Skip to content
2000
image of A Systemic Review on Phytochemicals and Novel Approaches for the Management of Hepatic Cancer

Abstract

Introduction

Hepatic cancer, an aggressive tumour that often develops along with cirrhosis and chronic liver disease like infections with the hepatitis B and hepatitis C viruses, while non-alcoholic steatohepatitis, is linked to metabolic syndrome or diabetes mellitus. It is the third most prevalent cause of cancer-related mortality globally and ranks fifth in cancer incidence. According to GLOBOCON, the prevalence is expected to rise by 55.0% and the fatalities by 56.4% in the near future.

Objective

The present review offered natural plant-based substances and compounds having curative effects on liver cancer, along with novel drug delivery systems and nanocarrier-based therapies.

Methods

The literature has been taken from PubMed, Google Scholar, SciFinder, Springer Nature, Bentham Science, PLOS one, or other internet sites.

Result

Treatment for heterogeneous malignancy is multidimensional, and care guidelines differ depending on the specialty and location. Several nutritional herbal remedies and their active phytoconstituents may have an abundance of impacts on the management of liver cancer, including preventing the growth and spread of tumor cells, shielding the body from liver carcinogens, boosting the effects of chemotherapy and immunomodulating the body.

Conclusion

The treatment of liver cancer involves multidisciplinary and multimodel therapy. The literature is a compilation of extract, compounds, and novel approaches like nanoparticles, microsphere, liposomes, niosomes, phytosomes and microparticles. These approaches not only manage cancer but also boost the immunity of the individuals.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808334721241111073635
2024-11-14
2024-12-26
Loading full text...

Full text loading...

References

  1. Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 2021 8 5 655 661 10.1016/j.gendis.2020.09.002
    [Google Scholar]
  2. Burrell R.A. McGranahan N. Bartek J. Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013 501 7467 338 345 10.1038/nature12625
    [Google Scholar]
  3. Ben-David U. Beroukhim R. Golub T.R. Genomic evolution of cancer models: Perils and opportunities. Nat. Rev. Cancer 2019 19 2 97 109 10.1038/s41568‑018‑0095‑3
    [Google Scholar]
  4. Diamandis E.P. Oncogenes and tumor suppressor genes: New biochemical tests. Crit. Rev. Clin. Lab. Sci. 1992 29 3-4 269 305 10.3109/10408369209114603
    [Google Scholar]
  5. GLOBOCAN. IARC 2018
    [Google Scholar]
  6. El-Serag H.B. Rudolph K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007 132 7 2557 2576 10.1053/j.gastro.2007.04.061
    [Google Scholar]
  7. Parkin D.M. The global health burden of infection‐associated cancers in the year 2002. Int. J. Cancer 2006 118 12 3030 3044 10.1002/ijc.21731
    [Google Scholar]
  8. Alberts C.J. Clifford G.M. Georges D. Negro F. Lesi O.A. Hutin Y.J.F. de Martel C. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: A systematic review. Lancet Gastroenterol. Hepatol. 2022 7 8 724 735 10.1016/S2468‑1253(22)00050‑4
    [Google Scholar]
  9. Choi S. Kim B.K. Yon D.K. Lee S.W. Lee H.G. Chang H.H. Park S. Koyanagi A. Jacob L. Dragioti E. Radua J. Shin J.I. Kim S.U. Smith L. Global burden of primary liver cancer and its association with underlying aetiologies, sociodemographic status, and sex differences from 1990–2019: A DALY-based analysis of the global burden of disease 2019 study. Clin. Mol. Hepatol. 2023 29 2 433 452 10.3350/cmh.2022.0316
    [Google Scholar]
  10. El-Serag H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011 365 12 1118 1127 10.1056/NEJMra1001683
    [Google Scholar]
  11. Deng Z. Xu X.Y. Yunita F. Zhou Q. Wu Y.R. Hu Y.X. Wang Z.Q. Tian X.F. Synergistic anti-liver cancer effects of curcumin and total ginsenosides. World J. Gastrointest. Oncol. 2020 12 10 1091 1103 10.4251/wjgo.v12.i10.1091
    [Google Scholar]
  12. Chow A.K.M. Yau S.W.L. Ng L. Novel molecular targets in hepatocellular carcinoma. World J. Clin. Oncol. 2020 11 8 589 605 10.5306/wjco.v11.i8.589
    [Google Scholar]
  13. Jones N.P. Schulze A. Targeting cancer metabolism – aiming at a tumour’s sweet-spot. Drug Discov. Today 2012 17 5-6 232 241 10.1016/j.drudis.2011.12.017
    [Google Scholar]
  14. Huang X.F. Lin Y.Y. Kong L.Y. Steroids from the roots of Asparagus officinalis and their cytotoxic activity. J. Integr. Plant Biol. 2008 50 6 717 722 10.1111/j.1744‑7909.2008.00651.x
    [Google Scholar]
  15. Gull N. Arshad F. Naikoo G.A. Hassan I.U. Pedram M.Z. Ahmad A. Aljabali A.A.A. Mishra V. Satija S. Charbe N. Negi P. Goyal R. Serrano-Aroca Á. Al Zoubi M.S. El-Tanani M. Tambuwala M.M. Recent advances in anticancer activity of novel plant extracts and compounds from Curcuma longa in Hepatocellular Carcinoma. J. Gastrointest. Cancer 2023 54 2 368 390 10.1007/s12029‑022‑00809‑z
    [Google Scholar]
  16. Zhou Y. Li Y. Zhou T. Zheng J. Li S. Li H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016 8 3 156 10.3390/nu8030156
    [Google Scholar]
  17. Rawat D. Shrivastava S. Naik R.A. Chhonker S.K. Mehrotra A. Koiri R.K. An overview of natural plant products in the treatment of Hepatocellular Carcinoma. Anticancer. Agents Med. Chem. 2019 18 13 1838 1859 10.2174/1871520618666180604085612
    [Google Scholar]
  18. Doran Brubaker S. Ward J.W. Hiebert L. Morgan R.L. Developing an evidence base for the delivery of hepatitis B virus birth dose vaccination: An evidence map and critical appraisal of systematic reviews and guidelines. Clin. Liver Dis. (Hoboken) 2021 17 5 375 381 10.1002/cld.1103
    [Google Scholar]
  19. Dikshit R. Gupta P.C. Ramasundarahettige C. Gajalakshmi V. Aleksandrowicz L. Badwe R. Kumar R. Roy S. Suraweera W. Bray F. Mallath M. Singh P.K. Sinha D.N. Shet A.S. Gelband H. Jha P. Cancer mortality in India: A nationally representative survey. Lancet 2012 379 9828 1807 1816 10.1016/S0140‑6736(12)60358‑4
    [Google Scholar]
  20. Paul S.B. Sreenivas V. Gulati M.S. Madan K. Gupta A.K. Mukhopadhyay S. Panda S.K. Acharya S.K. Acharya, Incidence of hepatocellular carcinoma among Indian patients with cirrhosis of liver: An experience from a tertiary care center in northern India. Indian J. Gastroenterol. 2007 26 6 274 278
    [Google Scholar]
  21. Galbraith J.W. Franco R.A. Donnelly J.P. Rodgers J.B. Morgan J.M. Viles A.F. Overton E.T. Saag M.S. Wang H.E. Unrecognized chronic hepatitis C virus infection among baby boomers in the emergency department. Hepatology 2015 61 3 776 782 10.1002/hep.27410
    [Google Scholar]
  22. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004 11 2 97 107 10.1046/j.1365‑2893.2003.00487.x
    [Google Scholar]
  23. 2021
  24. Rumgay H. Arnold M. Ferlay J. Lesi O. Cabasag C.J. Vignat J. Laversanne M. McGlynn K.A. Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022 77 6 1598 1606 10.1016/j.jhep.2022.08.021
    [Google Scholar]
  25. Turati F. Galeone C. Rota M. Pelucchi C. Negri E. Bagnardi V. Corrao G. Boffetta P. La Vecchia C. Alcohol and liver cancer: A systematic review and meta-analysis of prospective studies. Ann. Oncol. 2014 25 8 1526 1535 10.1093/annonc/mdu020
    [Google Scholar]
  26. Ogbu U.C. Arah O.A. World Health Organization. Int Encycl Public Heal 2016 10.1016/B978‑0‑12‑803678‑5.00499‑9
    [Google Scholar]
  27. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  28. Ascha M.S. Hanouneh I.A. Lopez R. Tamimi T.A.R. Feldstein A.F. Zein N.N. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010 51 6 1972 1978 10.1002/hep.23527
    [Google Scholar]
  29. Chang M.H. You S.L. Chen C.J. Liu C.J. Lee C.M. Lin S.M. Chu H.C. Wu T.C. Yang S.S. Kuo H.S. Chen D.S. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: A 20-year follow-up study. J. Natl. Cancer Inst. 2009 101 19 1348 1355 10.1093/jnci/djp288
    [Google Scholar]
  30. Chidambaranathan-Reghupaty S. Fisher P.B. Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021 149 1 61 10.1016/bs.acr.2020.10.001
    [Google Scholar]
  31. Hamaguchi T. Iizuka N. Tsunedomi R. Hamamoto Y. Miyamoto T. Iida M. Tokuhisa Y. Sakamoto K. Takashima M. Tamesa T. Oka M. Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int. J. Oncol. 2008 33 725 731
    [Google Scholar]
  32. Thorgeirsson S.S. Grisham J.W. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet. 2002 31 4 339 346 10.1038/ng0802‑339
    [Google Scholar]
  33. Schulze K. Imbeaud S. Letouzé E. Alexandrov L.B. Calderaro J. Rebouissou S. Couchy G. Meiller C. Shinde J. Soysouvanh F. Calatayud A.L. Pinyol R. Pelletier L. Balabaud C. Laurent A. Blanc J.F. Mazzaferro V. Calvo F. Villanueva A. Nault J.C. Bioulac-Sage P. Stratton M.R. Llovet J.M. Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015 47 5 505 511 10.1038/ng.3252
    [Google Scholar]
  34. Furuta M. Tanaka H. Shiraishi Y. Uchida T. Imamura M. Fujimoto A. Fujita M. Sasaki-Oku A. Maejima K. Nakano K. Kawakami Y. Arihiro K. Aikata H. Ueno M. Hayami S. Ariizumi S-I. Yamamoto M. Gotoh K. Ohdan H. Yamaue H. Miyano S. Chayama K. Nakagawa H. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers. Oncotarget 2018 9 38 25075 25088 10.18632/oncotarget.25308
    [Google Scholar]
  35. Villanueva A. Luedde T. The transition from inflammation to cancer in the liver. Clin. Liver Dis. (Hoboken) 2016 8 4 89 93 10.1002/cld.578
    [Google Scholar]
  36. Kremsdorf D. Soussan P. Paterlini-Brechot P. Brechot C. Hepatitis B virus-related hepatocellular carcinoma: Paradigms for viral-related human carcinogenesis. Oncogene 2006 25 27 3823 3833 10.1038/sj.onc.1209559
    [Google Scholar]
  37. Gao F. Liang H. Lu H. Wang J. Xia M. Yuan Z. Yao Y. Wang T. Tan X. Laurence A. Xu H. Yu J. Xiao W. Chen W. Zhou M. Zhang X. Chen Q. Chen X. Global analysis of DNA methylation in hepatocellular carcinoma by a liquid hybridization capture-based bisulfite sequencing approach. Clin. Epigenetics 2015 7 1 86 10.1186/s13148‑015‑0121‑1
    [Google Scholar]
  38. Farazi P.A. DePinho R.A. Hepatocellular carcinoma pathogenesis: From genes to environment. Nat. Rev. Cancer 2006 6 9 674 687 10.1038/nrc1934
    [Google Scholar]
  39. Zhang X. Zheng Q. Yue X. Yuan Z. Ling J. Yuan Y. Liang Y. Sun A. Liu Y. Li H. Xu K. He F. Wang J. Wu J. Zhao C. Tian C. ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation. J. Exp. Clin. Cancer Res. 2022 41 1 79 10.1186/s13046‑022‑02288‑3
    [Google Scholar]
  40. Gnanapradeepan K. Basu S. Barnoud T. Budina-Kolomets A. Kung C.P. Murphy M.E. The p53 tumor suppressor in the control of metabolism and Ferroptosis. Front. Endocrinol. (Lausanne) 2018 9 124 10.3389/fendo.2018.00124
    [Google Scholar]
  41. Tümen D. Heumann P. Gülow K. Demirci C.N. Cosma L.S. Müller M. Kandulski A. Pathogenesis and current treatment strategies of Hepatocellular Carcinoma. Biomedicines 2022 10 12 3202 10.3390/biomedicines10123202
    [Google Scholar]
  42. Ghanaati H. Alavian S.M. Jafarian A. Daryani N.E. Nassiri-Toosi M. Jalali A.H. Shakiba M. Imaging and imaging-guided interventions in the diagnosis and management of Hepatocellular Carcinoma (HCC)-review of evidence. Iran. J. Radiol. 2012 9 4 167 177 10.5812/iranjradiol.8242
    [Google Scholar]
  43. Choi B.I. Kim A.Y. Lee J.Y. Kim K.W. Lee K.H. Kim T.K. Han J.K. Hepatocellular carcinoma. J. Ultrasound Med. 2002 21 1 77 84 10.7863/jum.2002.21.1.77
    [Google Scholar]
  44. Koito K. Namieno T. Morita K. Differential diagnosis of small hepatocellular carcinoma and adenomatous hyperplasia with power Doppler sonography. AJR Am. J. Roentgenol. 1998 170 1 157 161 10.2214/ajr.170.1.9423624
    [Google Scholar]
  45. Bialecki E.S. Di Bisceglie A.M. Diagnosis of hepatocellular carcinoma. HPB (Oxford) 2005 7 1 26 34 10.1080/13651820410024049
    [Google Scholar]
  46. Brancatelli G. Baron R.L. Peterson M.S. Marsh W. Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: Frequency and causes of false-positive interpretation. AJR Am. J. Roentgenol. 2003 180 4 1007 1014 10.2214/ajr.180.4.1801007
    [Google Scholar]
  47. Oliver J.H. III Baron R.L. Federle M.P. Rockette H.E. Jr Detecting hepatocellular carcinoma: value of unenhanced or arterial phase CT imaging or both used in conjunction with conventional portal venous phase contrast-enhanced CT imaging. AJR Am. J. Roentgenol. 1996 167 1 71 77 10.2214/ajr.167.1.8659425
    [Google Scholar]
  48. Szklaruk J. Silverman P.M. Charnsangavej C. Imaging in the diagnosis, staging, treatment, and surveillance of hepatocellular carcinoma. AJR Am. J. Roentgenol. 2003 180 2 441 454 10.2214/ajr.180.2.1800441
    [Google Scholar]
  49. Krinsky G.A. Lee V.S. Theise N.D. Weinreb J.C. Rofsky N.M. Diflo T. Teperman L.W. Hepatocellular carcinoma and dysplastic nodules in patients with cirrhosis: Prospective diagnosis with MR imaging and explantation correlation. Radiology 2001 219 2 445 454 10.1148/radiology.219.2.r01ma40445
    [Google Scholar]
  50. Yu J.S. Kim M.J. Hepatocellular carcinoma: Contrast-enhanced MRI. Abdom. Imaging 2002 27 2 157 167 10.1007/s00261‑001‑0092‑x
    [Google Scholar]
  51. Bruix J. Castells A. Calvet X. Feu F. Bru C. Sole C. Diarrhea as a presenting symptom of hepatocellular carcinoma. Dig. Dis. Sci. 1990 35 681 685 10.1007/BF01540166
    [Google Scholar]
  52. McIntire K.R. Vogel C.L. Primack A. Waldmann T.A Kyalwazi S.K. Effect of surgical and chemotherapeutic treatment on alpha‐fetoprotein levels in patients with hepatocellular carcinoma Cancer 1976 37 677 683 10.1002/1097‑0142(197602)37:2<677::AID‑CNCR2820370211>3.0.CO;2‑T
    [Google Scholar]
  53. Borzio M. Borzio F. Macchi R. Croce A.M. Bruno S. Ferrari A. Servida E. The evaluation of fine-needle procedures for the diagnosis of focal liver lesions in cirrhosis. J. Hepatol. 1994 20 1 117 121 10.1016/S0168‑8278(05)80477‑5
    [Google Scholar]
  54. Robbins S.S. Kumar V. Basic pathology, (4th). WB Saunders 1987 598
    [Google Scholar]
  55. Park C. Choi S.I. Kim H. Yoo H.S. Lee Y.B. Distribution of lipiodol in Hepatocellular Carcinoma Liver 1990 10 72 78 10.1111/j.1600‑0676.1990.tb00439.x
    [Google Scholar]
  56. Lee M.S. Ryoo B.Y. Hsu C.H. Numata K. Stein S. Verret W. Hack S.P. Spahn J. Liu B. Abdullah H. Wang Y. He A.R. Lee K-H. Bang Y-J. Bendell J. Chao Y. Chen J-S. Chung H.C. Davis S.L. Dev A. Gane E. George B. He A.R. Hochster H. Hsu C-H. Ikeda M. Lee J. Lee M. Mahipal A. Manji G. Morimoto M. Numata K. Pishvaian M. Qin S. Ryan D. Ryoo B-Y. Sasahira N. Stein S. Strickler J. Tebbutt N. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020 21 6 808 820 10.1016/S1470‑2045(20)30156‑X
    [Google Scholar]
  57. Tohyama O. Matsui J. Kodama K. Hata-Sugi N. Kimura T. Okamoto K. Minoshima Y. Iwata M. Funahashi Y. Antitumor activity of Lenvatinib (E7080): An angiogenesis inhibitor that targets multiple Receptor Tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014 2014 1 13 10.1155/2014/638747
    [Google Scholar]
  58. Ao M. Xiao X. Ao Y.Z. Observation on effect and adverse reactions of thalidomide combined with kanglite injections in treating primary liver cancer. Doctor 2017 3 7 9 10 10.19604/j.cnki.dys.2017.07.005
    [Google Scholar]
  59. Yang J. Li X. Xue Y. Wang N. Liu W. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2014 64 276 280 10.1016/j.ijbiomac.2013.11.033
    [Google Scholar]
  60. Ramos S. Alía M. Bravo L. Goya L. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2). J. Agric. Food Chem. 2005 53 4 1271 1280 10.1021/jf0490798
    [Google Scholar]
  61. Ravi F. Tavani A. Bosetti C. Boffetta P. Vecchia L.C. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: A systematic review and meta-analysis of prospective studies Eur. J. Cancer Prev. 2017 26 5 368 377
    [Google Scholar]
  62. Chatterjee S.J. Ovadje P. Mousa M. Hamm C. Pandey S. The efficacy of dandelion root extract in inducing apoptosis in drug resistant human melanoma cells. Evid. Based Complement. Alternat. Med. 2011 2011 1 129045 10.1155/2011/129045
    [Google Scholar]
  63. Feng L.L. Liu B.X. Zhong J.Y. Sun L.B. Yu H.S. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models. Asian Pac. J. Cancer Prev. 2014 15 2 737 741 10.7314/APJCP.2014.15.2.737
    [Google Scholar]
  64. Jo J.Y. Gonzalez de Mejia E. Lila M.A. Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions. J. Agric. Food Chem. 2005 53 7 2489 2498 10.1021/jf048524w
    [Google Scholar]
  65. Sreepriya M. Bali G. Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia 2005 76 6 549 555 10.1016/j.fitote.2005.04.014
    [Google Scholar]
  66. Friedman M. Levin C.E. Lee S.U. Kim H.J. Lee I.S. Byun J.O. Kozukue N. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J. Agric. Food Chem. 2009 57 13 5727 5733 10.1021/jf900364j
    [Google Scholar]
  67. Jiang S. Chen Y. Wang M. Yin Y. Pan Y. Gu B. Yu G. Li Y. Wong B.H.C. Liang Y. Sun H. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N -acetylglucosamine. Biochem. J. 2012 443 2 369 378 10.1042/BJ20112061
    [Google Scholar]
  68. Liu Q. Zhao S. Meng F. Wang H. Sun L. Li G. Nrf2 down-regulation by camptothecin favors inhibiting invasion, metastasis and angiogenesis in hepatocellular carcinoma Front. Oncol. 2021 11 10.3389/fonc.2021.661157
    [Google Scholar]
  69. Liu Q.D. Bai T.Y. Wang Y.F. Yao Y. Effect of combined use of quercetin and rosmarinic acid on proliferation and apoptosis of HepG2 cells in vitro. Anhui Med Pharmaceut. 2020 24 09 1705 1707
    [Google Scholar]
  70. Dai M. Chen N. Li J. Tan L. Li X. Wen J. Lei L. Guo D. In vitro and in vivo anti-metastatic effect of the alkaliod matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms. Phytomedicine 2021 87 153580 10.1016/j.phymed.2021.153580
    [Google Scholar]
  71. Chen Y.Y. Effect of EGCG derivative Y6 on anti-angiogenesis and synergistic attenuated daunorubicin anti-hepatocarcinoma and its mechanism in vivo. Guangxi Med University 2018
    [Google Scholar]
  72. He X. Liu R.H. Cranberry phytochemicals: Isolation, structure elucidation, and their antiproliferative and antioxidant activities. J. Agric. Food Chem. 2006 54 19 7069 7074 10.1021/jf061058l
    [Google Scholar]
  73. Lin S. Zhuang J. Zhu L. Jiang Z. Matrine inhibits cell growth, migration, invasion and promotes autophagy in hepatocellular carcinoma by regulation of circ_0027345/miR-345-5p/HOXD3 axis. Cancer Cell Int. 2020 20 1 246 10.1186/s12935‑020‑01293‑w
    [Google Scholar]
  74. Bai J. Wu J. Tang R. Sun C. Ji J. Yin Z. Ma G. Yang W. Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a. Invest. New Drugs 2020 38 2 229 245 10.1007/s10637‑019‑00777‑5
    [Google Scholar]
  75. Jin Z.L. Yan W. Qu M. Ge C.Z. Chen X. Zhang S.F. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells Exp Ther Med. 2018 15 6 5046 5050 10.3892/etm.2018.6005
    [Google Scholar]
  76. Pan L. Feng F. Wu J. Li L. Xu H. Yang L. Xu K. Wang C. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma. Food Funct. 2021 12 23 12036 12046 10.1039/D1FO02111G
    [Google Scholar]
  77. Ng K.T.P. Guo D.Y. Cheng Q. Geng W. Ling C.C. Li C.X. Liu X.B. Ma Y.Y. Lo C.M. Poon R.T.P. Fan S.T. Man K. A garlic derivative, Sallylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One 2012 7 2 e31655 10.1371/journal.pone.0031655
    [Google Scholar]
  78. Wu C.H. Ho Y.S. Tsai C.Y. Wang Y.J. Tseng H. Wei P.L. Lee C.H. Liu R.S. Lin S.Y. In vitro and in vivo study of phloretin‐induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int. J. Cancer 2009 124 9 2210 2219 10.1002/ijc.24189
    [Google Scholar]
  79. Edris A. Anti-cancer properties of Nigella spp. essential oils and their major constituents, thymoquinone and β-elemene. Curr. Clin. Pharmacol. 2009 4 1 43 46 10.2174/157488409787236137
    [Google Scholar]
  80. Li H. Du G. Yang L. Pang L. Zhan Y. The antitumor effects of britanin on hepatocellular carcinoma cells and its real-time evaluation by in vivo Bioluminescence imaging. Anticancer. Agents Med. Chem. 2020 20 9 1147 1156 10.2174/1871520620666200227092623
    [Google Scholar]
  81. Roy G. Guan S. Liu H. Zhang L. rotundic acid induces DNA damage and cell death in hepatocellular Carcinoma through AKT/mTOR and MAPK pathways. Front. Oncol. 2019 9 545 10.3389/fonc.2019.00545
    [Google Scholar]
  82. Liu T. Ma H. Shi W. Duan J. Wang Y. Zhang C. Li C. Lin J. Li S. Lv J. Lin L. Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma. Int. J. Oncol. 2017 51 2 555 562 10.3892/ijo.2017.4035
    [Google Scholar]
  83. Badr El-Din N.K. Ali D.A. Othman R. French S.W. Ghoneum M. Chemopreventive role of arabinoxylan rice bran, MGN-3/Biobran, on liver carcinogenesis in rats. Biomed. Pharmacother. 2020 126 110064 10.1016/j.biopha.2020.110064
    [Google Scholar]
  84. Song J. Zhao Z. Fan X. Chen M. Cheng X. Zhang D. Wu F. Ying X. Ji J. Shikonin potentiates the effect of arsenic trioxide against human hepatocellular carcinoma in vitro and in vivo Oncotarget 2016 7 43 70504 70515
    [Google Scholar]
  85. Basu A. Namporn T. Ruenraroengsak P. Critical review in designing plant-based anticancer nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023 15 6 1611 10.3390/pharmaceutics15061611
    [Google Scholar]
  86. Lee E.J. An D. Nguyen C.T.T. Patil B.S. Kim J. Yoo K.S. Betalain and betaine composition of greenhouse- or field-produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation. J. Agric. Food Chem. 2014 62 6 1324 1331 10.1021/jf404648u
    [Google Scholar]
  87. Hwang E.S. Lee H.J. Induction of quinone reductase by allylisothiocyanate (AITC) and the N-acetylcysteine conjugate of AITC in Hepa1c1c7 mouse hepatoma cells. Biofactors 2006 26 1 7 15 10.1002/biof.5520260102
    [Google Scholar]
  88. Zhang X. Dai F. Chen J. Xie X. Xu H. Bai C. Qiao W. Shen W. Antitumor effect of curcumin liposome after transcatheter arterial embolization in VX2 rabbits. Cancer Biol. Ther. 2019 20 5 642 652 10.1080/15384047.2018.1550567
    [Google Scholar]
  89. Zhao X. Chen Q. Li Y. Tang H. Liu W. Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015 93 93 27 36 10.1016/j.ejpb.2015.03.003
    [Google Scholar]
  90. Yang W. Zhang Y. Wang J. Li H. Yang H. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier. Int. J. Biol. Macromol. 2022 216 789 798 10.1016/j.ijbiomac.2022.07.182
    [Google Scholar]
  91. Guhagarkar S.A. Gaikwad R.V. Samad A. Malshe V.C. Devarajan P.V. Polyethylene sebacate–doxorubicin nanoparticles for hepatic targeting. Int. J. Pharm. 2010 401 1-2 113 122 10.1016/j.ijpharm.2010.09.012
    [Google Scholar]
  92. Shanmugasundaram T. Radhakrishnan M. Gopikrishnan V. Kadirvelu K. Balagurunathan R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: In vitro and in vivo perspectives. Nanoscale 2017 9 43 16773 16790 10.1039/C7NR04979J
    [Google Scholar]
  93. Yin D. Hu X. Cai M. Wang K. Peng H. Bai J. Xv Y. Fu T. Dong X. Ni J. Yin X. Preparation, characterization, and in vitro release of curcumin-loaded IRMOF-10 nanoparticles and investigation of their pro-apoptotic effects on human Hepatoma HepG2 cells. Molecules 2022 27 12 3940 10.3390/molecules27123940
    [Google Scholar]
  94. Zhang Y. Chen T. Yuan P. Tian R. Hu W. Tang Y. Jia Y. Zhang L. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr. Polym. 2015 133 31 38 10.1016/j.carbpol.2015.06.102
    [Google Scholar]
  95. Mary T.A. Shanthi K. Vimala K. Soundarapandian K. PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Advances 2016 6 27 22936 22949 10.1039/C5RA25109E
    [Google Scholar]
  96. Pandey P. Rahman M. Bhatt P.C. Beg S. Paul B. Hafeez A. Al-Abbasi F.A. Nadeem M.S. Baothman O. Anwar F. Kumar V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond.) 2018 13 8 849 870 10.2217/nnm‑2017‑0306
    [Google Scholar]
  97. Xia Y. You P. Xu F. Liu J. Xing F. Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale Res. Lett. 2015 10 1 349 10.1186/s11671‑015‑1051‑8
    [Google Scholar]
  98. Hashem A.H. Salem S.S. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol. J. 2022 17 2 2100432 10.1002/biot.202100432
    [Google Scholar]
  99. Hanafy N. Dini L. Citti C. Cannazza G. Leporatti S. Inihibition of glycolysis by using a micro/nano-lipid bromopyruvic chitosan carrier as a promising tool to improve treatment of Hepatocellular Carcinoma. Nanomaterials (Basel) 2018 8 1 34 10.3390/nano8010034
    [Google Scholar]
  100. Zuo J. Tong L. Du L. Yang M. Jin Y. Biomimetic nanoassemblies of 1- O -octodecyl-2-conjugated linoleoyl- sn -glycero-3-phosphatidyl gemcitabine with phospholipase A 2 -triggered degradation for the treatment of cancer. Colloids Surf. B Biointerfaces 2017 152 467 474 10.1016/j.colsurfb.2017.02.001
    [Google Scholar]
  101. Hu X. Zhang J. Deng L. Hu H. Hu J. Zheng G. Galactose-modified PH-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of Tanshinone IIA. AAPS PharmSciTech 2021 22 3 96 10.1208/s12249‑021‑01973‑4
    [Google Scholar]
  102. Tu Y.S. Sun D.M. Zhang J.J. Jiang Z.Q. Chen Y.X. Zeng X.H. Huang D.E. Yao N. Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J. Microencapsul. 2014 31 4 307 316 10.3109/02652048.2013.843727
    [Google Scholar]
  103. Zhu H. Zhou W. Wan Y. Lu J. Ge K. Jia C. Delivery of Adriamycin loaded niosomes for liver cancer treatment. J. Biomed. Nanotechnol. 2022 18 7 1763 1769 10.1166/jbn.2022.3390
    [Google Scholar]
  104. Dinesh J. Quercetin and Silymarin loaded Niosomal formulation with synergistic effect on Hep G2 cell lines Latin American J of Pharmacy 2023 42 3
    [Google Scholar]
  105. Ergi̇n A.D. Oltulu Ç. Türker N.P. Demi̇rbolat G.M. In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: Fabrication, characterization and cell culture studies. Turk. J. Med. Sci. 2023 53 4 872 882 10.55730/1300‑0144.5651
    [Google Scholar]
  106. Pérez-López A. Martín-Sabroso C. Gómez-Lázaro L. Torres-Suárez A.I. Aparicio-Blanco J. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation. Acta Biomater. 2022 149 1 15 10.1016/j.actbio.2022.07.019
    [Google Scholar]
  107. Mizukami Y. Moriya A. Takahashi Y. Shimizu K. Konishi S. Takakura Y. Nishikawa M. Incorporation of Gelatin Microspheres into HepG2 human Hepatocyte Spheroids for functional improvement through improved oxygen supply to spheroid core. Biol. Pharm. Bull. 2020 43 8 1220 1225 10.1248/bpb.b20‑00141
    [Google Scholar]
  108. Wang H. Zhang Y. Tian Z. Ma J. Kang M. Ding C. Ming D. Preparation of β-CD-Ellagic acid Microspheres and their effects on HepG2 Cell proliferation. Molecules 2017 22 12 2175 10.3390/molecules22122175
    [Google Scholar]
  109. Li X. He G. Su F. Chu Z. Xu L. Zhang Y. Zhou J. Ding Y. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma. Asian J. Pharm. Sci. 2020 15 6 739 751 10.1016/j.ajps.2020.01.001
    [Google Scholar]
  110. Choi J.W. Park J.H. Baek S.Y. Kim D.D. Kim H.C. Cho H.J. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor. Colloids Surf. B Biointerfaces 2015 132 305 312 10.1016/j.colsurfb.2015.05.037
    [Google Scholar]
  111. Lee S.Y. Choi J.W. Lee J.Y. Kim D.D. Kim H.C. Cho H.J. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv. 2018 25 1 1472 1483 10.1080/10717544.2018.1480673
    [Google Scholar]
  112. Choi J.W. Park J.H. Cho H.R. Chung J.W. Kim D.D. Kim H.C. Cho H.J. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor. Sci. Rep. 2017 7 1 554 10.1038/s41598‑017‑00709‑4
    [Google Scholar]
  113. Chen J. White S.B. Harris K.R. Li W. Yap J.W.T. Kim D.H. Lewandowski R.J. Shea L.D. Larson A.C. Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials 2015 61 299 306 10.1016/j.biomaterials.2015.05.010
    [Google Scholar]
  114. Guan X. Gao M. Xu H. Zhang C. Liu H. Lv L. Deng S. Gao D. Tian Y. Quercetin-loaded poly (lactic- co -glycolic acid)- d -α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv. 2016 23 9 3307 3318 10.1080/10717544.2016.1176087
    [Google Scholar]
  115. Wahab R. Khan F. Kaushik N. Kaushik N.K. Nguyen L.N. Choi E.H. Siddiqui M.A. Farshori N.N. Saquib Q. Ahmad J. Al-Khedhairy A.A. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol. In Vitro 2022 85 105460 10.1016/j.tiv.2022.105460
    [Google Scholar]
  116. He T. Wang W. Chen B. Wang J. Liang Q. Chen B. 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr. Polym. 2020 236 116094 10.1016/j.carbpol.2020.116094
    [Google Scholar]
  117. Chen M. Li R. Lu X. Dai Y. Chen T. Xing Y. Xue L. Duan Z. Zhou W. Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem. 2023 398 133953 10.1016/j.foodchem.2022.133953
    [Google Scholar]
  118. Yue Y. Yang Y. Shi L. Wang Z. Basic research Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch. Med. Sci. 2015 4 856 862 10.5114/aoms.2015.53306
    [Google Scholar]
  119. Li Y. Wu J. Lu Q. Liu X. Wen J. Qi X. Liu J. Lian B. Zhang B. Sun H. Tian G. GA&HA-Modified Liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of Hepatocellular Carcinoma. Int. J. Nanomedicine 2022 17 2559 2575 10.2147/IJN.S366180
    [Google Scholar]
  120. Wang X. Deng L. Cai L. Zhang X. Zheng H. Deng C. Duan X. Zhao X. Wei Y. Chen L. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol‐in‐hydroxypropyl‐β‐cyclodextrin‐in‐liposome. J. Pharm. Sci. 2011 100 8 3357 3364 10.1002/jps.22534
    [Google Scholar]
  121. Elmowafy M. Viitala T. Ibrahim H.M. Abu-Elyazid S.K. Samy A. Kassem A. Yliperttula M. Silymarin loaded liposomes for hepatic targeting: In vitro evaluation and HepG2 drug uptake. Eur. J. Pharm. Sci. 2013 50 2 161 171 10.1016/j.ejps.2013.06.012
    [Google Scholar]
  122. Dinh C.T. Vu H.T. Phan Q.T.H. Nguyen L.P. Tran T.Q. Van Tran D. Quy N.N. Pham D.T.N. Nguyen D.T. Synthesis of glycyrrhetinic acid-modified liposomes to deliver Murrayafoline A for treatment of hepatocellular carcinoma. J. Mater. Sci. Mater. Med. 2022 33 10 72 10.1007/s10856‑022‑06692‑1
    [Google Scholar]
  123. Yin X. Xiao Y. Han L. Zhang B. Wang T. Su Z. Zhang N. Ceramide-Fabricated Co-loaded liposomes for the synergistic treatment of Hepatocellular Carcinoma. AAPS PharmSciTech 2018 19 5 2133 2143 10.1208/s12249‑018‑1005‑4
    [Google Scholar]
  124. Sriraman S.K. Pan J. Sarisozen C. Luther E. Torchilin V. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells. Mol. Pharm. 2016 13 2 428 437 10.1021/acs.molpharmaceut.5b00663
    [Google Scholar]
  125. Lee R.J. Lee R.J. Zhang Yung Li Zhou C. Lee L. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine 2012 7 5465 5474 10.2147/IJN.S33965
    [Google Scholar]
  126. Jiang J.W. Chen X.M. Chen X.H. Zheng S.S. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J. Gastroenterol. 2011 17 31 3605 3613 10.3748/wjg.v17.i31.3605
    [Google Scholar]
  127. Wang B Xu Q Zhou C Lin Y Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma Acta Biochim Pol 2021 68 4 711 715 10.18388/abp.2020_5608
    [Google Scholar]
  128. Quagliariello V. Masarone M. Armenia E. Giudice A. Barbarisi M. Caraglia M. Barbarisi A. Persico M. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncol. Rep. 2018 41 3 1476 1486 10.3892/or.2018.6932
    [Google Scholar]
  129. Camilleri J.P. Williams A.S. Amos N. Douglas-Jones A.G. Love W.G. Williams B.D. The effect of free and liposome-encapsulated clodronate on the hepatic mononuclear phagocyte system in the rat. Clin. Exp. Immunol. 2008 99 2 269 275 10.1111/j.1365‑2249.1995.tb05544.x
    [Google Scholar]
  130. Abdel-Megeed R.M. Abd El-Alim S.H. Arafa A.F. Matloub A.A. Farrag A.E.R.H. Darwish A.B. Abdel- Hamid A-H.Z. Kadry M.O. Crosslink among phosphatidylinositol-3 kinase/Akt, PTEN and STAT-5A signaling pathways post liposomal galactomannan hepatocellular carcinoma therapy. Toxicol. Rep. 2020 7 1531 1541 10.1016/j.toxrep.2020.10.018
    [Google Scholar]
  131. Zhang X. Lin C.C. Chan W.K.N. Liu K.L. Yang Z.J. Zhang H.Q. Augmented anticancer effects of cantharidin with liposomal encapsulation: In vitro and in vivo evaluation. Molecules 2017 22 7 1052 10.3390/molecules22071052
    [Google Scholar]
  132. Neamatallah T. Malebari A.M. Alamoudi A.J. Nazreen S. Alam M.M. Bin-Melaih H.H. Abuzinadah O.A. Badr-Eldin S.M. Alhassani G. Makki L. Nasrullah M.Z. Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells. Drug Deliv. 2023 30 1 2174209 10.1080/10717544.2023.2174209
    [Google Scholar]
  133. Komeil I.A. El-Refaie W.M. Gowayed M.A. El-Ganainy S.O. El Achy S.N. Huttunen K.M. Abdallah O.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int. J. Pharm. 2021 601 120564 10.1016/j.ijpharm.2021.120564
    [Google Scholar]
  134. Hou Z. Li Y. Huang Y. Zhou C. Lin J. Wang Y. Cui F. Zhou S. Jia M. Ye S. Zhang Q. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol. Pharm. 2013 10 1 90 101 10.1021/mp300489p
    [Google Scholar]
  135. Teng C.F. Yu C.H. Chang H.Y. Hsieh W.C. Wu T.H. Lin J.H. Wu H.C. Jeng L.B. Su I.J. Chemopreventive effect of Phytosomal Curcumin on hepatitis B virus-related Hepatocellular Carcinoma in a transgenic mouse model. Sci. Rep. 2019 9 1 10338 10.1038/s41598‑019‑46891‑5
    [Google Scholar]
  136. La Grange L. Wang M. Watkins R. Ortiz D. Sanchez M.E. Konst J. Lee C. Reyes E. Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J. Ethnopharmacol. 1999 65 1 53 61 10.1016/S0378‑8741(98)00144‑5
    [Google Scholar]
  137. Intra J. Salem A.K. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. J. Drug Target. 2011 19 6 393 408 10.3109/1061186X.2010.504263
    [Google Scholar]
  138. Zhang H. Zhang W. Jiang L. Chen Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark. Res. 2022 10 1 3 10.1186/s40364‑021‑00350‑4
    [Google Scholar]
  139. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614
    [Google Scholar]
  140. Wu H. Wang M.D. Liang L. Xing H. Zhang C.W. Shen F. Huang D.S. Yang T. Nanotechnology for hepatocellular carcinoma: From surveillance, diagnosis to management. Small 2021 17 6 2005236 10.1002/smll.202005236
    [Google Scholar]
  141. Farasati Far B. Isfahani A.A. Nasiriyan E. Pourmolaei A. Mahmoudvand G. Karimi Rouzbahani A. Namiq Amin M. Naimi-Jamal M.R. An updated review on advances in hydrogel-based nanoparticles for liver cancer treatment. Livers 2023 3 2 161 189 10.3390/livers3020012
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808334721241111073635
Loading
/content/journals/lddd/10.2174/0115701808334721241111073635
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test