes (M2+) derivatives with antimicrobial activity. Molecules 2020 25 12 2946 10.3390/molecules25122946 32604828
    [Google Scholar]
  67. Insuasty D. Vidal O. Bernal A. Marquez E. Guzman J. Insuasty B. Quiroga J. Svetaz L. Zacchino S. Puerto G. Abonia R. Antimicrobial activity of Quinoline-based Hydroxyimidazolium hybrids. Antibiotics 2019 8 4 239 10.3390/antibiotics8040239 31795101
    [Google Scholar]
  68. Ammar Y.A. Micky J.A. Aboul-Magd D.S. Abd El-Hafez S.M.A. Hessein S.A. Ali A.M. Ragab A. Development and radiosterilization of new hydrazono‐quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem. Biol. Drug Des. 2023 101 2 245 270 10.1111/cbdd.14154 36305722
    [Google Scholar]
  69. Rizk O.H. Bekhit M.G. Hazzaa A.A.B. El-Khawass E.S.M. Abdelwahab I.A. Synthesis, antibacterial evaluation, and DNA gyrase inhibition profile of some new quinoline hybrids. Arch. Pharm. (Weinheim) 2019 352 10 1900086 10.1002/ardp.201900086 31389630
    [Google Scholar]
  70. Tatulian S.A. Challenges and hopes for alzheimer’s disease. Drug Discov. Today 2022 27 4 1027 1043 10.1016/j.drudis.2022.01.016 35121174
    [Google Scholar]
  71. Singh Y.P. Kumar N. Chauhan B.S. Garg P. Carbamate as a potential anti‐alzheimer’s pharmacophore: A review. Drug Dev. Res. 2023 84 8 1624 1651 10.1002/ddr.22113 37694498
    [Google Scholar]
  72. Singh Y.P. Kumar H. Tryptamine: A privileged scaffold for the management of alzheimer’s disease. Drug Dev. Res. 2023 84 8 1578 1594 10.1002/ddr.22111 37675624
    [Google Scholar]
  73. Munir R. Zaib S. Zia-ur-Rehman M. Hussain N. Chaudhry F. Younas M.T. Zahra F.T. Tajammul Z. Javid N. Dera A.A. Ogaly H.A. Khan I. Ultrasound-assisted synthesis of Piperidinyl-Quinoline Acylhydrazones as new anti-alzheimer’s Agents: Assessment of cholinesterase inhibitory profile, molecular docking analysis, and drug-like properties. Molecules 2023 28 5 2131 10.3390/molecules28052131 36903376
    [Google Scholar]
  74. Nepovimova E. Uliassi E. Korabecny J. Peña-Altamira L.E. Samez S. Pesaresi A. Garcia G.E. Bartolini M. Andrisano V. Bergamini C. Fato R. Lamba D. Roberti M. Kuca K. Monti B. Bolognesi M.L. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 2014 57 20 8576 8589 10.1021/jm5010804 25259726
    [Google Scholar]
  75. Uliassi E. Bergamini C. Rizzardi N. Naldi M. Cores Á. Bartolini M. Carlos Menéndez J. Bolognesi M.L. Quinolinetrione-tacrine hybrids as multi-target-directed ligands against alzheimer’s disease. Bioorg. Med. Chem. 2023 91 117419 10.1016/j.bmc.2023.117419 37487339
    [Google Scholar]
  76. Zaib S. Munir R. Younas M.T. Kausar N. Ibrar A. Aqsa S. Shahid N. Asif T.T. Alsaab H.O. Khan I. Hybrid Quinoline-Thiosemicarbazone therapeutics as a new treatment opportunity for alzheimer’s disease‒synthesis, in vitro cholinesterase inhibitory potential and computational modeling analysis. Molecules 2021 26 21 6573 10.3390/molecules26216573 34770983
    [Google Scholar]
  77. de Oliveira C Brum J. Neto D.C.F. de Almeida J.S.F.D. Lima J.A. Kuca K. França T.C.C. Figueroa-Villar J.D. Synthesis of new Quinoline-Piperonal hybrids as potential drugs against alzheimer’s disease. Int. J. Mol. Sci. 2019 20 16 3944 10.3390/ijms20163944 31416113
    [Google Scholar]
  78. Ge Y.X. Cheng Z.Q. Zhou L. Xie H.X. Wang Y.Y. Zhu K. Jiao Y. Liu G. Jiang C.S. Synthesis and biological evaluation of quinoline/cinnamic acid hybrids as amyloid-beta aggregation inhibitors. Monatsh. Chem. 2020 151 5 845 852 10.1007/s00706‑020‑02609‑2
    [Google Scholar]
  79. Chen H. Mi J. Li S. Liu Z. Yang J. Chen R. Wang Y. Ban Y. Zhou Y. Dong W. Sang Z. Design, synthesis and evaluation of quinoline- O -carbamate derivatives as multifunctional agents for the treatment of alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2169682 10.1080/14756366.2023.2169682 36688444
    [Google Scholar]
  80. Najafi Z. Saeedi M. Mahdavi M. Sabourian R. Khanavi M. Tehrani M.B. Moghadam F.H. Edraki N. Karimpor-Razkenari E. Sharifzadeh M. Foroumadi A. Shafiee A. Akbarzadeh T. Design and synthesis of novel anti-alzheimer’s agents: Acridine-chromenone and quinoline-chromenone hybrids. Bioorg. Chem. 2016 67 84 94 10.1016/j.bioorg.2016.06.001 27289559
    [Google Scholar]
  81. Wang W. Pan T. Su R. Chen M. Xiong W. Xu C. Huang L. Discovery of novel melatonin–mydroxyquinoline hybrids as multitarget strategies for alzheimer’s disease therapy. Front Chem 2024 12 1374930 10.3389/fchem.2024.1374930
    [Google Scholar]
  82. Singh G. Kumar S. Panda S.R. Kumar P. Rai S. Verma H. Singh Y.P. Kumar S. Srikrishna S. Naidu V.G.M. Modi G. Design, synthesis, and biological evaluation of ferulic acid-piperazine derivatives targeting pathological hallmarks of alzheimer’s disease. ACS Chem. Neurosci. 2024 15 15 2756 2778 10.1021/acschemneuro.4c00130 39076038
    [Google Scholar]
  83. Dvorakova M. Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017 124 126 145 10.1016/j.phrs.2017.08.002 28803136
    [Google Scholar]
  84. Shaikh S.F. Dhavan P.P. Singh P.R. Vaidya S.P. Jadhav B.L. Ramana M.M.V. Synthesis of novel quinoline–benzoxazolinone ester hybrids: In vitro anti-inflammatory activity and antibacterial activity. Russ. J. Bioorganic Chem. 2021 47 2 572 583 10.1134/S1068162021020242
    [Google Scholar]
  85. Ghanim A.M. Girgis A.S. Kariuki B.M. Samir N. Said M.F. Abdelnaser A. Nasr S. Bekheit M.S. Abdelhameed M.F. Almalki A.J. Ibrahim T.S. Panda S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022 119 105557 10.1016/j.bioorg.2021.105557 34952242
    [Google Scholar]
  86. Ghanim A.M. Rezq S. Ibrahim T.S. Romero D.G. Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem. 2021 219 113457 10.1016/j.ejmech.2021.113457 33892270
    [Google Scholar]
  87. Mohassab A.M. Hassan H.A. Abdelhamid D. Gouda A.M. Gomaa H.A.M. Youssif B.G.M. Radwan M.O. Fujita M. Otsuka M. Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J. Mol. Struct. 2021 1244 130948 10.1016/j.molstruc.2021.130948
    [Google Scholar]
  88. Siddique S. Hussain K. Shehzadi N. Arshad M. Arshad M.N. Iftikhar S. Saghir F. Shaukat A. Sarfraz M. Ahmed N. Design, synthesis, biological evaluation and molecular docking studies of quinoline-anthranilic acid hybrids as potent anti-inflammatory drugs. Org. Biomol. Chem. 2024 22 18 3708 3724 10.1039/D4OB00040D 38639206
    [Google Scholar]
  89. Periš A. Effects of quinoline-arylamidine hybrids on LPS-induced inflammation in RAW 264.7 cells. Period. Biol. 2020 121-122 3-4 161 167 10.18054/pb.v121‑122i3‑4.11132
    [Google Scholar]
  90. Global tuberculosis report 2021. 2021 Available from: https://www.who.int/publications/i/item/9789240037021
  91. Dheda K. Gumbo T. Maartens G. Dooley K.E. McNerney R. Murray M. Furin J. Nardell E.A. London L. Lessem E. Theron G. van Helden P. Niemann S. Merker M. Dowdy D. Van Rie A. Siu G.K.H. Pasipanodya J.G. Rodrigues C. Clark T.G. Sirgel F.A. Esmail A. Lin H.H. Atre S.R. Schaaf H.S. Chang K.C. Lange C. Nahid P. Udwadia Z.F. Horsburgh C.R. Jr Churchyard G.J. Menzies D. Hesseling A.C. Nuermberger E. McIlleron H. Fennelly K.P. Goemaere E. Jaramillo E. Low M. Jara C.M. Padayatchi N. Warren R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017 5 4 291 360 10.1016/S2213‑2600(17)30079‑6 28344011
    [Google Scholar]
  92. Aher R.B. Sarkar D. Pharmacophore modeling of pretomanid (PA-824) derivatives for antitubercular potency against replicating and non-replicating Mycobacterium tuberculosis. J. Biomol. Struct. Dyn. 2021 39 3 889 900 10.1080/07391102.2020.1719205 31983295
    [Google Scholar]
  93. Gnanavelu K. K S V.K. Eswaran S. Sivashanmugam K. Novel quinoline-piperazine hybrids: The design, synthesis and evaluation of antibacterial and antituberculosis properties. RSC Med. Chem. 2022 14 1 183 189 10.1039/D2MD00260D 36760744
    [Google Scholar]
  94. Alcaraz M. Sharma B. Roquet-Banères F. Conde C. Cochard T. Biet F. Kumar V. Kremer L. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur. J. Med. Chem. 2022 239 114531 10.1016/j.ejmech.2022.114531 35759907
    [Google Scholar]
  95. Jain P.P. Degani M.S. Raju A. Anantram A. Seervi M. Sathaye S. Ray M. Rajan M.G.R. Identification of a novel class of quinoline–oxadiazole hybrids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett. 2016 26 2 645 649 10.1016/j.bmcl.2015.11.057 26675440
    [Google Scholar]
  96. Moodley R. Mashaba C. Rakodi G. Ncube N. Maphoru M. Balogun M. Jordan A. Warner D. Khan R. Tukulula M. New Quinoline–Urea–Benzothiazole hybrids as promising antitubercular agents: Synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling. Pharmaceuticals 2022 15 5 576 10.3390/ph15050576 35631402
    [Google Scholar]
  97. Abdelrahman M.A. Almahli H. Al-Warhi T. Majrashi T.A. Abdel-Aziz M.M. Eldehna W.M. Said M.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi and extensively drug-resistant Mycobacterium tuberculosis. Molecules 2022 27 24 8807 10.3390/molecules27248807 36557937
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808353391241106042408
Loading
/content/journals/lddd/10.2174/0115701808353391241106042408
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: coumarin ; oxadiazole ; malarial ; bacteria ; oxazole ; Quinoline ; inflammation ; cancer ; hybrid ; Alzheimer's
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test