Skip to content
2000
image of Enhancing Renal Autophagy via Yangshen Paidu Decoction: AMPK/mTOR Pathway Modulation in Chronic Renal Failure Management

Abstract

Objective

Chronic Renal Failure (CRF) refers to the gradual decline in renal function caused by various chronic kidney diseases, eventually leading to end-stage renal failure. Yangshen Paidu Decoction (YPD) is a Traditional Chinese medicine (TCM) formula utilized in CRF treatment. This work has analyzed the effects of YPD on CRF and the specific mechanism.

Methods

Network pharmacology was performed to screen effective components and targets of YPD, from which key targets and signaling pathways contributing the most to the treatment effects on CRF were determined. Subsequently, we validated the therapeutic role of YPD and the underlying pathological mechanisms using the 5/6-nephrectomy rat model.

Results

Network pharmacology analysis showed the mTOR pathway to be a pivotal mechanism underlying the effectiveness of YPD in CRF treatment. YPD significantly suppressed urine protein levels, blood urea nitrogen, and serum creatinine in 5/6 nephrectomized rats. Furthermore, YPD remarkably improved renal pathological injuries. Western blot analysis revealed that YPD enhanced autophagy and upregulated the expression of nephrin, podocin, beclin1, p-AMPK/AMPK, and p-ULK1/ULK1, and attenuated the ratios of p-mTOR/mTOR to its downstream protein phosphorylated eIF4E-binding protein (p-4EBP1). However, these effects were notably reversed by the AMPK inhibitor compound C.

Conclusion

Our findings have demonstrated YPD to suppress the mTOR pathway and stimulate autophagy by modulating AMPK pathways, thereby mitigating podocyte injury and enhancing renal function. Our study has confirmed autophagy and the AMPK/mTOR pathway as potential targets for YPD in CRF treatment.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808331134241128053200
2024-11-29
2025-01-06
Loading full text...

Full text loading...

References

  1. Chen I.R. Wang S.M. Liang C.C. Kuo H.L. Chang C.T. Liu J.H. Lin H.H. Wang I.K. Yang Y.F. Chou C.Y. Huang C.C. Association of walking with survival and RRT among patients with CKD stages 3-5. Clin. J. Am. Soc. Nephrol. 2014 9 7 1183 1189 10.2215/CJN.09810913 24832096
    [Google Scholar]
  2. Naber T. Purohit S. Chronic kidney disease: Role of diet for a reduction in the severity of the disease. Nutrients 2021 13 9 3277 10.3390/nu13093277 34579153
    [Google Scholar]
  3. Harada R. Hamasaki Y. Okuda Y. Hamada R. Ishikura K. Epidemiology of pediatric chronic kidney disease/kidney failure: Learning from registries and cohort studies. Pediatr. Nephrol. 2022 37 6 1215 1229 10.1007/s00467‑021‑05145‑1 34091754
    [Google Scholar]
  4. Huang J. Tang D. Zheng F. Xu H. Dai Y. Comprehensive analysis of lysine crotonylation modification in patients with chronic renal failure. BMC Nephrol. 2021 22 1 310 10.1186/s12882‑021‑02445‑4 34517817
    [Google Scholar]
  5. Fan X. Li J. Bi Z. Liang W. Wang F. Cause of death and influencing factors of chronic renal failure on maintenance hemodialysis. Pak. J. Med. Sci. 2023 39 5 1378 1382 10.12669/pjms.39.5.7037 37680805
    [Google Scholar]
  6. Lim M.A. Kohli J. Bloom R.D. Immunosuppression for kidney transplantation: Where are we now and where are we going? Transplant. Rev. (Orlando) 2017 31 1 10 17 10.1016/j.trre.2016.10.006 28340885
    [Google Scholar]
  7. Lu W. Ren C. Han X. Yang X. Cao Y. Huang B. The protective effect of different dialysis types on residual renal function in patients with maintenance hemodialysis. Medicine (Baltimore) 2018 97 37 e12325 10.1097/MD.0000000000012325 30212979
    [Google Scholar]
  8. Joseph M.S. Palardy M. Bhave N.M. Management of heart failure in patients with end-stage kidney disease on maintenance dialysis: A practical guide. Rev. Cardiovasc. Med. 2020 21 1 31 39 10.31083/j.rcm.2020.01.24 32259902
    [Google Scholar]
  9. Li S. Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 2013 11 2 110 120 10.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  10. Luo X. Xie H. Han L. Zhong Q. Xu M. Jin L. Integrated network pharmacology and molecular docking to reveal the mechanism of tetrandrine in tumor chemoresistance. Oncologie 2021 23 3 425 438 10.32604/Oncologie.2021.017267
    [Google Scholar]
  11. Chen Y. Ma K. Si H. Duan Y. Zhai H. Network pharmacology integrated molecular docking to reveal the autism and mechanism of Baohewan Heshiwei Wen Dan Tang. Curr. Pharm. Des. 2022 28 39 3231 3241 10.2174/1381612828666220926095922 36165527
    [Google Scholar]
  12. Mizushima N. Levine B. Autophagy in Human Diseases. N. Engl. J. Med. 2020 383 16 1564 1576 10.1056/NEJMra2022774 33053285
    [Google Scholar]
  13. Vallino L. Garavaglia B. Visciglia A. Amoruso A. Pane M. Ferraresi A. Isidoro C. Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy. J. Tradit. Complement. Med. 2023 13 2 193 206 10.1016/j.jtcme.2023.02.001 36970462
    [Google Scholar]
  14. Ruby M. Gifford C.C. Pandey R. Raj V.S. Sabbisetti V.S. Ajay A.K. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis. Cells 2023 12 3 412 10.3390/cells12030412 36766754
    [Google Scholar]
  15. Zhang Y. Yan M. Kuang S. Lou Y. Wu S. Li Y. Wang Z. Mao H. Bisphenol A induces apoptosis and autophagy in murine osteocytes MLO-Y4: Involvement of ROS-mediated mTOR/ULK1 pathway. Ecotoxicol. Environ. Saf. 2022 230 113119 10.1016/j.ecoenv.2021.113119 34954677
    [Google Scholar]
  16. Chen W.R. Yang J.Q. Liu F. Shen X.Q. Zhou Y.J. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp. Cell Res. 2020 389 1 111883 10.1016/j.yexcr.2020.111883 32014443
    [Google Scholar]
  17. Xue L. Pan Z. Yin Q. Zhang P. Zhang J. Qi W. Liraglutide promotes autophagy by regulating the AMPK/mTOR pathway in a rat remnant kidney model of chronic renal failure. Int. Urol. Nephrol. 2019 51 12 2305 2313 10.1007/s11255‑019‑02274‑3 31531806
    [Google Scholar]
  18. Jin Y. Liu S. Ma Q. Xiao D. Chen L. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur. J. Pharmacol. 2017 794 106 114 10.1016/j.ejphar.2016.11.037 27887947
    [Google Scholar]
  19. Wang Z. Zhang S. Zheng X. Zhang L. Efficacy and safety of colonic dialysis combined with traditional Chinese medicine retention enema in the treatment of chronic renal failure. Medicine (Baltimore) 2021 100 50 e28082 10.1097/MD.0000000000028082 34918661
    [Google Scholar]
  20. Wu L. Wang Y. Liu Y. Wu L. Cheng D. Jiang T. Qu B. Lu H. Yang J. Tang A. Li M. Efficacy and safety of traditional Chinese medicinal enemas for treatment of chronic renal failure. Medicine (Baltimore) 2020 99 44 e23002 10.1097/MD.0000000000023002 33126381
    [Google Scholar]
  21. Pan R. Rui G. Bai X. Teng Z. Chen G. Pang Z. Hu C. Cao P. Protective effects of Pai-Du-Yang-Shen formula on chronic renal failure in rats. Eur. J. Inflamm. 2019 17 2058739219871419 10.1177/2058739219871419
    [Google Scholar]
  22. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  23. Shan L. Hu H. Wu J. Guo B. Wang Y. iTRAQ-based proteomics analysis of ADTM for preventing the development of nitroglycerin-induced tolerance. Curr. Pharm. Anal. 2022 18 9 892 900 10.2174/1573412918666220831101931
    [Google Scholar]
  24. Tsuprykov O. Ando R. Reichetzeder C. von Websky K. Antonenko V. Sharkovska Y. Chaykovska L. Rahnenführer J. Hasan A.A. Tammen H. Alter M. Klein T. Ueda S. Yamagishi S. Okuda S. Hocher B. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. Kidney Int. 2016 89 5 1049 1061 10.1016/j.kint.2016.01.016 27083282
    [Google Scholar]
  25. Vucicevic L. Misirkic M. Kristina J. Vilimanovich U. Sudar E. Isenovic E. Prica M. Harhaji-Trajkovic L. Kravic-Stevovic T. Vladimir B. Trajkovic V. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 2011 7 1 40 50 10.4161/auto.7.1.13883 20980833
    [Google Scholar]
  26. Wu Y. Qi Y. Liu H. Wang X. Zhu H. Wang Z. AMPK activator AICAR promotes 5-FU-induced apoptosis in gastric cancer cells. Mol. Cell. Biochem. 2016 411 1-2 299 305 10.1007/s11010‑015‑2592‑y 26497305
    [Google Scholar]
  27. Liang R. Yan D. Zhang X. Chen X. Zhang W. Jia H. Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats. Tissue Cell 2023 80 101998 10.1016/j.tice.2022.101998 36529038
    [Google Scholar]
  28. Solanki A.K. Arif E. Srivastava P. Furcht C.M. Rahman B. Wen P. Singh A. Holzman L.B. Fitzgibbon W.R. Budisavljevic M.N. Lobo G.P. Kwon S.H. Han Z. Lazzara M.J. Lipschutz J.H. Nihalani D. Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. J. Biol. Chem. 2021 297 3 101079 10.1016/j.jbc.2021.101079 34391780
    [Google Scholar]
  29. Liu Y. Su H. Ma C. Ji D. Zheng X. Wang P. Zheng S. Wang L. Wang Z. Xu D. IQGAP1 mediates podocyte injury in diabetic kidney disease by regulating nephrin endocytosis. Cell. Signal. 2019 59 13 23 10.1016/j.cellsig.2019.03.009 30857827
    [Google Scholar]
  30. Sheng H. Zhang D. Zhang J. Zhang Y. Lu Z. Mao W. Liu X. Zhang L. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways. Front. Med. (Lausanne) 2022 9 986825 10.3389/fmed.2022.986825 36530875
    [Google Scholar]
  31. Zhang X. Zhang L. Chen Z. Li S. Che B. Wang N. Chen J. Xu C. Wei C. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway. Int. J. Mol. Med. 2021 47 3 27 10.3892/ijmm.2021.4860 33537831
    [Google Scholar]
  32. Dai P. Chang W. Xin Z. Cheng H. Ouyang W. Luo A. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in china based on random forest and LASSO regression. Front. Public Health 2021 9 678276 10.3389/fpubh.2021.678276 34211956
    [Google Scholar]
  33. Thurlow J.S. Joshi M. Yan G. Norris K.C. Agodoa L.Y. Yuan C.M. Nee R. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am. J. Nephrol. 2021 52 2 98 107 10.1159/000514550 33752206
    [Google Scholar]
  34. Wang J. Wong Y.K. Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev. Mol. Med. 2018 20 e4 10.1017/erm.2018.3 29747718
    [Google Scholar]
  35. He J. Zhang L. Guo D. Han X. Zhang H. Wang L. Zhang Y. Sinomenium inhibits the viability of hepatoma carcinoma cells through activating IFNA2. Oncologie 2020 22 1 1 12 10.32604/oncologie.2020.012436
    [Google Scholar]
  36. Chen Y. Wu H. Jiao A. Tong J. Zhu J. Zhang M. Li Z. Li P. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment. Oncologie 2022 24 2 295 307 10.32604/oncologie.2022.022116
    [Google Scholar]
  37. Li X. Qu L. Dong Y. Han L. Liu E. Fang S. Zhang Y. Wang T. A review of recent research progress on the astragalus genus. Molecules 2014 19 11 18850 18880 10.3390/molecules191118850 25407722
    [Google Scholar]
  38. Tang J.L. Xin M. Zhang L.C. Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging (Albany NY) 2022 14 14 5855 5877 10.18632/aging.204189 35859295
    [Google Scholar]
  39. Lee B.C. Choi J.B. Cho H.J. Kim Y.S. Rehmannia glutinosa ameliorates the progressive renal failure induced by 5/6 nephrectomy. J. Ethnopharmacol. 2009 122 1 131 135 10.1016/j.jep.2008.12.015 19146934
    [Google Scholar]
  40. Li Z. Zhu L. Zhang H. Yang J. Zhao J. Du D. Meng J. Yang F. Zhao Y. Sun J. Protective effect of a polysaccharide from stem of Codonopsis pilosula against renal ischemia/reperfusion injury in rats. Carbohydr. Polym. 2012 90 4 1739 1743 10.1016/j.carbpol.2012.07.062 22944441
    [Google Scholar]
  41. Zhou L. Chen X. Lu M. Wu Q. Yuan Q. Hu C. Miao J. Zhang Y. Li H. Hou F.F. Nie J. Liu Y. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 2019 95 4 830 845 10.1016/j.kint.2018.10.032 30770219
    [Google Scholar]
  42. Ozawa S. Matsubayashi M. Nanaura H. Yanagita M. Mori K. Asanuma K. Kajiwara N. Hayashi K. Ohashi H. Kasahara M. Yokoi H. Kataoka H. Mori E. Nakagawa T. Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury. J. Biol. Chem. 2020 295 47 16002 16012 10.1074/jbc.RA120.013721 32907879
    [Google Scholar]
  43. Choi M.E. Autophagy in Kidney Disease. Annu. Rev. Physiol. 2020 82 1 297 322 10.1146/annurev‑physiol‑021119‑034658 31640469
    [Google Scholar]
  44. Kaushal G.P. Chandrashekar K. Juncos L.A. Shah S.V. Autophagy function and regulation in kidney disease. Biomolecules 2020 10 1 100 10.3390/biom10010100 31936109
    [Google Scholar]
  45. Chen J. Yuan S. Zhou J. Huang X. Wu W. Cao Y. Liu H. Hu Q. Li X. Guan X. Yin S. Jiang J. Zhou Y. Zhou J. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. Phytomedicine 2022 107 154477 10.1016/j.phymed.2022.154477 36215790
    [Google Scholar]
  46. Ma R. He Y. Fang Q. Xie G. Qi M. Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in diabetic nephropathy mice. Biomed. Pharmacother. 2022 153 113424 10.1016/j.biopha.2022.113424 36076545
    [Google Scholar]
  47. Hu Y. Wang S.X. Wu F.Y. Wu K.J. Shi R.P. Qin L.H. Lu C.F. Wang S.Q. Wang F.F. Zhou S. Effects and mechanism of Ganoderma lucidum polysaccharides in the treatment of diabetic nephropathy in streptozotocin-induced diabetic rats. BioMed Res. Int. 2022 2022 1 13 10.1155/2022/4314415 35299891
    [Google Scholar]
  48. Yang F. Qu Q. Zhao C. Liu X. Yang P. Li Z. Han L. Shi X. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Biomed. Pharmacother. 2020 129 110479 10.1016/j.biopha.2020.110479 32768963
    [Google Scholar]
  49. Dusabimana T. Park E.J. Je J. Jeong K. Yun S.P. Kim H.J. Kim H. Park S.W. Geniposide improves diabetic nephropathy by enhancing ULK1-mediated autophagy and reducing oxidative stress through AMPK activation. Int. J. Mol. Sci. 2021 22 4 1651 10.3390/ijms22041651 33562139
    [Google Scholar]
  50. Tang C. Livingston M.J. Liu Z. Dong Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 2020 16 9 489 508 10.1038/s41581‑020‑0309‑2 32704047
    [Google Scholar]
  51. Alers S. Wesselborg S. Stork B. ATG13: just a companion, or an executor of the autophagic program? Autophagy 2014 10 6 944 956 10.4161/auto.28987 24879146
    [Google Scholar]
  52. Fang Y. Zou L. He W. miR‑30a‑5p mitigates autophagy by regulating the Beclin‑1/ATG16 pathway in renal ischemia/reperfusion injury. Int. J. Mol. Med. 2021 48 1 144 10.3892/ijmm.2021.4977 34080645
    [Google Scholar]
  53. Arab H.H. Ashour A.M. Eid A.H. Arafa E.S.A. Al Khabbaz H.J. Abd El-Aal S.A. Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: Role of SIRT1/Nrf2 and AMPK/mTOR pathways. Life Sci. 2022 291 120300 10.1016/j.lfs.2021.120300 34999115
    [Google Scholar]
  54. Liu X. Chen J. Sun N. Li N. Zhang Z. Zheng T. Li Z. Ginsenoside Rb1 ameliorates autophagy via the AMPK/mTOR pathway in renal tubular epithelial cells in vitro and in vivo. Int. J. Biol. Macromol. 2020 163 996 1009 10.1016/j.ijbiomac.2020.07.060 32659400
    [Google Scholar]
  55. Su S. Wang X. Xi X. Zhu L. Chen Q. Zhang H. Qin Y. Yang B. Che N. Cao H. Zhong W. Wang B. Phellodendrine promotes autophagy by regulating the AMPK/mTOR pathway and treats ulcerative colitis. J. Cell. Mol. Med. 2021 25 12 5707 5720 10.1111/jcmm.16587 34002930
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808331134241128053200
Loading
/content/journals/lddd/10.2174/0115701808331134241128053200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test