Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Neuraminidase enzyme plays a major role in the life cycle of influenza viruses. Targeting neuraminidases is a key strategy in preventing and treating influenza A and B spread by inhibiting the release of new viral particles from infected cells. Developing new neuraminidase inhibitors with enhanced efficacy and reduced risk of resistance is the ultimate of ongoing research.

Objective

In this study, we tried to shed light on molecules of natural origin that inhibit neuraminidase enzyme by utilizing different aspects of studies.

Methods

The work started by generating structure-based pharmacophore, later used for the virtual screening of electronic libraries constructed from chemical and natural compounds. Hits raised from virtual screening were subjected to molecular docking to assess and explain different modes of interactions with the neuraminidase enzyme. Drug likeness and ADME filters were applied to choose compounds that may be taken effectively by oral route with good gastrointestinal absorption and acceptable pharmacokinetics with respect to Lipinski and Ghose rules. The hits were also inspected for toxicity risks, including mutagenic, tumorigenic, irritant, and reproductive effects.

Results

7 features of the generated pharmacophore from the potent inhibitor Oselatamiver were the base for virtual screening. The results obtained by database screening highlighted 4 natural compounds listed in the COCONUT library (CNP 0125691 (Penicitrinol K), CNP0256196 (Frenolicin D), CNP 0138184, and CNP 0206296) as potential neuraminidase inhibitors. The compounds showed a similar interaction profile to Oseltamivir by molecular docking with high binding affinity. The key residue TYR 406 hydrogen bonded to Penicitrinol and Frenolicin D as well as to Oseltamevir. The 4 natural compounds exerted drug-like properties and promising pharmacokinetic characters. Toxicity risks estimations put Penicitrinol K and Frenolicin as devoted to mutagenic, tumorigenic, irritant and reproductive potentials. Penicitrinol K and Frenolicin are assigned for further and studies as promising neuraminidase inhibitors.

Conclusion

Penicitrinol K, and Frenolicin D are promising natural neuraminidase inhibitors, exhibiting favourable drug-like properties and low toxicity risks in addition to showing the pattern of interaction profiles with neuraminidase enzymes similar to the known drug Oseltamivir contributing to the development of effective antiviral therapies against influenza, suggesting further and evaluation.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808334140241107111104
2024-11-08
2025-06-28
Loading full text...

Full text loading...

References

  1. ShtyryaY.A. MochalovaL.V. BovinN.V. Influenza virus neuraminidase: Structure and function.Acta Nat. (Engl. Ed.)200912263210.32607/20758251‑2009‑1‑2‑26‑3222649600
    [Google Scholar]
  2. RussellR.J. HaireL.F. StevensD.J. CollinsP.J. LinY.P. BlackburnG.M. HayA.J. GamblinS.J. SkehelJ.J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design.Nature20064437107454910.1038/nature05114
    [Google Scholar]
  3. HouL. ZhangY. JuH. CherukupalliS. JiaR. ZhangJ. HuangB. LoregianA. LiuX. ZhanP. Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins.Acta Pharm. Sin. B20221241805182410.1016/j.apsb.2021.11.01835847499
    [Google Scholar]
  4. McAuley1 JL, Brad P. Gilbertson, Sanja Trifkovic LEB and, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions.Front. Microbiol.201910
    [Google Scholar]
  5. BeigelJ.H. HaydenF.G. Influenza therapeutics in clinical practice - Challenges and recent advances.Cold Spring Harb. Perspect. Med.2021114a03846310.1101/cshperspect.a03846332041763
    [Google Scholar]
  6. MahalA. DuanM. ZinadD.S. MohapatraR.K. ObaidullahA.J. WeiX. PradhanM.K. DasD. KandiV. ZinadH.S. ZhuQ. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors.RSC Advances20211131804184010.1039/D0RA07283D35424082
    [Google Scholar]
  7. SmykJ.M. SzydłowskaN. SzulcW. MajewskaA. Evolution of influenza viruses - Drug resistance, treatment options, and prospects.Int. J. Mol. Sci.202223201224410.3390/ijms23201224436293099
    [Google Scholar]
  8. MandoH. Flavonoids in benign prostate hypertrophy: Identification in herbal preparations and molecular docking approach.Biointerface Res. Appl. Chem.202212683078323
    [Google Scholar]
  9. YuD. WangL. WangY. Recent Advances in application of computer-aided drug design in anti-influenza A virus drug discovery.Int. J. Mol. Sci.2022239473810.3390/ijms2309473835563129
    [Google Scholar]
  10. McClellanK. PerryC.M. Oseltamivir: A review of its use in influenza.Drugs200161226328310.2165/00003495‑200161020‑0001111270942
    [Google Scholar]
  11. EilandL.S. EilandE.H. Zanamivir for the prevention of influenza in adults and children age 5 years and older.Ther. Clin. Risk Manag.20073346146518488077
    [Google Scholar]
  12. QinJ. LinJ. ZhangX. YuanS. ZhangC. YinY. Evaluation of the clinical effectiveness of oseltamivir for influenza treatment in children.Front. Pharmacol.20221384954510.3389/fphar.2022.84954535462914
    [Google Scholar]
  13. YuanJ. AnS. ZhangZ. Efficacy and safety of intravenous peramivir versus oral oseltamivir in the treatment of influenza in children: A meta-analysis.Journal of Clinical Virology Plus20244210017910.1016/j.jcvp.2024.100179
    [Google Scholar]
  14. CiancioB.C. MeerhoffT.J. KramarzP. BonmarinI. BorgenK. BoucherC.A. BuchholzU. BudaS. DijkstraF. DudmanS. DuweS. HaugeS.H. HungnesO. MeijerA. MossongJ. PagetW.J. PhinN. van der SandeM. SchweigerB. NicollA. Oseltamivir-resistant influenza A(H1N1) viruses detected in Europe during season 2007-8 had epidemiologic and clinical characteristics similar to co-circulating susceptible A(H1N1) viruses.Euro Surveill.200914461941210.2807/ese.14.46.19412‑en19941797
    [Google Scholar]
  15. MiaM.M. HasanM. MiahM.M. HossainM.A.S. IslamS.E.V.T.S.M.S. ShantaV.C.P.H.R.N. Inhibitory potentiality of secondary metabolites extracted from marine fungus target on avian influenza virus - A subtype H5N8 (Neuraminidase) and H5N1 (Nucleoprotein): A rational virtual screening.Vet. Anim. Sci.20221510023135059528
    [Google Scholar]
  16. ZhaoZ.X. ChengL.P. LiM. PangW. WuF.H. Discovery of novel acylhydrazone neuraminidase inhibitors.Eur. J. Med. Chem.201917330531310.1016/j.ejmech.2019.04.00631022584
    [Google Scholar]
  17. ZhongZ.J. HuX.T. ChengL.P. ZhangX.Y. ZhangQ. ZhangJ. Discovery of novel thiophene derivatives as potent neuraminidase inhibitors.Eur. J. Med. Chem.202122522511376210.1016/j.ejmech.2021.11376234411893
    [Google Scholar]
  18. YooG. ParkJ.H. KimS.H. Neuraminidase inhibitory diarylheptanoids from Alpinia officinarum: In vitro and molecular docking studies.Bioorg. Chem.202110710452610.1016/j.bioorg.2020.10452633309269
    [Google Scholar]
  19. MalbariK.D. ChintakrindiA.S. GanjiL.R. GohilD.J. KothariS.T. JoshiM.V. KanyalkarM.A. Structure-aided drug development of potential neuraminidase inhibitors against pandemic H1N1 exploring alternate binding mechanism.Mol. Divers.201923492795110.1007/s11030‑019‑09919‑630710224
    [Google Scholar]
  20. SahooM. JenaL. RathS.N. KumarS. Identification of suitable natural inhibitor against influenza A (H1N1) neuraminidase protein by molecular docking.Genomics Inform.20161439610310.5808/GI.2016.14.3.9627729839
    [Google Scholar]
  21. SadatiS.M. GheibiN. RanjbarS. HashemzadehM.S. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase.Biomed. Rep.2019101333830588301
    [Google Scholar]
  22. BatoolS. MushtaqG. KamalW. KamalM.A. Pharmacophore-based virtual screening for identification of novel neuraminidase inhibitors and verification of inhibitory activity by molecular docking.Med. Chem.2016121637310.2174/157340641166615070811185826152143
    [Google Scholar]
  23. K, R.; v, S. Discovery of potent neuraminidase inhibitors using a combination of pharmacophore-based virtual screening and molecular simulation approach.Appl. Biochem. Biotechnol.201818441421144010.1007/s12010‑017‑2625‑y29063410
    [Google Scholar]
  24. GongJ.Z. LiuY. XuW.F. Pharmacophore model of influenza neuraminidase inhibitors - A systematic review.Pharmazie2009641062763219947162
    [Google Scholar]
  25. MoussaN. MandoH. Novel and predictive QSAR model and molecular docking: New natural sulfonamides of potential concern against SARS-Cov-2.Antiinfect. Agents2023215e17072321878710.2174/2211352521666230717115823
    [Google Scholar]
  26. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  27. SunseriJ. KoesD.R. Pharmit: Interactive exploration of chemical space.Nucleic Acids Res.201644W1W442W44810.1093/nar/gkw28727095195
    [Google Scholar]
  28. CollinsP.J. HaireL.F. LinY.P. LiuJ. RussellR.J. WalkerP.A. SkehelJ.J. MartinS.R. HayA.J. GamblinS.J. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants.Nature200845371991258126110.1038/nature0695618480754
    [Google Scholar]
  29. KoesD.R. The Pharmit backend: A computer systems approach to enabling interactive online drug discovery.IBM J. Res. Develop.20186263:1-3:6.10.1147/JRD.2018.288397733871478
    [Google Scholar]
  30. SeeligerD. de GrootB.L. PymolV. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  31. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  32. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.193617934096457
    [Google Scholar]
  33. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  34. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.Biol. Direct20201511210.1186/s13062‑020‑00267‑232938494
    [Google Scholar]
  35. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab29433950214
    [Google Scholar]
  36. Durán-IturbideN.A. Díaz-EufracioB.I. Medina-FrancoJ.L. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM.ACS Omega2020526160761608410.1021/acsomega.0c0158132656429
    [Google Scholar]
  37. MandoH. AllousI. Hierarchical virtual screening of SARS-CoV-2 main protease potential inhibitors: Similarity search, pharmacophore modeling, and molecular docking study.Antiinfect. Agents2024224e31012422657710.2174/0122113525280410240106122715
    [Google Scholar]
  38. BabalolaS. IgieN. OdeyemiI. Molecular docking, drug-likeness analysis, in silico pharmacokinetics, and toxicity studies of p-nitrophenyl hydrazones as anti-inflammatory compounds against COX-2, 5-LOX, and H+/K+ ATPase.Pharmaceutical Fronts202244e250e26610.1055/s‑0042‑1759688
    [Google Scholar]
  39. Domínguez-VillaF.X. Durán-IturbideN.A. Ávila-ZárragaJ.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease.Bioorg. Chem.202110610449733261847
    [Google Scholar]
  40. RaiesA.B. BajicV.B. In silico toxicology: Computational methods for the prediction of chemical toxicity.Wiley Interdiscip. Rev. Comput. Mol. Sci.20166214717210.1002/wcms.124027066112
    [Google Scholar]
  41. AyatiA. FalahatiM. IrannejadH. EmamiS. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones.Daru20122014610.1186/2008‑2231‑20‑4623351328
    [Google Scholar]
  42. ShanthiV. RamanathanK. SethumadhavanR. Exploring the role of C-H....pi interactions on the structural stability of single chain “all-alpha” proteins.Appl. Biochem. Biotechnol.201016051473148310.1007/s12010‑009‑8584‑119266317
    [Google Scholar]
  43. Abu HammadA.M. TahaM.O. Pharmacophore modeling, quantitative structure-activity relationship analysis, and shape-complemented in silico screening allow access to novel influenza neuraminidase inhibitors.J. Chem. Inf. Model.200949497899610.1021/ci800368219341295
    [Google Scholar]
  44. GauravA. GautamV. Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies.J. Receptor Ligand Channel Res.20147273810.2147/JRLCR.S46845
    [Google Scholar]
  45. WangM.L. LuC.H. XuQ.Y. SongS.Y. HuZ.Y. ZhengZ.H. Four new citrinin derivatives from a marine-derived Penicillium sp. fungal strain.Molecules20131855723573510.3390/molecules18055723
    [Google Scholar]
  46. WangX. ShaabanK.A. ElshahawiS.I. PonomarevaL.V. SunkaraM. ZhangY. CopleyG.C. HowerJ.C. MorrisA.J. KharelM.K. ThorsonJ.S. Frenolicins C-G, pyranonaphthoquinones from Streptomyces sp. RM-4-15.J. Nat. Prod.20137681441144710.1021/np400231r23944931
    [Google Scholar]
  47. InamdarP. BhandariS. SonawaneB. HoleA. JadhavC. Structure optimization of neuraminidase inhibitors as potential anti-influenza (H1N1 inhibitors) agents using QSAR and molecular docking studies.Iran. J. Pharm. Res.2014131496524734056
    [Google Scholar]
  48. GubarevaL.V. RobinsonM.J. BethellR.C. WebsterR.G. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en.J. Virol.19977153385339010.1128/jvi.71.5.3385‑3390.19979094607
    [Google Scholar]
  49. SarukhanyanE. ShanmugamT.A. DandekarT. In silico studies reveal peramivir and zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance.Molecules20222718592010.3390/molecules2718592036144655
    [Google Scholar]
  50. HariyonoP. KottaJ.C. AdhipanditoC.F. ApriliantoE. CandayaE.J. WahabH.A. HarionoM. A study on catalytic and non-catalytic sites of H5N1 and H1N1 neuraminidase as the target for chalcone inhibitors.Appl. Biol. Chem.20216416910.1186/s13765‑021‑00639‑w34549099
    [Google Scholar]
  51. AminS. AdhikariN. AgrawalR. JhaT. GayenS. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches.Lett. Drug Des. Discov.201714551552710.2174/1570180813666160916153017
    [Google Scholar]
  52. LeeK. JangJ. SeoS. LimJ. KimW.Y. Drug-likeness scoring based on unsupervised learning.Chem. Sci. (Camb.)202213255456510.1039/D1SC05248A
    [Google Scholar]
  53. DahlgrenD. LennernäsH. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches.Pharmaceutics201911841110.3390/pharmaceutics1108041131412551
    [Google Scholar]
  54. StéenE.J.L. VugtsD.J. WindhorstA.D. The application of in silico methods for prediction of blood-brain barrier permeability of small molecule PET tracers.Front. Nucl. Med.202285347510.3389/fnume.2022.85347539354992
    [Google Scholar]
  55. SchäferJ. KlösgenV.J. OmerE.A. KadiogluO. MbavengA.T. KueteV. HildebrandtA. EfferthT. In silico and in vitro identification of P-glycoprotein inhibitors from a library of 375 phytochemicals.Int. J. Mol. Sci.202324121024010.3390/ijms24121024037373385
    [Google Scholar]
  56. FranciscoE. JoséR. KranendonkM. The central role of cyto-chrome P450 in xenobiotic metabolism - A brief review on a fascinating enzyme family.J. Xenobiot.20211139411410.3390/jox11030007
    [Google Scholar]
  57. WuY.W. TaG.H. LungY.C. WengC.F. LeongM.K. In silico prediction of skin permeability using a Two-QSAR approach.Pharmaceutics202214596110.3390/pharmaceutics1405096135631545
    [Google Scholar]
  58. KwonY.J. ShinS. ChunY.J. ChunJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes.Arch. Pharm. Res.2021441638310.1007/s12272‑021‑01306‑w33484438
    [Google Scholar]
  59. Van BoovenD. MarshS. McLeodH. CarrilloM.W. SangkuhlK. TeriE. AltmanR.B.D. Cytochrome P450 2C9-CYP2C9.Pharmacogenet. Genomics2011204277281
    [Google Scholar]
  60. JustK.S. DormannH. FreitagM. SchurigM. BöhmeM. SteffensM. SchollC. SeufferleinT. GraeffI. SchwabM. StinglJ.C. CYP2D6 in the Brain: Potential impact on adverse drug reactions in the central nervous system - Results from the ADRED study.Front. Pharmacol.20211262410410.3389/fphar.2021.62410434025403
    [Google Scholar]
  61. McgillM.R. KaufmannY. LobiancoF.V. SchleiffM.A. Aykin-burnsN. MillerG.P. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity.Livers20233231032110.3390/livers3020022
    [Google Scholar]
  62. KobayashiK. MimuraN. FujiiH. MinamiH. SasakiY. ShimadaN. ChibaK. Role of human cytochrome P450 3A4 in metabolism of medroxyprogesterone acetate.Clin. Cancer Res.2000683297330310955816
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808334140241107111104
Loading
/content/journals/lddd/10.2174/0115701808334140241107111104
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): docking; drug likeness; enzymes; Neuraminidase; pharmacophore; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test