Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

The aim of this study was to explore the mechanisms of L. () in the treatment of type 2 diabetes mellitus (T2DM).

Methods

The TCSMP database was utilized to obtain the constituents and targets of . The OMIM database was used at GeneCard to acquire T2DM targets. The STRING database was used to plot the PPI network. KEGG and GO analyses were performed using the DAVID database. HepG2 cells were induced to construct an insulin resistance (IR) model by a complex composed of glucose and oleic acid, and cell viability, inflammatory factors, and RAGE/PI3K/Akt signaling pathway were verified by cell experiments.

Results

In the network pharmacology study, 14 active ingredients were screened, corresponding to 280 targets. There were 1477 targets associated with T2MD. These components may act on core targets of T2DM, such as AKT1, TNF, and IL-6, and regulate signaling pathways such as cancer pathway and AGE-RAGE to play an anti-T2DM role. results showed that quercetin and kaempferol with 5, 10, 25 μmol·L-1 and diosgenin with 0.5, 1, 2 μmol·L-1 could reduce the expression of TNF-α and IL-6 in IR-HepG2 cells, down-regulate the expression of RAGE, up-regulated the expression of p-PI3K/PI3K and p-Akt/Akt.

Conclusion

The research explored the mechanism of anti-T2DM, which may be helpful for the development of anti-T2DM drugs for .

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808304547240911105921
2024-09-20
2025-04-16
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  2. HongZ. XieJ. HuH. BaiY. HuX. LiT. ChenJ. ShengJ. TianY. Hypoglycemic effect of Moringa oleifera leaf extract and its mechanism prediction based on network pharmacology.J. Future Foods20233438339110.1016/j.jfutfo.2023.03.009
    [Google Scholar]
  3. BuseJ.B. WexlerD.J. TsapasA. RossingP. MingroneG. MathieuC. D’AlessioD.A. DaviesM.J. 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the american diabetes association (ADA) and the european association for the study of diabetes (EASD).Diabetes Care202043248749310.2337/dci19‑0066 31857443
    [Google Scholar]
  4. Singer-EnglarT. BarlowG. MathurR. Obesity, diabetes, and the gut microbiome: An updated review.Expert Rev. Gastroenterol. Hepatol.201913131510.1080/17474124.2019.1543023 30791839
    [Google Scholar]
  5. PadhiS. DashM. BeheraA. Nanophytochemicals for the treatment of type II diabetes mellitus: A review.Environ. Chem. Lett.20211964349437310.1007/s10311‑021‑01283‑y
    [Google Scholar]
  6. LiJ. ChenS. WangB. XieJ. WuX. HuX. LiuJ. ZhangY. Mechanism of american ginseng against type 2 diabetes mellitus based on network pharmacology & molecular docking.Lett. Drug Des. Discov.20232017
    [Google Scholar]
  7. Nagulapalli VenkataK.C. SwaroopA. BagchiD. BishayeeA. A small plant with big benefits: Fenugreek (Trigonella foenum‐graecum Linn.) for disease prevention and health promotion.Mol. Nutr. Food Res.2017616160095010.1002/mnfr.201600950 28266134
    [Google Scholar]
  8. NaickerN. NagiahS. PhulukdareeA. ChuturgoonA. Trigonella foenum-graecum seed extract, 4-hydroxyisoleucine, and metformin stimulate proximal insulin signaling and increase expression of glycogenic enzymes and GLUT2 in HepG2 cells.Metab. Syndr. Relat. Disord.201614211412010.1089/met.2015.0081 26835874
    [Google Scholar]
  9. GawadeB.M. ShejulD.D. JagtapS. Trigonella foenum graecum (Fenugreek): An herb with impressive health benefits and pharmacological therapeutic effects.Asian Food Sci. J.2022213192810.9734/afsj/2022/v21i330412
    [Google Scholar]
  10. LuJ. HuY. WangL. WangY. NaS. WangJ. ShunY. WangX. XueP. ZhaoP. SuL. Understanding the multitarget pharmacological mechanism of the traditional mongolian common herb pair GuangZao-RouDouKou acting on coronary heart disease based on a bioinformatics approach.Evid. Based Complement. Alternat. Med.201820181795650310.1155/2018/7956503 30534179
    [Google Scholar]
  11. LiR. ZhangW. YaoM. WangJ. Network pharmacology-based prediction of active ingredient and mechanisms of astragalus membranaceus and panax notoginseng coupledherbs against diabetic neuropathic pain.Lett. Drug Des. Discov.202320111830184510.2174/1570180819666220602142704
    [Google Scholar]
  12. YuanZ. PanY. LengT. ChuY. ZhangH. MaJ. MaX. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine.J. Pharm. Pharm. Sci.20222521822610.18433/jpps32911 35760072
    [Google Scholar]
  13. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  14. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  15. XuJ. StevensonJ. Drug-like index: A new approach to measure drug-like compounds and their diversity.J. Chem. Inf. Comput. Sci.20004051177118710.1021/ci000026+ 11045811
    [Google Scholar]
  16. The universal protein resource (UniProt).Nucleic Acids Res.200735Database issueD193D197 17142230
    [Google Scholar]
  17. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  18. XiaoY. MaM. LiY. XiaoY. Polygenic regulation by flos daturae in the treatment of breast cancer: A study based on network pharmacology and bioinformatics.Lett. Drug Des. Discov.202320664966110.2174/1570180820666230214104234
    [Google Scholar]
  19. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  20. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  21. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  22. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  23. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  24. LiuX. WangY. Elucidating the molecular targets and mechanisms of chlorogenic acid against alzheimer’s disease via network pharmacology and molecular docking.Lett. Drug Des. Discov.20232091329134210.2174/1570180819666220619125742
    [Google Scholar]
  25. DelanoW.L. The PyMol molecular graphics system.Proteins200230442454
    [Google Scholar]
  26. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  27. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  28. ZengB. YanY. ZhangY. WangC. HuangW. ZhongX. ChenZ. XieM. YangZ. Dendrobium officinale Polysaccharide (DOP) inhibits cell hyperproliferation, inflammation and oxidative stress to improve keratinocyte psoriasis-like state.Adv. Med. Sci.202469116717510.1016/j.advms.2024.03.005 38521458
    [Google Scholar]
  29. TangY. LiangF. YanY. ZengY. LiY. ZhouR. Purification and identification of peptides from Hydrilla verticillata (Linn. f.) Royle with cytoprotective and antioxidative effect against H2O2-treated HepG2 cells.J. Agric. Food Chem.20247284170418310.1021/acs.jafc.3c09917 38358942
    [Google Scholar]
  30. TaylorS.I. YazdiZ.S. BeitelsheesA.L. Pharmacological treatment of hyperglycemia in type 2 diabetes.J. Clin. Invest.20211312e14224310.1172/JCI142243 33463546
    [Google Scholar]
  31. XieW. ZhaoY. ZhangY. Traditional chinese medicines in treatment of patients with type 2 diabetes mellitus.Evid. Based Complement. Alternat. Med.20112011172672310.1155/2011/726723 21584252
    [Google Scholar]
  32. YoshinariO. IgarashiK. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice.Curr. Med. Chem.201017202196220210.2174/092986710791299902 20423301
    [Google Scholar]
  33. HamdenK. JaouadiB. CarreauS. BejarS. ElfekiA. Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions.Biotechnol. Bioprocess Eng.; 201015340741310.1007/s12257‑009‑3037‑9
    [Google Scholar]
  34. JiangW. SiL. LiP. BaiB. QuJ. HouB. ZouH. FanX. LiuZ. LiuZ. GaoL. Serum metabonomics study on antidiabetic effects of fenugreek flavonoids in streptozotocin-induced rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2018109246647210.1016/j.jchromb.2018.06.041 30008302
    [Google Scholar]
  35. TharaheswariM. Jayachandra ReddyN. KumarR. VarshneyK.C. KannanM. Sudha RaniS. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats.Mol. Cell. Biochem.20143961-216117410.1007/s11010‑014‑2152‑x 25070833
    [Google Scholar]
  36. MauryaC.K. SinghR. JaiswalN. VenkateswarluK. NarenderT. TamrakarA.K. 4-Hydroxyisoleucine ameliorates fatty acid-induced insulin resistance and inflammatory response in skeletal muscle cells.Mol. Cell. Endocrinol.20143951-2516010.1016/j.mce.2014.07.018 25109277
    [Google Scholar]
  37. LiZ. ZhaoZ. ChenS. WangX. WangD. NieX. YaoY. Ge-Gen-Qin-Lian decoction alleviates the symptoms of type 2 diabetes mellitus with inflammatory bowel disease via regulating the AGE-RAGE pathway.BMC Complement. Med. Ther.202424122510.1186/s12906‑024‑04526‑x 38858747
    [Google Scholar]
  38. WangZ. LiR. ChenX. RenH. WangC. MinR. ZhangX. Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko.Fitoterapia202417810611710.1016/j.fitote.2024.106117 38996878
    [Google Scholar]
  39. WenX. LvC. ZhouR. WangY. ZhouX. QinS. The molecular mechanism underlying the therapeutic effect of dihydromyricetin on type 2 diabetes mellitus based on network pharmacology, molecular docking, and transcriptomics.Foods202413234410.3390/foods13020344 38275711
    [Google Scholar]
  40. ChenL. WangJ. RenY. MaY. LiuJ. JiangH. LiuC. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway.Phytomedicine202412615538210.1016/j.phymed.2024.155382 38382280
    [Google Scholar]
  41. ZhaoW. CuiH. LiuK. YangX. XingS. LiW. Unveiling anti-diabetic potential of baicalin and baicalein from baikal skullcap: LC-MS, in silico, and in vitro studies.Int. J. Mol. Sci.2024257365410.3390/ijms25073654 38612466
    [Google Scholar]
  42. AnsariP. ChoudhuryS.T. SeidelV. RahmanA.B. AzizM.A. RichiA.E. RahmanA. JafrinU.H. HannanJ.M.A. Abdel-WahabY.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life12081146
    [Google Scholar]
  43. YoulE. BardyG. MagousR. CrosG. SejalonF. VirsolvyA. RichardS. QuignardJ.F. GrossR. PetitP. BatailleD. OiryC. Quercetin potentiates insulin secretion and protects INS‐1 pancreatic β‐cells against oxidative damage via the ERK1/2 pathway.Br. J. Pharmacol.2010161479981410.1111/j.1476‑5381.2010.00910.x 20860660
    [Google Scholar]
  44. ZhangY. ZhenW. MaechlerP. LiuD. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB.J. Nutr. Biochem.201324463864610.1016/j.jnutbio.2012.03.008 22819546
    [Google Scholar]
  45. YaoH. SunJ. WeiJ. ZhangX. ChenB. LinY. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway.Front. Pharmacol.202011111810.3389/fphar.2020.01118 32792954
    [Google Scholar]
  46. GlaserB. PermuttM.A. MatsubaraA. DonelanS.S. WassonJ.C. WellingC.M. Isolation and characterization of the human AKT1 gene, identification of 13 single nucleotide polymorphisms (SNPs), and their lack of association with Type II diabetes.Diabetologia200144791091310.1007/s001250100577 11508278
    [Google Scholar]
  47. DegirmenciI. OzbayerC. KebapciM.N. KurtH. ColakE. GunesH.V. Common variants of genes encoding TLR4 and TLR4 pathway members TIRAP and IRAK1 are effective on MCP1, IL6, IL1β, and TNFα levels in type 2 diabetes and insulin resistance.Inflamm. Res.201968980181410.1007/s00011‑019‑01263‑7 31222667
    [Google Scholar]
  48. WangJ.H. LingD. TuL. van WijngaardenP. DustingG.J. LiuG.S. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?Pharmacol. Ther.201717311810.1016/j.pharmthera.2017.01.003 28132907
    [Google Scholar]
  49. BiswasS.K. MohtarinS. MudiS.R. AnwarT. BanuL.A. AlamS.M.K. FariduddinM. ArslanM.I. Relationship of soluble RAGE with insulin resistance and beta cell function during development of type 2 diabetes mellitus.J. Diabetes Res.201520151610.1155/2015/150325 26078977
    [Google Scholar]
  50. AbdelmageedM.E. ShehatouG.S. AbdelsalamR.A. SuddekG.M. SalemH.A. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. N-S. Arch. Pharmacol.2019392224325810.1007/s00210‑018‑1583‑4 30460386
    [Google Scholar]
  51. Dukic-StefanovicS. Gasic-MilenkovicJ. Deuther-ConradW. MünchG. Signal transduction pathways in mouse microglia N‐11 cells activated by advanced glycation endproducts (AGEs).J. Neurochem.2003871445510.1046/j.1471‑4159.2003.01988.x 12969251
    [Google Scholar]
  52. AbeR. YamagishiS. AGE-RAGE system and carcinogenesis.Curr. Pharm. Des.2008141094094510.2174/138161208784139765 18473843
    [Google Scholar]
  53. biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?Oxid. Med. Cell. Longev.201620161569893110.1155/2016/5698931 26881031
    [Google Scholar]
  54. SinghG. ThakerR. SharmaA. ParmarD. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice.Environ. Sci. Pollut. Res. Int.20212816205172053610.1007/s11356‑020‑11740‑w 33410021
    [Google Scholar]
  55. TripathiS. FhatimaS. ParmarD. SinghD.P. MishraS. MishraR. SinghG. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus)brain. 3 Biotech,202212511610.1007/s13205‑022‑03171‑w35547012
    [Google Scholar]
  56. TripathiS. ParmarD. FathimaS. RavalS. SinghG. Coenzyme Q10, biochanin A and phloretin attenuate Cr(VI)-induced oxidative stress and DNA damage by stimulating Nrf2/HO-1 pathway in the experimental model.Biol. Trace Elem. Res.202320152427244110.1007/s12011‑022‑03358‑5 35953644
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808304547240911105921
Loading
/content/journals/lddd/10.2174/0115701808304547240911105921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test