Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Imatinib, a frontline targeted-therapeutic agent for patients with chronic myelogenous leukemia (CML), was a synthetic tyrosine kinase inhibitor approved by the US Food and Drug Administration.

Objective

To expand the structural diversity of Bcr-Abl inhibitors, we synthesized nine novel imatinib analogues (-) and evaluated their cytostatic effects against human cancer cell lines .

Methods

Imatinib and its analogues were successfully synthesized by an improved method in six main steps. Inhibitory activities of all compounds were evaluated on K562, HL-60, MCF-7, A549 and PBMC . Then, the effect of the most active compound was studied using flow cytometer, real-time qPCR and western blot experiments to determine its mechanism action. Finally, the molecular docking of the most active compound were determined.

Results

The IC of one imatinib analogue (compound ) for K562 and HL-60 was lower than imatinib itself. Further studies indicate that the pro-apoptotic effect of compound on K562 cells was stronger than imatinib over a range of concentrations. Importantly, the real-time qPCR and western blot experiments showed that compound was superior to imatinib in inhibiting Bcr-Abl expression. The structure-activity relationship was analyzed by determining the inhibitory rate of each imatinib analogue. Introducing benzene (A ring) and piperidine (E ring) rings instead of pyridine (A ring) and piperazine (E ring) in imatinib significantly enhanced the potency of imatinib against K562 and HL-60 cell lines, which is consistent with the docking results.

Conclusion

Imatinib analogue showed a better inhibitory effect on leukemia cell lines than other cell lines, which was consistent with the imatinib-like structure, moreover, had little effect on PBMC. Overall, we conclude that compound has the potential to treat chronic myeloid leukemia.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808308483240918115915
2024-10-01
2025-06-18
Loading full text...

Full text loading...

References

  1. SzebeniG. BalogJ. DemjénA. AlföldiR. VégiV. FehérL. MánI. KotogányE. GubánB. BatárP. HacklerL.Jr KanizsaiI. PuskásL. Imidazo[1,2-b]pyrazole-7-carboxamides induce apoptosis in human leukemia cells at nanomolar concentrations.Molecules20182311284510.3390/molecules23112845 30388846
    [Google Scholar]
  2. RowleyJ.D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.Nature1973243540529029310.1038/243290a0 4126434
    [Google Scholar]
  3. WitteO.N. DasguptaA. BaltimoreD. Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine.Nature1980283575082683110.1038/283826a0 6244493
    [Google Scholar]
  4. HochhausA. EigendorffE. ErnstT. Chronische myeloische leukämie.Dtsch. Med. Wochenschr.2018143181304131010.1055/s‑0043‑121023 30199910
    [Google Scholar]
  5. MeloJ.V. BarnesD.J. Chronic myeloid leukaemia as a model of disease evolution in human cancer.Nat. Rev. Cancer20077644145310.1038/nrc2147 17522713
    [Google Scholar]
  6. DrukerB.J. Translation of the Philadelphia chromosome into therapy for CML.Blood2008112134808481710.1182/blood‑2008‑07‑077958 19064740
    [Google Scholar]
  7. CiarciaR. VitielloM.T. GaldieroM. PacilioC. IovaneV. d’AngeloD. PagniniD. CaparrottiG. ContiD. TomeiV. FlorioS. GiordanoA. Imatinib treatment inhibit IL‐6, IL‐8, NF‐KB and AP‐1 production and modulate intracellular calcium in CML patients.J. Cell. Physiol.201222762798280310.1002/jcp.23029 21938724
    [Google Scholar]
  8. El-TananiM. NsairatH. MatalkaI.I. LeeY.F. RizzoM. AljabaliA.A. MishraV. MishraY. Hromić-JahjefendićA. TambuwalaM.M. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia.Pathol. Res. Pract.202425415516110.1016/j.prp.2024.155161 38280275
    [Google Scholar]
  9. ZenebeB. NigussieH. BelayG. SebokaN. A review on characterization of BCR – ABL transcript variants for molecular monitoring of chronic myeloid leukemia phenotypes.Hematology2023281228403810.1080/16078454.2023.2284038 37982440
    [Google Scholar]
  10. FuY. WeiX. LinL. XuW. LiangJ. Adverse reactions of sorafenib, sunitinib, and imatinib in treating digestive system tumors.Thorac. Cancer20189554254710.1111/1759‑7714.12608 29575544
    [Google Scholar]
  11. LeongZ.P. OkidaA. HiguchiM. YamanoY. HikasaY. Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats.Vascul. Pharmacol.2018100415010.1016/j.vph.2017.10.006 29100963
    [Google Scholar]
  12. ErçalışkanA. Seyhan ErdoğanD. EşkazanA.E. Current evidence on the efficacy and safety of generic imatinib in CML and the impact of generics on health care costs.Blood Adv.20215173344335310.1182/bloodadvances.2021004194 34477815
    [Google Scholar]
  13. VenerC. BanziR. AmbrogiF. FerreroA. SaglioG. PravettoniG. SantM. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: A systematic review and meta-analysis.Blood Adv.20204122723273510.1182/bloodadvances.2019001329 32559295
    [Google Scholar]
  14. ClarkeW.A. ChatelutE. FotoohiA.K. LarsonR.A. MartinJ.H. MathijssenR.H.J. SalamoneS.J. Therapeutic drug monitoring in oncology: International association of therapeutic drug monitoring and clinical toxicology consensus guidelines for imatinib therapy.Eur. J. Cancer202115742844010.1016/j.ejca.2021.08.033 34597977
    [Google Scholar]
  15. MauroM.J. Novel tyrosine kinase inhibitors for patients with inadequate response in chronic myeloid leukemia.Curr. Opin. Hematol.201926211912310.1097/MOH.0000000000000489 30608253
    [Google Scholar]
  16. WojniczA. Colom-FernándezB. SteegmannJ.L. Muñoz-CallejaC. Abad-SantosF. Ruiz-NuñoA. Simultaneous determination of imatinib, dasatinib, and nilotinib by liquid chromatography-tandem mass spectrometry and its application to therapeutic drug monitoring.Ther. Drug Monit.201739325226210.1097/FTD.0000000000000406 28490048
    [Google Scholar]
  17. LiuJ. ChenZ. ChenH. HouY. LuW. HeJ. TongH. ZhouY. CaiW. Genetic polymorphisms contribute to the individual variations of imatinib mesylate plasma levels and adverse reactions in chinese GIST patients.Int. J. Mol. Sci.201718360310.3390/ijms18030603 28335376
    [Google Scholar]
  18. DeiningerM. BuchdungerE. DrukerB.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia.Blood200510572640265310.1182/blood‑2004‑08‑3097 15618470
    [Google Scholar]
  19. SoifferR.J. DavidsM.S. ChenY.B. Tyrosine kinase inhibitors and immune checkpoint blockade in allogeneic hematopoietic cell transplantation.Blood2018131101073108010.1182/blood‑2017‑10‑752154 29358177
    [Google Scholar]
  20. ZhangJ. AdriánF.J. JahnkeW. Cowan-JacobS.W. LiA.G. IacobR.E. SimT. PowersJ. DierksC. SunF. GuoG.R. DingQ. OkramB. ChoiY. WojciechowskiA. DengX. LiuG. FendrichG. StraussA. VajpaiN. GrzesiekS. TuntlandT. LiuY. BursulayaB. AzamM. ManleyP.W. EngenJ.R. DaleyG.Q. WarmuthM. GrayN.S. Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors.Nature2010463728050150610.1038/nature08675 20072125
    [Google Scholar]
  21. HuL. CaoT. LvY. DingY. YangL. ZhangQ. GuoM. Design, synthesis, and biological activity of 4-(imidazo[1,2- b]pyridazin-3-yl)-1 H -pyrazol-1-yl-phenylbenzamide derivatives as BCR–ABL kinase inhibitors.Bioorg. Med. Chem. Lett.201626235830583510.1016/j.bmcl.2016.10.007 28029512
    [Google Scholar]
  22. LiY.T. WangJ.H. PanC.W. MengF.F. ChuX.Q. DingY. QuW.Z. LiH. YangC. ZhangQ. BaiC.G. ChenY. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib.Bioorg. Med. Chem. Lett.20162651419142710.1016/j.bmcl.2016.01.068 26850004
    [Google Scholar]
  23. AzevedoL.D. BastosM.M. VasconcelosF.C. HoelzL.V.B. JuniorF.P.S. DantasR.F. de AlmeidaA.C.M. de OliveiraA.P. GomesL.C. MaiaR.C. BoechatN. Imatinib derivatives as inhibitors of K562 cells in chronic myeloid leukemia.Med. Chem. Res.201726112929294110.1007/s00044‑017‑1993‑8
    [Google Scholar]
  24. ShenQ. BhattV.S. KriegerI. SacchettiniJ.C. ChoJ.H. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase.MedChemComm20189351952410.1039/C7MD00619E 30108942
    [Google Scholar]
  25. LaurentE. TalpazM. KantarjianH. KurzrockR. The BCR gene and philadelphia chromosome-positive leukemogenesis.Cancer Res.200161623432355 11289094
    [Google Scholar]
  26. HantschelO. GrebienF. Superti-FurgaG. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL.Cancer Res.201272194890489510.1158/0008‑5472.CAN‑12‑1276 23002203
    [Google Scholar]
  27. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd839 12120256
    [Google Scholar]
  28. SangwanK. SinghB. Antiproliferative activity of novel imatinib analogue as potential anticancer agents, synthesis and in vitro screening.Indian J. Pharm. Educ. Res.2023572ss453s45810.5530/ijper.57.2s.53
    [Google Scholar]
  29. SantosC. PimentelL. CanzianH. OliveiraA. JuniorF. DantasR. HoelzL. MarinhoD. CunhaA. BastosM. BoechatN. Hybrids of imatinib with quinoline: Synthesis, antimyeloproliferative activity evaluation, and molecular docking.Pharmaceuticals202215330910.3390/ph15030309 35337107
    [Google Scholar]
  30. Tierrablanca-AriasL.E. Cervantes-ValenciaH. Piña-GordilloM.N. Chacón-GarcíaL. Suárez-CastroA. Cortes-GarcíaC.J. Aldehyde phenylamino-pyrimidine as key precursor for the synthesis of imatinib analogs and in silico studies of their intermediates.Chem. Proc.2023144610.3390/ecsoc‑27‑16108
    [Google Scholar]
  31. OkamotoN. YagiK. ImawakaS. TakaokaM. AizawaF. NiimuraT. GodaM. MiyataK. KawadaK. Izawa-IshizawaY. SakaguchiS. IshizawaK. Asciminib, a novel allosteric inhibitor of BCR‐ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance.Pharmacol. Res. Perspect.2024124e121410.1002/prp2.1214 39031848
    [Google Scholar]
  32. LiuY.F. WangC.L. BaiY.J. HanN. JiaoJ.P. QiX.L. A facile total synthesis of imatinib base and its analogues.Org. Process Res. Dev.200812349049510.1021/op700270n
    [Google Scholar]
  33. KinigopoulouM. FilippidouM. GogouM. GiannousiA. FoukaP. NtemouN. AlivertisD. GeorgisC. BrentasA. PolychronidouV. VoulgariP. TheodorouV. SkobridisK. An optimized approach in the synthesis of imatinib intermediates and analogues.RSC Advances2016666614586146710.1039/C6RA09812F
    [Google Scholar]
  34. PanX. DongJ. ShaoR. SuP. ShiY. WangJ. HeL. Expanding the structural diversity of Bcr-Abl inhibitors: Hybrid molecules based on GNF-2 and Imatinib.Bioorg. Med. Chem. Lett.201525194164416810.1016/j.bmcl.2015.08.013 26298495
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808308483240918115915
Loading
/content/journals/lddd/10.2174/0115701808308483240918115915
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test