Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro) has been shown to be an effective target for inhibiting novel coronaviruses, which can be used as a crucial breakthrough for developing drugs to treat the coronavirus disease 2019 (COVID-19).

Methods

To design novel SARS-CoV-2 Mpro inhibitors, we conducted 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation on 64 quinazolin-4-one derivatives.

Results

Comparative molecular field analysis (CoMFA) model ( = 0.590, = 0.962), comparative molecular similarity index analysis (CoMSIA) model ( = 0.628, = 0.923), and external validation indicated that the stability, reliability, and prediction performance of our constructed model were excellent. We designed 8 inhibitors with stronger antiviral activities through the three-dimensional equipotential field. Molecular docking and MD simulation probed the interactions of compounds and SARS-CoV-2 Mpro. This indicated that amino acid residues, including Met165, Met49, and Cys145, were very important in combination with the compounds. The prediction results of ADME/T and Lipinski’s rule of five indicated that the new compounds had favorable drug-like and pharmacokinetic properties.

Conclusion

This study provided new ideas for exploring novel SARS-CoV-2 Mpro inhibitors against COVID-19 in the future.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808330125240812104856
2024-08-30
2025-06-26
Loading full text...

Full text loading...

References

  1. YoshimiR. NakajimaH. COVID-19 vaccination and the development of autoimmune diseases.Intern. Med.202362101387138810.2169/internalmedicine.1490‑22 36889704
    [Google Scholar]
  2. LengT. GuoZ. SangZ. XinQ. ChenF. Effect of COVID-19 on sperm parameters: Pathologic alterations and underlying mechanisms.J. Assist. Reprod. Genet.20234071623162910.1007/s10815‑023‑02795‑y 37115332
    [Google Scholar]
  3. ZhangK. WangT. LiM. LiuM. TangH. WangL. YeK. YangJ. JiangS. XiaoY. XieY. LuM. ZhangX. Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro).Eur. J. Med. Chem.202325711548710.1016/j.ejmech.2023.115487 37257212
    [Google Scholar]
  4. DoanL.H. ChuL.W. HuangZ.Y. NguyenA.T. LeeC.Y. HuangC.L. ChangY.F. HsiehW.Y. NguyenT.T.H. LinC.H. SuC.L. ChuangT.H. LaiJ.M. WangF.S. YangC.J. LiuH.K. PingY.H. HuangC.Y.F. Virofree, an herbal medicine-based formula, interrupts the viral infection of delta and omicron variants of SARS-CoV-2.Front. Pharmacol.20221390519710.3389/fphar.2022.905197 35860023
    [Google Scholar]
  5. RakibA. NainZ. SamiS.A. MahmudS. IslamA. AhmedS. SiddiquiA.B.F. BabuS.M.O.F. HossainP. ShahriarA. NainuF. EmranT.B. Simal-GandaraJ. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: An in silico investigation.Brief. Bioinform.20212221476149810.1093/bib/bbab045 33623995
    [Google Scholar]
  6. NguyenT.H. TamN.M. TuanM.V. ZhanP. VuV.V. QuangD.T. NgoS.T. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations.Chem. Phys.202356411170910.1016/j.chemphys.2022.111709 36188488
    [Google Scholar]
  7. PangX. XuW. LiuY. LiH. ChenL. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022.Eur. J. Med. Chem.202325711549110.1016/j.ejmech.2023.115491 37244162
    [Google Scholar]
  8. LiJ. WangY. SolankiK. AtreR. LavrijsenM. PanQ. BaigM.S. LiP. Nirmatrelvir exerts distinct antiviral potency against different human coronaviruses.Antiviral Res.202321110555510.1016/j.antiviral.2023.105555 36791846
    [Google Scholar]
  9. LinC. JiangH. LiW. ZengP. ZhouX. ZhangJ. LiJ. Structural basis for the inhibition of coronaviral main proteases by ensitrelvir.Structure202331910161024.e310.1016/j.str.2023.06.010 37421945
    [Google Scholar]
  10. NoskeG.D. de Souza SilvaE. de GodoyM.O. DolciI. FernandesR.S. GuidoR.V.C. SjöP. OlivaG. GodoyA.S. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease.J. Biol. Chem.2023299310300410.1016/j.jbc.2023.103004 36775130
    [Google Scholar]
  11. ZhangY. LuoM. WuP. WuS. LeeT.Y. BaiC. Application of computational biology and artificial intelligence in drug design.Int. J. Mol. Sci.202223211356810.3390/ijms232113568 36362355
    [Google Scholar]
  12. MohamedE.A.R. AbdelwahabS.F. AlqaisiA.M. NasrA.M.S. HassanH.A. Identification of promising anti-EBOV inhibitors: De novo drug design, molecular docking and molecular dynamics studies.R. Soc. Open Sci.20229922036910.1098/rsos.220369 36177201
    [Google Scholar]
  13. DhankharP. DalalV. SinghV. TomarS. KumarP. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2.J. Biomol. Struct. Dyn.20224094084409910.1080/07391102.2020.1852968 33251943
    [Google Scholar]
  14. KumarK.A. SharmaM. DalalV. SinghV. TomarS. KumarP. Multifunctional inhibitors of SARS-CoV-2 by MM/PBSA, essential dynamics, and molecular dynamic investigations.J. Mol. Graph. Model.202110710796910.1016/j.jmgm.2021.107969 34237666
    [Google Scholar]
  15. VishwakarmaK. BhattH. Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques.J. Mol. Model.20212723010.1007/s00894‑020‑04648‑2 33415518
    [Google Scholar]
  16. MortensenM. XuY. ShehataM.A. KrallJ. ErnstM. FrølundB. SmartT.G. Pregnenolone sulfate analogues differentially modulate GABAA receptor closed/desensitised states.Br. J. Pharmacol.2023180192482249910.1111/bph.16143 37194503
    [Google Scholar]
  17. FanL. LuoZ. YangC. GuoB. MiaoJ. ChenY. TangL. LiY. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi.Mol. Divers.202226298199210.1007/s11030‑021‑10213‑7 33811571
    [Google Scholar]
  18. SunP. ZhaoW. Strategies to control human health risks arising from antibiotics in the environment: Molecular modification of QNs for enhanced plant-microbial synergistic degradation.Int. J. Environ. Res. Public Health202118201061010.3390/ijerph182010610 34682354
    [Google Scholar]
  19. ZhaoJ. YuN. ZhaoX. QuanW. ShuM. 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors.J. Mol. Model.202329513110.1007/s00894‑023‑05525‑4 37020092
    [Google Scholar]
  20. WuJ. LiP. ChenX. LiuR. MuY. ShenY. ChengX. ShuM. BaiY. Structural optimization of pyrrolopyrimidine BTK inhibitors based on molecular simulation.J. Mol. Model.2023291236710.1007/s00894‑023‑05744‑9 37950076
    [Google Scholar]
  21. StitouM. ToufikH. AkabliT. LamchouriF. Virtual screening of PEBP1 inhibitors by combining 2D/3D-QSAR analysis, hologram QSAR, homology modeling, molecular docking analysis, and molecular dynamic simulations.J. Mol. Model.202228614510.1007/s00894‑022‑05143‑6 35545728
    [Google Scholar]
  22. JiangY. YangW. WangF. ZhouB. In silico studies of a novel scaffold of benzoxazole derivatives as anticancer agents by 3D-QSAR, molecular docking and molecular dynamics simulations.RSC Advances20231322148081482410.1039/D3RA01316B 37197188
    [Google Scholar]
  23. MkhayarK. DaouiO. HalouiR. ElkhattabiK. ElabbouchiA. ChtitaS. SamadiA. ElkhattabiS. Ligand-based design of novel quinoline derivatives as potential anticancer agents: An in-silico virtual screening approach.Molecules202429242610.3390/molecules29020426 38257339
    [Google Scholar]
  24. RenR. GaoL. LiG. WangS. ZhaoY. WangH. LiuJ.2D, 3D-QSAR study and docking of vascular endothelial growth factor receptor 3 (VEGFR3) inhibitors for potential treatment of retinoblastoma.Front. Pharmacol.202314117728210.3389/fphar.2023.1177282 37089961
    [Google Scholar]
  25. XuJ. HuangS. LuoH. LiG. BaoJ. CaiS. WangY. QSAR Studies on andrographolide derivatives as α-glucosidase inhibitors.Int. J. Mol. Sci.201011388089510.3390/ijms11030880 20479989
    [Google Scholar]
  26. ChayrovR. VolkovaT. PerlovichG. ZengL. LiZ. ŠtíchaM. LiuR. StankovaI. Synthesis, neuroprotective effect and physicochemical studies of novel peptide and nootropic analogues of alzheimer disease drug.Pharmaceuticals (Basel)2022159110810.3390/ph15091108 36145329
    [Google Scholar]
  27. FuL. ChenY. GuoH. XuL. TanM. DongY. ShuM. WangR. LinZ. A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation.Struct. Chem.202132281983410.1007/s11224‑020‑01668‑9
    [Google Scholar]
  28. ZhuJ. WuY. XuL. JinJ. Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3β (GSK3β) with pyrazine ATP-competitive inhibitors by 3D-QSAR, molecular docking, molecular dynamics simulation and free energy calculations.Curr. Computer-Aided Drug Des.2020161173010.2174/1573409915666190708102459 31284868
    [Google Scholar]
  29. ChenX.D. LiJ.L. WangX.M. LiuR. LiuX.Y. ShuM. 3D-QSAR, molecular docking and molecular dynamics analysis of pyrazole derivatives as MALT1 inhibitors.New J. Chem.20234742195961960710.1039/D3NJ03490A
    [Google Scholar]
  30. WangY. GuoY. QiangS. JinR. LiZ. TangY. LeungE.L.H. GuoH. YaoX. 3D-QSAR, molecular docking, and md simulations of anthraquinone derivatives as PGAM1 inhibitors.Front. Pharmacol.20211276435110.3389/fphar.2021.764351 34899321
    [Google Scholar]
  31. KumariS. ShivakrishnaP. SreenivasuluK. Molecular docking analysis of two bioactive molecules KLUF10 and KLUF13 isolated from the marine bacteria Micrococcus sp. OUS9 with TNF alpha.Bioinformation202117553053510.6026/97320630017530 35095226
    [Google Scholar]
  32. NanB. ZhaoZ. JiangK. GuX. LiH. HuangX. Astaxanthine attenuates cisplatin ototoxicity in vitro and protects against cisplatin-induced hearing loss in vivo.Acta Pharm. Sin. B202212116718110.1016/j.apsb.2021.07.002 35127378
    [Google Scholar]
  33. MaC. TanH. ChozaJ. WangY. WangJ. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays.Acta Pharm. Sin. B20221241636165110.1016/j.apsb.2021.10.026 34745850
    [Google Scholar]
  34. WuY. ChenX. BaoW. HongX. LiC. LuJ. ZhangD. ZhuA. Effect of humantenine on mRNA m6A modification and expression in human colon cancer cell line HCT116.Genes (Basel)202213578110.3390/genes13050781 35627166
    [Google Scholar]
  35. Mfotie NjoyaE. NdemangouB. AkinyeluJ. MunveraA.M. ChukwumaC.I. MkoungaP. MasheleS.S. MakhafolaT.J. McGawL.J. In vitro antiproliferative, anti-inflammatory effects and molecular docking studies of natural compounds isolated from Sarcocephalus pobeguinii (Hua ex Pobég).Front. Pharmacol.202314120541410.3389/fphar.2023.1205414 37416061
    [Google Scholar]
  36. AmejiP.J. UzairuA. ShallangwaG.A. UbaS. Molecular docking-based virtual screening, drug-likeness, and pharmacokinetic profiling of some anti-Salmonella typhimurium cephalosporin derivatives.J. Taibah Univ. Med. Sci.20231861417143110.1016/j.jtumed.2023.05.021 38162870
    [Google Scholar]
  37. LeeD. JungH.G. ParkD. BangJ. CheongD.Y. JangJ.W. KimY. LeeS. LeeS.W. LeeG. KimY.H. HongJ.H. HwangK.S. LeeJ.H. YoonD.S. Bioengineered amyloid peptide for rapid screening of inhibitors against main protease of SARS-CoV-2.Nat. Commun.2024151210810.1038/s41467‑024‑46296‑7 38453923
    [Google Scholar]
  38. ZhouZ. YangY. HeL. WangJ. XiongJ. Molecular docking reveals Chitosan nanoparticle protection mechanism for dentin against Collagen-binding bacteria.J. Mater. Sci. Mater. Med.20223354310.1007/s10856‑022‑06665‑4 35551510
    [Google Scholar]
  39. NuthoB. TungmunnithumD. Anti-aging potential of the two major flavonoids occurring in Asian water lily using in vitro and in silico molecular modeling assessments.Antioxidants202413560110.3390/antiox13050601 38790706
    [Google Scholar]
  40. HuangJ. LiM. ChenJ. ChengY. LaiZ. HuJ. ZhouF. QuN. LiuY. ZhuJ. Effect of temperatures and graphene on the mechanical properties of the aluminum matrix: A molecular dynamics study.Materials (Basel)2023167272210.3390/ma16072722 37049015
    [Google Scholar]
  41. XiongL. CaoJ. YangX. ChenS. WuM. WangC. XuH. ChenY. ZhangR. HuX. ChenT. TangJ. DengQ. LiD. YangZ. XiaoG. ZhangX. Exploring the mechanism of action of Xuanfei Baidu granule (XFBD) in the treatment of COVID-19 based on molecular docking and molecular dynamics.Front. Cell. Infect. Microbiol.20221296527310.3389/fcimb.2022.965273 36034710
    [Google Scholar]
  42. LiZ. PengM. ChenP. LiuC. HuA. ZhangY. PengJ. LiuJ. LiY. LiW. ZhuW. GuanD. ZhangY. ChenH. LiJ. FanD. HuangK. LinF. ZhangZ. GuoZ. LuoH. HeX. ZhuY. LiL. HuangB. CaiW. GuL. LuY. DengK. YanL. ChenS. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry.Cell Metab.2022343424440.e710.1016/j.cmet.2022.01.008 35150639
    [Google Scholar]
  43. RizzutiB. GrandeF. ConfortiF. Jimenez-AlesancoA. Ceballos-LaitaL. Ortega-AlarconD. VegaS. ReyburnH.T. AbianO. Velazquez-CampoyA. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs.Biomedicines20219437510.3390/biomedicines9040375 33918402
    [Google Scholar]
  44. YesudhasD. SrivastavaA. SekijimaM. GromihaM.M. Tackling Covid‐19 using disordered‐to‐order transition of residues in the spike protein upon angiotensin‐converting enzyme 2 binding.Proteins20218991158116610.1002/prot.26088 33893649
    [Google Scholar]
  45. GeH. PengL. SunZ. LiuH. ShenY. YaoX. Discovery of novel HPK1 inhibitors through structure-based virtual screening.Front. Pharmacol.20221385085510.3389/fphar.2022.850855 35370676
    [Google Scholar]
  46. YuN. QuanW.X. LiJ.L. ShuM. WangR. ShenY. LinZ.H. SunJ.Y. 3D‐QSAR, molecular docking and molecular dynamics analysis of 1, 2, 3, 4‐tetrahydroquinoxalines as BRD4/BD2 inhibitors.ChemistrySelect2022718e20220044210.1002/slct.202200442
    [Google Scholar]
  47. LiuL. ZhaoX. HuangX. Generating potential RET-Specific inhibitors using a novel LSTM encoder-decoder model.Int. J. Mol. Sci.2024254235710.3390/ijms25042357 38397034
    [Google Scholar]
  48. ZhaoX. ZhangR. YuX. YuN. ShiY. ShuM. ShenY. Discovery of novel tubulin polymerization inhibitors by utilizing 3D-QSAR, molecular docking and molecular dynamics simulation.New J. Chem.20224634164261643510.1039/D2NJ02773A
    [Google Scholar]
  49. ChuH. HeQ. WangJ. HuY. WangY. LinZ. In silico design novel dihydropyrimio[4, 5-d]pyrimidine derivatives as inhibitors for colony-stimulating factor-1 receptor based on 3D-QSAR, molecular docking and molecular dynamics simulation.J. Mol. Struct.2020122012861710.1016/j.molstruc.2020.128617
    [Google Scholar]
  50. Al-MasriC. TrozziF. LinS.H. TranO. SahniN. PatekM. CichonskaA. RavikumarB. RahmanR. Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures.Bioinformatics Advances202331vbad129
    [Google Scholar]
  51. ShanH. LinY. YinF. PanC. HouJ. WuT. XiaW. ZuoR. CaoB. JiangC. ZhouZ. YuX. Effects of astragaloside IV on glucocorticoid‐induced avascular necrosis of the femoral head via regulating Akt‐related pathways.Cell Prolif.20235611e1348510.1111/cpr.13485 37186483
    [Google Scholar]
  52. OduseluG.O. AderohunmuD.V. AjaniO.O. ElebijuO.F. OgunnupebiT.A. AdebiyiE. Synthesis, in silico and in vitro antimicrobial efficacy of substituted arylidene-based quinazolin-4(3H)-one motifs.Front Chem.202311126482410.3389/fchem.2023.1264824 37818483
    [Google Scholar]
  53. KrylovV.B. Gómez-RedondoM. SolovevA.S. YashunskyD.V. BrownA.J.P. StappersM.H.T. GowN.A.R. ArdáA. Jiménez-BarberoJ. NifantievN.E. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan.Cell Surf.20231010010910.1016/j.tcsw.2023.100109 37520856
    [Google Scholar]
  54. ZhaoL. FuL. LiG. YuY. WangJ. LiangH. ShuM. LinZ. WangY. Three-dimensional quantitative structural-activity relationship and molecular dynamics study of multivariate substituted 4-oxyquinazoline HDAC6 inhibitors.Mol. Divers.20232731123114010.1007/s11030‑022‑10474‑w 35767128
    [Google Scholar]
  55. YeQ. XuW. HeY. LiH. ZhaoF. ZhangJ. SongY. Biosynthesis of vanillin by rational design of enoyl-CoA hydratase/lyase.Int. J. Mol. Sci.202324171363110.3390/ijms241713631 37686435
    [Google Scholar]
  56. BilginN. MoesgaardL. RahmanM.M. TürkmenV.A. KongstedJ. MecinovićJ. Molecular recognition of methacryllysine and crotonyllysine by the AF9 YEATS domain.Int. J. Mol. Sci.2023248700210.3390/ijms24087002 37108167
    [Google Scholar]
  57. RizzoS. SikorskiE. ParkS. ImW. Vasquez-MontesV. LadokhinA.S. ThéveninD. Promoting the activity of a receptor tyrosine phosphatase with a novel PH ‐responsive transmembrane agonist inhibits cancer‐associated phenotypes.Protein Sci.2023329e474210.1002/pro.4742 37515426
    [Google Scholar]
  58. FelipeA. LovenduskiC.A. BakerJ.L. LindbergG.E. Long-ranged heterogeneous structure in aqueous solutions of the deep eutectic solvent choline and geranate at the liquid–vapor interface.Phys. Chem. Chem. Phys.20222422137201372910.1039/D2CP01530G 35612263
    [Google Scholar]
  59. MadushankaA. VermaN. FreindorfM. KrakaE. Papaya leaf extracts as potential dengue treatment: An in-silico study.Int. J. Mol. Sci.202223201231010.3390/ijms232012310 36293162
    [Google Scholar]
  60. GallardoA. DutagaciB. Binding of small molecule inhibitors to RNA polymerase-Spt5 complex impacts RNA and DNA stability.J. Comput. Aided Mol. Des.2024381110.1007/s10822‑023‑00543‑z 37987925
    [Google Scholar]
  61. YuX. ZhaoX. ZhangQ. DaiC. HuangQ. ZhangL. LiuY. ShenY. LinZ. Discovery of neuraminidase inhibitors based on 3D‐QSAR, molecular docking and MD simulations.ChemistrySelect2023812e20220397810.1002/slct.202203978
    [Google Scholar]
  62. DuanH. ZhangR. YuanL. LiuY. AsikaerA. LiuY. ShenY. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation.RSC Advances20231320139711398410.1039/D3RA01761C 37181515
    [Google Scholar]
  63. ShadrackD.M. VuaiS.A.H. SahiniM.G. OnokaI. In silico study of the inhibition of SARS-COV-2 viral cell entry by neem tree extracts.RSC Advances20211143265242653310.1039/D1RA04197E 35480004
    [Google Scholar]
  64. NateshJ. MondalP. KaurB. Abdul SalamA.A. KasilingamS. MeeranS.M. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation.Comput. Biol. Med.202113310438310.1016/j.compbiomed.2021.104383 33915361
    [Google Scholar]
  65. RashidP.T. HossainM.J. ZahanM.S. HasanC.M. RashidM.A. Al-MansurM.A. HaqueM.R. Chemico-pharmacological and computational studies of Ophiorrhiza fasciculata D. Don and Psychotria silhetensis Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties.Heliyon202399e2010010.1016/j.heliyon.2023.e20100 37809757
    [Google Scholar]
  66. AkashS. AbdelkrimG. BayilI. HosenM.E. MukerjeeN. ShaterA.F. SalehF.M. AlbadraniG.M. Al-GhadiM.Q. Abdel-DaimM.M. TokT.T. Antimalarial drug discovery against malaria parasites through haplopine modification: An advanced computational approach.J. Cell. Mol. Med.202327203168318810.1111/jcmm.17940 37724615
    [Google Scholar]
  67. ZakiM.E.A. Al-HussainS.A. Al-MutairiA.A. SamadA. GhoshA. ChaudhariS. KhataleP.N. AjmireP. JawarkarR.D. In-silico studies to recognize repurposing therapeutics toward arginase-I inhibitors as a potential onco-immunomodulators.Front. Pharmacol.202314112999710.3389/fphar.2023.1129997 37144217
    [Google Scholar]
  68. AvramS. UdreaA.M. NutaD.C. LimbanC. BaleaA.C. CaproiuM.T. DumitrascuF. BuiuC. BordeiA.T. Synthesis and bioinformatic characterization of new Schiff bases with possible applicability in brain disorders.Molecules20212614416010.3390/molecules26144160 34299440
    [Google Scholar]
  69. ArefinA. Ismail EmaT. IslamT. HossenS. IslamT. Al AzadS. Uddin BadalN. IslamA. BiswasP. AlamN.U. IslamE. AnjumM. MasudA. KamranS. RahmanA. Kumar PaulP. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: An in silico approach.J. Biomed. Res.202135645947310.7555/JBR.35.20210111 34857680
    [Google Scholar]
  70. AkashS. HossainA. HossainM.S. RahmanM.M. AhmedM.Z. AliN. ValisM. KucaK. SharmaR. Anti-viral drug discovery against monkeypox and smallpox infection by natural curcumin derivatives: A Computational drug design approach.Front. Cell. Infect. Microbiol.202313115762710.3389/fcimb.2023.1157627 37033493
    [Google Scholar]
  71. WangH.P. FanC.L. LinZ.Z. YinQ. ZhaoC. PengP. ZhangR. WangZ.J. DuJ. WangZ.B. Screening of potential α-glucosidase inhibitors from the roots and rhizomes of panax ginseng by affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS method.Molecules2023285206910.3390/molecules28052069 36903317
    [Google Scholar]
  72. WangH. LiuJ. HeJ. HuangD. XiY. XiaoT. OuyangQ. ZhangS. WanS. ChenX. Potential mechanisms underlying the therapeutic roles of sinisan formula in depression: Based on network pharmacology and molecular docking study.Front. Psychiatry202213106348910.3389/fpsyt.2022.1063489 36440424
    [Google Scholar]
  73. MatadaG.S.P. DhiwarP.S. AbbasN. SinghE. GharaA. PatilR. RaghavendraN.M. Pharmacophore modeling, virtual screening, molecular docking and dynamics studies for the discovery of HER2-tyrosine kinase inhibitors: An in-silico approach.J. Mol. Struct.2022125713253110.1016/j.molstruc.2022.132531
    [Google Scholar]
  74. SathoriaP. ChuphalB. RaiU. RoyB. Molecular cloning, characterization and 3D modelling of spotted snakehead fbn1 C-terminal region encoding asprosin and expression analysis of fbn1.Sci. Rep.2023131447010.1038/s41598‑023‑31271‑x 36934166
    [Google Scholar]
  75. ZarezadeV. AbolghasemiM. RahimF. VeisiA. BehbahaniM. In silico assessment of new progesterone receptor inhibitors using molecular dynamics: A new insight into breast cancer treatment.J. Mol. Model.2018241233710.1007/s00894‑018‑3858‑6 30415281
    [Google Scholar]
  76. MajumderR. MandalM. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: An in silico docking and molecular dynamics simulation approach.J. Biomol. Struct. Dyn.202240269671110.1080/07391102.2020.1817787 32897138
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808330125240812104856
Loading
/content/journals/lddd/10.2174/0115701808330125240812104856
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test