Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Bunge (SSB), a perennial herb, exhibits notable therapeutic effects on hepatic fibrosis (HF). However, the mechanism of treatment has not been fully determined.

Objective

The objective of this study is to explore the active components in SSB and investigate its molecular mechanism of action in the treatment of HF based on network pharmacology, molecular docking, and molecular dynamics simulation (MD).

Methods

Databases such as TCMSP, Gene Cards, OMIM, and DAVID, as well as Cytoscape, AutoDock Vina, and Gromacs software, were used for analysis.

Results

A total of 5 active components and 86 HF-related targets were screened for SSB, among which the most prominent components are luteolin and quercetin. The key targets for HF are MMP2, MMP3, MMP9, ABCG2, . GO enrichment analysis showed that SSB was closely associated with apoptosis, inflammatory response and cell migration processes. KEGG enrichment analysis showed that the major enrichment pathways for liver fibrosis include EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and cancer-related pathways. Molecular docking and MD showed that luteolin and quercetin have good affinity and stable binding to MMP2, MMP3, and MMP9.

Conclusion

SSB exerts therapeutic effects on HF through multiple components, targets, and pathways, thereby providing a theoretical foundation for the development of its active compounds and mechanisms of action.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808353253241126102554
2024-12-13
2025-06-24
Loading full text...

Full text loading...

References

  1. LiW.Q. LiuW.H. QianD. LiuJ. ZhouS.Q. ZhangL. PengW. SuL. ZhangH. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis.Front. Pharmacol.20221396252510.3389/fphar.2022.96252536081936
    [Google Scholar]
  2. WangY. ZhangR. LiJ. HanX. LuH. SuJ. LiuY. TianX. WangM. XiongY. LanT. ZhangG. LiuZ. MiR-22-3p and miR-29a-3p synergistically inhibit hepatic stellate cell activation by targeting AKT3.Exp. Biol. Med. (Maywood)2022247191712173110.1177/1535370222110837935833537
    [Google Scholar]
  3. PanzariniE. LeporattiS. TenuzzoB. QuartaA. HanafyN. GiannelliG. MoliterniC. VardanyanD. SbarigiaC. FidaleoM. TacconiS. DiniL. Therapeutic effect of polymeric nanomicelles formulation of ly2157299-Galunisertib on CCl4-induced liver fibrosis in rats.J. Pers. Med.20221211181210.3390/jpm1211181236579532
    [Google Scholar]
  4. ParolaM. PinzaniM. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues.Mol. Aspects Med.201965375510.1016/j.mam.2018.09.00230213667
    [Google Scholar]
  5. ForouzanfarM.H. AfshinA. AlexanderL.T. AndersonH.R. BhuttaZ.A. BiryukovS. BrauerM. BurnettR. CercyK. CharlsonF.J. CohenA.J. DandonaL. EstepK. FerrariA.J. FrostadJ.J. FullmanN. GethingP.W. GodwinW.W. GriswoldM. HayS.I. KinfuY. KyuH.H. LarsonH.J. LiangX. LimS.S. LiuP.Y. LopezA.D. LozanoR. MarczakL. MensahG.A. MokdadA.H. Moradi-LakehM. NaghaviM. NealB. ReitsmaM.B. RothG.A. SalomonJ.A. SurP.J. VosT. WagnerJ.A. WangH. ZhaoY. ZhouM. AasvangG.M. AbajobirA.A. AbateK.H. AbbafatiC. AbbasK.M. Abd-AllahF. AbdulleA.M. AberaS.F. AbrahamB. Abu-RaddadL.J. AbyuG.Y. AdebiyiA.O. AdedejiI.A. AdemiZ. AdouA.K. AdsuarJ.C. AgardhE.E. AgarwalA. AgrawalA. KiadaliriA.A. AjalaO.N. AkinyemijuT.F. Al-AlyZ. AlamK. AlamN.K.M. AldhahriS.F. AldridgeR.W. AlemuZ.A. AliR. AlkerwiA. AllaF. AllebeckP. AlsharifU. AltirkawiK.A. MartinE.A. Alvis-GuzmanN. AmareA.T. AmberbirA. AmegahA.K. AminiH. AmmarW. AmrockS.M. AndersenH.H. AndersonB.O. AntonioC.A.T. AnwariP. ÄrnlövJ. ArtamanA. AsayeshH. AsgharR.J. AssadiR. AtiqueS. AvokpahoE.F.G.A. AwasthiA. QuintanillaB.P.A. AzzopardiP. BachaU. BadawiA. BahitM.C. BalakrishnanK. BaracA. BarberR.M. Barker-ColloS.L. BärnighausenT. BarqueraS. BarregardL. BarreroL.H. BasuS. BatisC. Bazargan-HejaziS. BeardsleyJ. BediN. BeghiE. BellB. BellM.L. BelloA.K. BennettD.A. BensenorI.M. BerhaneA. BernabéE. BetsuB.D. BeyeneA.S. BhalaN. BhansaliA. BhattS. BiadgilignS. BikbovB. BisanzioD. BjertnessE. BloreJ.D. BorschmannR. BoufousS. BourneR.R.A. BraininM. BrazinovaA. BreitbordeN.J.K. BrennerH. BrodayD.M. BrughaT.S. BrunekreefB. ButtZ.A. CahillL.E. CalabriaB. Campos-NonatoI.R. CárdenasR. CarpenterD.O. CarreroJ.J. CaseyD.C. Castañeda-OrjuelaC.A. RivasJ.C. CastroR.E. Catalá-LópezF. ChangJ-C. ChiangP.P-C. ChibalabalaM. Chimed-OchirO. ChisumpaV.H. ChitheerA.A. ChoiJ-Y.J. ChristensenH. ChristopherD.J. CiobanuL.G. CoatesM.M. ColquhounS.M. ManzanoA.G.C. CooperL.T. CooperriderK. CornabyL. CortinovisM. CrumpJ.A. Cuevas-NasuL. DamascenoA. DandonaR. DarbyS.C. DarganP.I. das Neves, J.; Davis, A.C.; Davletov, K.; de Castro, E.F.; De la Cruz-Góngora, V.; De Leo, D.; Degenhardt, L.; Del Gobbo, L.C.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribew, A.; Jarlais, D.C.D.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Dicker, D.; Ding, E.L.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Esteghamati, A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fischer, F.; Fitchett, J.R.A.; Fleming, T.; Foigt, N.; Foreman, K.; Fowkes, F.G.R.; Franklin, R.C.; Fürst, T.; Futran, N.D.; Gakidou, E.; Garcia-Basteiro, A.L.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Geleijnse, J.M.; Gessner, B.D.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Goenka, S.; Gomez-Cabrera, M.C.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Gugnani, H.C.; Guillemin, F.; Guo, Y.; Gupta, R.; Gupta, R.; Gutiérrez, R.A.; Haagsma, J.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hassanvand, M.S.; Hassen, T.A.; Havmoeller, R.; Heredia-Pi, I.B.; Hernández-Llanes, N.F.; Heydarpour, P.; Hoek, H.W.; Hoffman, H.J.; Horino, M.; Horita, N.; Hosgood, H.D.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Husseini, A.; Hutchings, S.J.; Huybrechts, I.; Iburg, K.M.; Idrisov, B.T.; Ileanu, B.V.; Inoue, M.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Jansen, H.A.F.M.; Jassal, S.K.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jee, S.H.; Jeemon, P.; Jha, V.; Jiang, Y.; Jibat, T.; Jin, Y.; Johnson, C.O.; Jonas, J.B.; Kabir, Z.; Kalkonde, Y.; Kamal, R.; Kan, H.; Karch, A.; Karema, C.K.; Karimkhani, C.; Kasaeian, A.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khan, A.R.; Khan, E.A.; Khan, G.; Khang, Y-H.; Khatibzadeh, S.; Khera, S.; Khoja, T.A.M.; Khubchandani, J.; Kieling, C.; Kim, C.; Kim, D.; Kimokoti, R.W.; Kissoon, N.; Kivipelto, M.; Knibbs, L.D.; Kokubo, Y.; Kopec, J.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Kromhout, H.; Krueger, H.; Ku, T.; Defo, B.K.; Kuchenbecker, R.S.; Bicer, B.K.; Kuipers, E.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lan, Q.; Larsson, A.; Latif, A.A.; Lawrynowicz, A.E.B.; Leasher, J.L.; Leigh, J.; Leung, J.; Levi, M.; Li, X.; Li, Y.; Liang, J.; Liu, S.; Lloyd, B.K.; Logroscino, G.; Lotufo, P.A.; Lunevicius, R.; MacIntyre, M.; Mahdavi, M.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manamo, W.A.A.; Mapoma, C.C.; Marcenes, W.; Martin, R.V.; Martinez-Raga, J.; Masiye, F.; Matsushita, K.; Matzopoulos, R.; Mayosi, B.M.; McGrath, J.J.; McKee, M.; Meaney, P.A.; Medina, C.; Mehari, A.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memish, Z.A.; Mendoza, W.; Mensink, G.B.M.; Meretoja, A.; Meretoja, T.J.; Mesfin, Y.M.; Mhimbira, F.A.; Millear, A.; Miller, T.R.; Mills, E.J.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammadi, A.; Mohammed, S.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montico, M.; Morawska, L.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Mullany, E.; Mumford, J.E.; Murthy, G.V.S.; Nachega, J.B.; Naheed, A.; Nangia, V.; Nassiri, N.; Newton, J.N.; Ng, M.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Obermeyer, C.M.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olivares, P.R.; Olsen, H.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Orozco, R.; Ortiz, A.; Ota, E.; Pa, M.; Pana, A.; Park, E-K.; Parry, C.D.; Parsaeian, M.; Patel, T.; Caicedo, A.J.P.; Patil, S.T.; Patten, S.B.; Patton, G.C.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Polinder, S.; Pond, C.D.; Pope, C.A.; Pope, D.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prasad, N.M.; Qorbani, M.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajsic, S.; Raju, M.; Ram, U.; Rana, S.M.; Ranganathan, K.; Rao, P.; García, C.A.R.; Refaat, A.H.; Rehm, C.D.; Rehm, J.; Reinig, N.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Rivera, J.A.; Roba, H.S.; Rodriguez, A.; Rodriguez-Ramirez, S.; Rojas-Rueda, D.; Roman, Y.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Riera, L.; Sanchez-Niño, M.D.; Sánchez-Pimienta, T.G.; Sandar, L.; Santomauro, D.F.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schmidhuber, J.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Levy, T.S.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Sheth, K.N.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shin, M-J.; Shiri, R.; Shishani, K.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Sindi, S.; Singh, A.; Singh, J.A.; Singh, P.K.; Slepak, E.L.; Soljak, M.; Soneji, S.; Sorensen, R.J.D.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Steckling, N.; Steel, N.; Stein, D.J.; Stein, M.B.; Stöckl, H.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Takahashi, K.; Talongwa, R.T.; Tandon, N.; Tanne, D.; Tavakkoli, M.; Taye, B.W.; Taylor, H.R.; Tedla, B.A.; Tefera, W.M.; Tegegne, T.K.; Tekle, D.Y.; Terkawi, A.S.; Thakur, J.S.; Thomas, B.A.; Thomas, M.L.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tobe-Gai, R.; Tobollik, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Tran, B.X.; Dimbuene, Z.T.; Tsilimparis, N.; Tura, A.K.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Uthman, O.A.; van Donkelaar, A.; van Os, J.; Varakin, Y.Y.; Vasankari, T.; Veerman, J.L.; Venketasubramanian, N.; Violante, F.S.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wang, J.L.; Wang, L.; Wang, Y.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Wijeratne, T.; Wiysonge, C.S.; Wolfe, C.D.A.; Won, S.; Woolf, A.D.; Wubshet, M.; Xavier, D.; Xu, G.; Yadav, A.K.; Yakob, B.; Yalew, A.Z.; Yano, Y.; Yaseri, M.; Ye, P.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zhu, J.; Zipkin, B.; Zodpey, S.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015.Lancet2016388100531659172410.1016/S0140‑6736(16)31679‑827733284
    [Google Scholar]
  6. CaligiuriA. GentiliniA. PastoreM. GittoS. MarraF. Cellular and molecular mechanisms underlying liver fibrosis regression.Cells20211010275910.3390/cells1010275934685739
    [Google Scholar]
  7. XiaoJ. WangF. WongN.K. HeJ. ZhangR. SunR. XuY. LiuY. LiW. KoikeK. HeW. YouH. MiaoY. LiuX. MengM. GaoB. WangH. LiC. Global liver disease burdens and research trends: Analysis from a Chinese perspective.J. Hepatol.201971121222110.1016/j.jhep.2019.03.00430871980
    [Google Scholar]
  8. CasariM. SieglD. DeppermannC. SchuppanD. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma.Front. Immunol.202314127780810.3389/fimmu.2023.127780838116017
    [Google Scholar]
  9. ChenC.C. ChenC.Y. YehC.T. LiuY.T. LeuY.L. ChuangW.Y. ShihY.H. ChouL.F. ShiehT.M. WangT.H. Corylin attenuates CCl4-induced liver fibrosis in mice by regulating the GAS6/AXL signaling pathway in hepatic stellate cells.Int. J. Mol. Sci.20232423169361695010.3390/ijms24231693638069259
    [Google Scholar]
  10. ZoubekM.E. TrautweinC. StrnadP. Reversal of liver fibrosis: From fiction to reality.Best Pract. Res. Clin. Gastroenterol.201731212914110.1016/j.bpg.2017.04.00528624101
    [Google Scholar]
  11. ChenS. ZhouJ. WuX. MengT. WangB. LiuH. WangT. ZhaoX. KongY. WuS. OuX. JiaJ. SunY. YouH. Comparison of fibrosis regression of entecavir alone or combined with pegylated interferon alpha2a in patients with chronic hepatitis B.Hepatol. Int.202115361162010.1007/s12072‑021‑10162‑133677771
    [Google Scholar]
  12. LiY. LuY. NianM. ShengQ. ZhangC. HanC. DouX. DingY. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease.Chin. J. Nat. Med.202321964365710.1016/S1875‑5364(23)60443‑137777315
    [Google Scholar]
  13. LiuH. LvJ. ZhaoZ. XiongA. TanY. GlennJ.S. TaoY. WengH. LiuC. Fuzhenghuayu Decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis.Sci. Rep.2019911871910.1038/s41598‑019‑54663‑431822697
    [Google Scholar]
  14. XiaoH.M. ShiM.J. JiangJ.M. CaiG.S. XieY.B. TianG.J. XueJ.D. MaoD.W. LiQ. YangH.Z. GuoH. LeiC.L. LuW. ChenL. LiuH.B. WangJ. GaoY.Q. ChenJ.Z. WuS.D. ChenH.J. ZhaoP.T. ZhangC.Z. Ou-YangW.W. WenZ.H. ChiX.L. Efficacy and safety of AnluoHuaxian pills on chronic hepatitis B with normal or minimally elevated alanine transaminase and early liver fibrosis: A randomized controlled trial.J. Ethnopharmacol.202229311521010.1016/j.jep.2022.11521035398501
    [Google Scholar]
  15. YuK. HuangK. JiangS. TangX. HuangX. SunL. PangL. MoC. Protective function on liver and proteomic analysis of the improvement mechanism of Sedum sarmentosum Bunge extract on nonalcoholic fatty liver disease in Nile tilapia.Aquaculture202153173597710.1016/j.aquaculture.2020.735977
    [Google Scholar]
  16. WangG.W. ZhangX.L. WuQ.H. JinY.B. NingC.T. WangR. MaoJ.X. ChenM. The hepatoprotective effects of Sedum sarmentosum extract and its isolated major constituent through Nrf2 activation and NF-κB inhibition.Phytomedicine20195326327310.1016/j.phymed.2018.09.02330668406
    [Google Scholar]
  17. ZongT. ZhouY. JiangZ. JinM. ZhouW. LiG. A new flavonoid glycoside and other constituents from sedum sarmentosum with anti-inflammatory activity.Chem. Nat. Compd.202359224925310.1007/s10600‑023‑03968‑y
    [Google Scholar]
  18. ZhuZ.B. YangJ.F. GuoQ.S. LiuF. WangR. ZhangW.X. Effects of light intensity on growth, quality and antioxidant activities of Sedum sarmentosum.Zhongguo Zhongyao Zazhi201843224404440930593231
    [Google Scholar]
  19. ZhangX. BiC. ChenQ. XuH. ShiH. LiX. Structure elucidation of arabinogalactoglucan isolated from Sedum sarmentosum Bunge and its inhibition on hepatocellular carcinoma cells in vitro.Int. J. Biol. Macromol.202118015216010.1016/j.ijbiomac.2021.03.05133741368
    [Google Scholar]
  20. LinY.C. LuoH.Y. LiuH.F. DuX.H. Anti-fibrotic mechanism of Sedum sarmentosum total flavanones in inhibiting activation of HSC by regulating Smads.Zhongguo Zhongyao Zazhi202045363163532237523
    [Google Scholar]
  21. CaoY. WangC. DongL. Exploring the mechanism of white peony in the treatment of lupus nephritis based on network pharmacology and molecular docking.Arch. Esp. Urol.202376212313110.56434/j.arch.esp.urol.20237602.1337139617
    [Google Scholar]
  22. LiuZ. ShenY. NiL. JiangX. TangZ. XieJ. ZhengZ. Study on the mechanism of yadanzi oil in treating lung cancer based on network pharmacology and molecular docking technology.ACS Omega2024917191171912610.1021/acsomega.3c1010538708221
    [Google Scholar]
  23. MohamedS.E. RamadanR.M. AboelhasanA.E. Abdel AzizA.A. Design, synthesis, biomedical investigation, DFT calculation and molecular docking of novel Ru(II)-mixed ligand complexes.J. Biomol. Struct. Dyn.20234141233125210.1080/07391102.2021.201735534927559
    [Google Scholar]
  24. ChenX. LiJ. WangX. LiuR. LiuX.Y. ShuM. 3D-QSAR, molecular docking and molecular dynamics analysis of pyrazole derivatives as MALT1 inhibitors.New J. Chem.20234742195961960710.1039/D3NJ03490A
    [Google Scholar]
  25. BishtA. TewariD. KumarS. ChandraS. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia.Mol. Divers.20242831743176310.1007/s11030‑023‑10684‑w37439907
    [Google Scholar]
  26. KhrustalevV.N. GrishinaM.M. MatsulevichZ.V. LukiyanovaJ.M. BorisovaG.N. OsmanovV.K. NovikovA.S. KirichukA.A. BorisovA.V. SolariE. TskhovrebovA.G. Novel cationic 1, 2, 4-selenadiazoles: Synthesis via addition of 2-pyridylselenyl halides to unactivated nitriles, structures and four-center Se⋯ N contacts.Dalton Trans.20215031106891069110.1039/d1dt01322j34165455
    [Google Scholar]
  27. GuranovaN.I. Dar’inD. KantinG. NovikovA.S. BakulinaO. KrasavinM. Rh(II)-catalyzed spirocyclization of α-diazo homophthalimides with cyclic ethers.J. Org. Chem.20198474534454210.1021/acs.joc.9b0024530816715
    [Google Scholar]
  28. NelyubinA.V. SelivanovN.A. BykovA.Y. KlyukinI.N. NovikovA.S. ZhdanovA.P. KarpechenkoN.Y. GrigorievM.S. ZhizhinK.Y. KuznetsovN.T. Primary amine nucleophilic addition to nitrilium closo-dodecaborate [B12H11NCCH3]−: A simple and effective route to the new BNCT drug design.Int. J. Mol. Sci.20212224133911341010.3390/ijms22241339134948186
    [Google Scholar]
  29. BaykovS.V. MikherdovA.S. NovikovA.S. GeylK.K. TarasenkoM.V. GureevM.A. BoyarskiyV.P. π–π noncovalent interaction involving 1,2,4- and 1,3,4-oxadiazole systems: The combined experimental, theoretical, and database study.Molecules202126185672568710.3390/molecules2618567234577142
    [Google Scholar]
  30. OsipyanA. SapeginA. NovikovA.S. KrasavinM. Rare medium-sized rings prepared via hydrolytic imidazoline ring expansion (HIRE).J. Org. Chem.201883179707971710.1021/acs.joc.8b0121030101583
    [Google Scholar]
  31. ReutskayaE. OsipyanA. SapeginA. NovikovA.S. KrasavinM. Rethinking hydrolytic imidazoline ring expansion: A common approach to the preparation of medium-sized rings via side-chain insertion into [1.4]oxa- and [1.4]thiazepinone scaffolds.J. Org. Chem.20198441693170510.1021/acs.joc.8b0280530566355
    [Google Scholar]
  32. TamerT.M. ElTantawyM.M. BrussevichA. NebaluevaA. NovikovA. MoskalenkoI.V. Abu-SerieM.M. HassanM.A. UlasevichS. SkorbE.V. Functionalization of chitosan with poly aromatic hydroxyl molecules for improving its antibacterial and antioxidant properties: Practical and theoretical studies.Int. J. Biol. Macromol.202323412368712370110.1016/j.ijbiomac.2023.12368736801285
    [Google Scholar]
  33. BolotinD.S. Il’inM.V. NovikovA.S. BokachN.A. SuslonovV.V. KukushkinV.Y. Trinuclear (aminonitrone)Zn II complexes as key intermediates in zinc(ii)-mediated generation of 1,2,4-oxadiazoles from amidoximes and nitriles.New J. Chem.20174151940195210.1039/C6NJ03508F
    [Google Scholar]
  34. MelekhovaA.A. SmirnovA.S. NovikovA.S. PanikorovskiiT.L. BokachN.A. KukushkinV.Y. Copper(i)-catalyzed 1,3-dipolar cycloaddition of ketonitrones to dialkylcyanamides: A step toward sustainable generation of 2,3-dihydro-1,2,4-oxadiazoles.ACS Omega2017241380139110.1021/acsomega.7b0013031457510
    [Google Scholar]
  35. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  36. PanJ. TangJ. GaiJ. JinY. TangB. FanX. Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation.Medicine (Baltimore)202310221e3387710.1097/MD.000000000003387737233418
    [Google Scholar]
  37. WangY. XiaoJ. SuzekT.O. ZhangJ. WangJ. ZhouZ. HanL. KarapetyanK. DrachevaS. ShoemakerB.A. BoltonE. GindulyteA. BryantS.H. PubChem’s bioassay database.Nucleic Acids Res.201240D1D400D41210.1093/nar/gkr113222140110
    [Google Scholar]
  38. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku29324792161
    [Google Scholar]
  39. GuoX. WangF. ZhengM. LiL. LiL. WangJ. MiaoS. MaS. ShiX. Network pharmacology and molecular docking to study the potential molecular mechanism of Qi Fu Yin for diabetic encephalopathy.J. Biomol. Struct. Dyn.2023411510.1080/07391102.2023.228903838047625
    [Google Scholar]
  40. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131
    [Google Scholar]
  41. LiangziF. QinfangZ. JunH. Research on saponin active compounds of Tuchao Baibiandouren for the treatment of type-2 diabetes based on UHPLC-Q-Exactive Orbitrap MS and network pharmacology.Digit. Chin. Med.202141193110.1016/j.dcmed.2021.03.003
    [Google Scholar]
  42. WangY. DingM. ChiJ. WangT. ZhangY. LiZ. LiQ. Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID-19.Sci. Rep.20231313884389610.1038/s41598‑023‑29207‑636890149
    [Google Scholar]
  43. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review.J. Tradit. Chin. Med.202242347948635610020
    [Google Scholar]
  44. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.21119131956
    [Google Scholar]
  45. TangD. ChenM. HuangX. ZhangG. ZengL. ZhangG. WuS. WangY. SRplot: A free online platform for data visualization and graphing.PLoS One20231811e029423610.1371/journal.pone.029423637943830
    [Google Scholar]
  46. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChenL. CrichlowG.V. ChristieC.H. DalenbergK. Di CostanzoL. DuarteJ.M. DuttaS. FengZ. GanesanS. GoodsellD.S. GhoshS. GreenR.K. GuranovićV. GuzenkoD. HudsonB.P. LawsonC.L. LiangY. LoweR. NamkoongH. PeisachE. PersikovaI. RandleC. RoseA. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. TaoY.P. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. ZhuravlevaM. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences.Nucleic Acids Res.202149D1D437D45110.1093/nar/gkaa103833211854
    [Google Scholar]
  47. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  48. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.193617934096457
    [Google Scholar]
  49. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247613248710.1016/j.molstruc.2022.132476
    [Google Scholar]
  50. ParakkalS.C. DattaR. MuthuS. Al-SaadiA.A. Structure of molecule, density gradient, orbital locator and reactivity of 5,6-dichloro-1-cyclopentyl-2-(methylsulfinyl)-1H-benzimidazole- potent inhibitor of map kinase.J. Mol. Struct.2023128913579413580910.1016/j.molstruc.2023.135794
    [Google Scholar]
  51. YadalamP.K. BalajiT.M. VaradarajanS. AlzahraniK.J. Al-GhamdiM.S. BaeshenH.A. AlfarhanM.F.A. KhurshidZ. BhandiS. JagannathanR. Assessing the therapeutic potential of angomelatine, ramelteon, and melatonin against sars-cov-2.Saudi J. Biol. Sci.20222953140315010.1016/j.sjbs.2022.01.04935095308
    [Google Scholar]
  52. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  53. LiuL. JiaoY. YangM. WuL. LongG. HuW. Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler.Int. J. Mol. Sci.202324121037010.3390/ijms24121037037373516
    [Google Scholar]
  54. LiaoF. YousifM. HuangR. QiaoY. HuY. Network pharmacology- and molecular docking-based analyses of the antihypertensive mechanism of Ilex kudingcha.Front. Endocrinol. (Lausanne)202314121608610.3389/fendo.2023.121608637664830
    [Google Scholar]
  55. Rika TrismayantiN.M. KusworiniK. DianH. In silico identification of natural compounds from virgin coconut oil as potential ligand peroxisome proliferator-activated receptor-gamma as preventive food leads against colitis.J. Adv. Pharm. Technol. Res.2023141394510.4103/japtr.japtr_505_2236950459
    [Google Scholar]
  56. KashyapD. JakhmolaS. TiwariD. KumarR. MoorthyN.S.H.N. ElangovanM. BrásN.F. JhaH.C. Plant derived active compounds as potential anti SARS-CoV-2 agents: an in-silico study.J. Biomol. Struct. Dyn.20224021106291065010.1080/07391102.2021.194738434225565
    [Google Scholar]
  57. JoS. KimT. IyerV.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.2094518351591
    [Google Scholar]
  58. MarkP. NilssonL. Structure and dynamics of the tip3p, spc, and spc/e water models at 298 k.J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  59. ParkC. RobinsonF. KimD. On the Choice of different water model in molecular dynamics simulations of nanopore transport phenomena.Membranes (Basel)202212111109111910.3390/membranes1211110936363664
    [Google Scholar]
  60. KumarR. MocheM. WinbladB. PavlovP.F. Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51.Sci. Rep.201771142881430510.1038/s41598‑017‑14731‑z29079741
    [Google Scholar]
  61. PapaleoE. RenzettiG. TibertiM. Mechanisms of intramolecular communication in a hyperthermophilic acylaminoacyl peptidase: A molecular dynamics investigation.PLoS One201274e3568610.1371/journal.pone.003568622558199
    [Google Scholar]
  62. OtvosL. HaspingerE. La RussaF. MasperoF. GrazianoP. KovalszkyI. LovasS. NamaK. HoffmannR. KnappeD. CassoneM. WadeJ. SurmaczE. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment.BMC Biotechnol.20111119010410.1186/1472‑6750‑11‑9021974986
    [Google Scholar]
  63. VerduraS. CuyàsE. CortadaE. BrunetJ. Lopez-BonetE. Martin-CastilloB. Bosch-BarreraJ. EncinarJ.A. MenendezJ.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity.Aging (Albany NY)202012183410.18632/aging.10264631901900
    [Google Scholar]
  64. DesikanP. KhanZ. Prevalence of hepatitis B and hepatitis C virus co-infection in India: A systematic review and meta-analysis.Indian J. Med. Microbiol.201735333233910.4103/ijmm.IJMM_17_25729063876
    [Google Scholar]
  65. LacknerC. TiniakosD. Fibrosis and alcohol-related liver disease.J. Hepatol.201970229430410.1016/j.jhep.2018.12.00330658730
    [Google Scholar]
  66. TrautweinC. FriedmanS.L. SchuppanD. PinzaniM. Hepatic fibrosis: Concept to treatment.J. Hepatol.201562Suppl. 1S15S2410.1016/j.jhep.2015.02.03925920084
    [Google Scholar]
  67. FengJ. ChenK. XiaY. WuL. LiJ. LiS. WangW. LuX. LiuT. GuoC. Salidroside ameliorates autophagy and activation of hepatic stellate cells in mice via NF-κB and TGF-β1/Smad3 pathways.Drug Des. Devel. Ther.2018121837185310.2147/DDDT.S16295029970958
    [Google Scholar]
  68. Kobusiak-ProkopowiczM. KaazK. MarciniakD. KarolkoB. MysiakA. Relationships between circulating matrix metalloproteinases, tissue inhibitor TIMP-2, and renal function in patients with myocarditis.Kidney Blood Press. Res.202146674975710.1159/00051959434801997
    [Google Scholar]
  69. SchwartzJ.D. MoneaS. MarcusS.G. PatelS. EngK. GallowayA.C. MignattiP. ShamamianP. Soluble factor(s) released from neutrophils activates endothelial cell matrix metalloproteinase-2.J. Surg. Res.1998761798510.1006/jsre.1998.52949695744
    [Google Scholar]
  70. VandoorenJ. Van den SteenP.E. OpdenakkerG. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade.Crit. Rev. Biochem. Mol. Biol.201348322227210.3109/10409238.2013.77081923547785
    [Google Scholar]
  71. LachowskiD. CortesE. RiceA. PinatoD. RomboutsK. del Rio HernandezA. Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis.Sci. Rep.201991729910.1038/s41598‑019‑43759‑631086224
    [Google Scholar]
  72. VeidalS.S. KarsdalM.A. NawrockiA. LarsenM.R. DaiY. ZhengQ. HägglundP. VainerB. Skjøt-ArkilH. LeemingD.J. Assessment of proteolytic degradation of the basement membrane: A fragment of type IV collagen as a biochemical marker for liver fibrosis.Fibrogenesis Tissue Repair2011412210.1186/1755‑1536‑4‑2221970406
    [Google Scholar]
  73. WangX.B. LiuP. TangZ.P. LuX. LiuC.H. HuY.Y. XuL.M. GuH.T. LiuC. The role of changes of MMP-2, 9 activity in the development of liver fibrosis in rats.Zhonghua Gan Zang Bing Za Zhi200412526727015161499
    [Google Scholar]
  74. LiD.H. Diagnostic value of serum MMP-9 for liver fibrosis in chronic hepatitis and liver cirrhosis.Chin. Gen. Prac.2011149945947
    [Google Scholar]
  75. ZhouB. FanY. RaoJ. XuZ. LiuY. LuL. LiG. Matrix metalloproteinases-9 deficiency impairs liver regeneration through epidermal growth factor receptor signaling in partial hepatectomy mice.J. Surg. Res.2015197120120910.1016/j.jss.2015.03.08125956184
    [Google Scholar]
  76. CarneroA. ParamioJ.M. The PTEN/PI3K/AKT pathway in vivo, cancer mouse models.Front. Oncol.2014425210.3389/fonc.2014.0025225295225
    [Google Scholar]
  77. MartelliA.M. FaenzaI. BilliA.M. ManzoliL. EvangelistiC. FalàF. CoccoL. Intranuclear 3′-phosphoinositide metabolism and Akt signaling: New mechanisms for tumorigenesis and protection against apoptosis?Cell. Signal.20061881101110710.1016/j.cellsig.2006.01.01116516442
    [Google Scholar]
  78. PengZ. EdwardsH. MustfaW. El SafadiM. TehreemS. GaafarA.R.Z. BourhiaM. ShahT.A. HiraH. Ameliorative role of catechin to combat against lindane instigated liver toxicity via modulating PI3K/PIP3/Akt, Nrf-2/Keap-1, NF-κB pathway and histological profile.Pestic. Biochem. Physiol.202420410606310607110.1016/j.pestbp.2024.10606339277379
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808353253241126102554
Loading
/content/journals/lddd/10.2174/0115701808353253241126102554
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test