Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Approximately 10%-40% of the global population is affected by allergic rhinitis, and has a long history of dual use as a herbal medicine and also as a food. This study utilized network pharmacology and molecular docking to explore the mechanism of action of in treating allergic rhinitis.

Methods

We screened active ingredients and potential action targets of using the TCMSP database. Relevant targets for allergic rhinitis diseases were accessed through the GeneCards and OMIM databases. GO function enrichment and KEGG pathway enrichment analyses of key targets were conducted using the DAVID database. Molecular docking validation was performed using Autodock Vina software to confirm the affinity between the core protein targets and the key active ingredients.

Results

Network pharmacological analysis identified 35 major active ingredients of , 87 drug targets, and 2200 disease targets. GO functional analysis and KEGG pathway enrichment analysis revealed that the mechanism of action of in treating allergic rhinitis involves multiple pathways, including the HIF-1 signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. Molecular docking results demonstrated good binding activity between the main active ingredients and the core protein target.

Conclusion

exhibits multi-component, multi-target, and multi-pathway actions in treating allergic rhinitis by regulating relevant pathways and targets.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808316186240913081055
2024-09-24
2025-06-26
Loading full text...

Full text loading...

References

  1. ZhangJ. GaoL. YuD. SongY. ZhaoY. FengY. Three Artemisia pollens trigger the onset of allergic rhinitis via TLR4/MyD88 signaling pathway.Mol. Biol. Rep.202451131910.1007/s11033‑024‑09350‑7 38388914
    [Google Scholar]
  2. CzechE.J. OverholserA. SchultzP. Allergic Rhinitis.Prim. Care202350215917810.1016/j.pop.2023.01.003 37105599
    [Google Scholar]
  3. BousquetJ. AntoJ.M. BachertC. BaiardiniI. Bosnic-AnticevichS. Walter CanonicaG. MelénE. PalomaresO. ScaddingG.K. TogiasA. Toppila-SalmiS. Allergic rhinitis.Nat. Rev. Dis. Primers2020619510.1038/s41572‑020‑00227‑0 33273461
    [Google Scholar]
  4. EsmailD. AshourZ. ShehaD. MohamedN. AbdAllah, A.; Zeyada, O.; Elmahdi, A. Frequency of ragweed sensitization and allergy among patients with respiratory allergy.Egypt. J. Immunol.202229411512410.55133/eji.290411 36206154
    [Google Scholar]
  5. PondaP. CarrT. RankM.A. BousquetJ. Nonallergic Rhinitis, Allergic Rhinitis, and Immunotherapy: Advances in the Last Decade.J. Allergy Clin. Immunol. Pract.2023111354210.1016/j.jaip.2022.09.010 36152989
    [Google Scholar]
  6. PangK. LiG. LiM. ZhangL. FuQ. LiuK. ZhengW. WangZ. ZhongJ. LuL. LiP. ZhouY. ZhangW. ZhangQ. Prevalence and risk factors for allergic rhinitis in China: A systematic review and meta-analysis.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/7165627 36193147
    [Google Scholar]
  7. JiangF. YanA. Correlation of Pollen Concentration and Meteorological Factors with Medical Condition of Allergic Rhinitis in Shenyang Area.Comput. Math. Methods Med.2022202211010.1155/2022/4619693 36203530
    [Google Scholar]
  8. RodriguesJ. PintoJ.V. AlexandreP.L. Sousa-PintoB. PereiraA.M. RaemdonckK. VazR.P. Allergic Rhinitis Seasonality, Severity, and Disease Control Influence Anxiety and Depression.Laryngoscope202313361321132710.1002/lary.30318 35912902
    [Google Scholar]
  9. WangY. SongX.Y. WeiS.Z. WangH.R. ZhangW.B. LiY.M. MouY.K. RenC. SongX.C. Brain response in allergic rhinitis: Profile and proposal.J. Neurosci. Res.2023101448049110.1002/jnr.25159 36564932
    [Google Scholar]
  10. KimO. KimB. JeongH. LeeJ. JungH. Sleep, Fatigue, and Depressive Symptoms among Female Nurses with Allergic Rhinitis.Healthcare (Basel)2021910132810.3390/healthcare9101328 34683008
    [Google Scholar]
  11. RamsridharS. Allergic Rhinitis-Induced Anxiety and Depression: An Autobiographical Case Report.Cureus2023153e3656010.7759/cureus.36560 37102007
    [Google Scholar]
  12. BrożekJ.L. BousquetJ. AgacheI. AgarwalA. BachertC. Bosnic-AnticevichS. Brignardello-PetersenR. CanonicaG.W. CasaleT. ChavannesN.H. Correia de SousaJ. CruzA.A. Cuello-GarciaC.A. DemolyP. DykewiczM. Etxeandia-IkobaltzetaI. FlorezI.D. FokkensW. FonsecaJ. HellingsP.W. KlimekL. KowalskiS. KunaP. LaisaarK.T. Larenas-LinnemannD.E. Lødrup CarlsenK.C. ManningP.J. MeltzerE. MullolJ. MuraroA. O’HehirR. OhtaK. PanznerP. PapadopoulosN. ParkH.S. PassalacquaG. PawankarR. PriceD. RivaJ.J. RoldánY. RyanD. SadeghiradB. SamolinskiB. Schmid-GrendelmeierP. SheikhA. TogiasA. ValeroA. ValiulisA. ValovirtaE. VentrescaM. WallaceD. WasermanS. WickmanM. WierciochW. Yepes-NuñezJ.J. ZhangL. ZhangY. ZidarnM. ZuberbierT. SchünemannH.J. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision.J. Allergy Clin. Immunol.2017140495095810.1016/j.jaci.2017.03.050 28602936
    [Google Scholar]
  13. CoxL. Approach to Patients with Allergic Rhinitis.Med. Clin. North Am.20201041779410.1016/j.mcna.2019.09.001 31757239
    [Google Scholar]
  14. YanY. ZhangJ. LiuH. LinZ. LuoQ. LiY. RuanY. ZhouS. Efficacy and safety of the Chinese herbal medicine Xiao-qing-long-tang for allergic rhinitis: A systematic review and meta-analysis of randomized controlled trials.J. Ethnopharmacol.202229711516910.1016/j.jep.2022.115169 35257842
    [Google Scholar]
  15. YueJ. HaoD. LiuS. YuJ. MengL. LvJ. GuoJ. Research progress of traditional Chinese medicine in the treatment of allergic rhinitis.Heliyon2024107e2926210.1016/j.heliyon.2024.e29262 38617960
    [Google Scholar]
  16. ShenM. LiuJ. WangK. Effect of Traditional Chinese Medicine on Allergic Rhinitis in Children under Data Mining.Comput. Math. Methods Med.2022202211010.1155/2022/7007370 35693255
    [Google Scholar]
  17. MasciA. CarradoriS. CasadeiM.A. PaolicelliP. PetralitoS. RagnoR. CesaS. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review.Food Chem.201825437738910.1016/j.foodchem.2018.01.176 29548467
    [Google Scholar]
  18. MirandaM.R. VestutoV. AmodioG. ManfraM. PepeG. CampigliaP. Antitumor mechanisms of Lycium barbarum Fruit: An overview of in vitro and in vivo potential.Life (Basel)202414342010.3390/life14030420 38541744
    [Google Scholar]
  19. LiuX. GaoH. RadaniY. YueS. ZhangZ. TangJ. ZhuJ. ZhengR. Integrative transcriptome and metabolome analysis reveals the discrepancy in the accumulation of active ingredients between Lycium barbarum cultivars.Planta202425947410.1007/s00425‑024‑04350‑0 38407665
    [Google Scholar]
  20. LiQ. ZhangZ. LiH. PanX. ChenS. CuiZ. MaJ. ZhouZ. XingB. Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122.Biomed. Pharmacother.2019110202810.1016/j.biopha.2018.11.012 30458344
    [Google Scholar]
  21. HsiehF.C. HungC.T. ChengK.C. WuC.Y. ChenY.C. WuY.J. LiuW. ChiuC.C. Protective Effects of Lycium barbarum Extracts on UVB‐Induced Damage in Human Retinal Pigment Epithelial Cells Accompanied by Attenuating ROS and DNA Damage.Oxid. Med. Cell. Longev.201820181481492810.1155/2018/4814928 30524656
    [Google Scholar]
  22. TianX. LiangT. LiuY. DingG. ZhangF. MaZ. Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review.Biomolecules20199938910.3390/biom9090389 31438522
    [Google Scholar]
  23. KwokS.S. BuY. LoA.C.Y. ChanT.C.Y. SoK.F. LaiJ.S.M. ShihK.C. A Systematic Review of Potential Therapeutic Use of Lycium barbarum Polysaccharides in Disease.BioMed Res. Int.2019201911810.1155/2019/4615745 30891458
    [Google Scholar]
  24. DingY. YanY. ChenD. RanL. MiJ. LuL. JingB. LiX. ZengX. CaoY. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice.Food Funct.20191063671368310.1039/C9FO00638A 31168539
    [Google Scholar]
  25. SunL. WangX. MaB. ZuoC. XiaY. GuoY. HanM. The study of the treatment of breast cancer by the combined photothermal therapy of Lycium barbarum polysaccharide doxorubicin gel.J. Drug Deliv. Sci. Technol.20249310542910.1016/j.jddst.2024.105429
    [Google Scholar]
  26. ZhengQ. WangX. GaoT. ZhangB. ZhaoN. DuR. ZhaoZ. Exploring the pharmacological and molecular mechanisms of Salvia chinensis Benth in colorectal cancer: A network pharmacology and molecular docking study.Medicine (Baltimore)202310250e3660210.1097/MD.0000000000036602 38115259
    [Google Scholar]
  27. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of Traditional Chinese Medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  28. DuanX. WangN. PengD. Application of network pharmacology in synergistic action of Chinese herbal compounds.Theory Biosci.202410.1007/s12064‑024‑00419‑2 38888845
    [Google Scholar]
  29. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  30. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The Universal Protein Knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  31. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.Curr. Protoc. Bioinformatics201654130.13310.1002/cpbi.5273224032016
    [Google Scholar]
  32. AmbergerJ.S. BocchiniC.A. ScottA.F. HamoshA. OMIM.org: Leveraging knowledge across phenotype–gene relationships.Nucleic Acids Res.201947D1D1038D104310.1093/nar/gky1151 30445645
    [Google Scholar]
  33. BipinN.B.J. SarathM.S. Evolutionary clustering annotation of ortho-paralogous gene in a multi species using Venn diagram visualization.Int. J. Eng. Technol.20187199755
    [Google Scholar]
  34. FranzM. LopesC.T. FongD. KuceraM. CheungM. SiperM.C. HuckG. DongY. SumerO. BaderG.D. Cytoscape.js 2023 update: A graph theory library for visualization and analysis.Bioinformatics2023391btad03110.1093/bioinformatics/btad031 36645249
    [Google Scholar]
  35. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  36. AleksanderS.A. BalhoffJ. CarbonS. CherryJ.M. DrabkinH.J. EbertD. FeuermannM. GaudetP. HarrisN.L. HillD.P. LeeR. MiH. MoxonS. MungallC.J. MuruganuganA. MushayahamaT. SternbergP.W. ThomasP.D. Van AukenK. RamseyJ. SiegeleD.A. ChisholmR.L. FeyP. AspromonteM.C. NugnesM.V. QuagliaF. TosattoS. GiglioM. NadendlaS. AntonazzoG. AttrillH. dos SantosG. MarygoldS. StreletsV. TaboneC.J. ThurmondJ. ZhouP. AhmedS.H. AsanitthongP. Luna BuitragoD. ErdolM.N. GageM.C. Ali KadhumM. LiK.Y.C. LongM. MichalakA. PesalaA. PritazahraA. SaverimuttuS.C.C. SuR. ThurlowK.E. LoveringR.C. LogieC. OliferenkoS. BlakeJ. ChristieK. CorbaniL. DolanM.E. DrabkinH.J. HillD.P. NiL. SitnikovD. SmithC. CuzickA. SeagerJ. CooperL. ElserJ. JaiswalP. GuptaP. JaiswalP. NaithaniS. Lera-RamirezM. RutherfordK. WoodV. De PonsJ.L. DwinellM.R. HaymanG.T. KaldunskiM.L. KwitekA.E. LaulederkindS.J.F. TutajM.A. VediM. WangS.J. D’EustachioP. AimoL. AxelsenK. BridgeA. Hyka-NouspikelN. MorgatA. AleksanderS.A. CherryJ.M. EngelS.R. KarraK. MiyasatoS.R. NashR.S. SkrzypekM.S. WengS. WongE.D. BakkerE. BerardiniT.Z. ReiserL. AuchinclossA. AxelsenK. Argoud-PuyG. BlatterM.C. BoutetE. BreuzaL. BridgeA. Casals-CasasC. CoudertE. EstreicherA. Livia FamigliettiM. FeuermannM. GosA. Gruaz-GumowskiN. HuloC. Hyka-NouspikelN. JungoF. Le MercierP. LieberherrD. MassonP. MorgatA. PedruzziI. PourcelL. PouxS. RivoireC. SundaramS. BatemanA. Bowler-BarnettE. Bye-A-JeeH. DennyP. IgnatchenkoA. IshtiaqR. LockA. LussiY. MagraneM. MartinM.J. OrchardS. RaposoP. SperettaE. TyagiN. WarnerK. ZaruR. DiehlA.D. LeeR. ChanJ. DiamantakisS. RacitiD. ZarowieckiM. FisherM. James-ZornC. PonferradaV. ZornA. RamachandranS. RuzickaL. WesterfieldM. AleksanderS.A. BalhoffJ. CarbonS. CherryJ.M. DrabkinH.J. EbertD. FeuermannM. GaudetP. HarrisN.L. HillD.P. LeeR. MiH. MoxonS. MungallC.J. MuruganuganA. MushayahamaT. SternbergP.W. ThomasP.D. Van AukenK. RamseyJ. SiegeleD.A. ChisholmR.L. FeyP. AspromonteM.C. NugnesM.V. QuagliaF. TosattoS. GiglioM. NadendlaS. AntonazzoG. AttrillH. dos SantosG. MarygoldS. StreletsV. TaboneC.J. ThurmondJ. ZhouP. AhmedS.H. AsanitthongP. Luna BuitragoD. ErdolM.N. GageM.C. Ali KadhumM. LiK.Y.C. LongM. MichalakA. PesalaA. PritazahraA. SaverimuttuS.C.C. SuR. ThurlowK.E. LoveringR.C. LogieC. OliferenkoS. BlakeJ. ChristieK. CorbaniL. DolanM.E. DrabkinH.J. HillD.P. NiL. SitnikovD. SmithC. CuzickA. SeagerJ. CooperL. ElserJ. JaiswalP. GuptaP. JaiswalP. NaithaniS. Lera-RamirezM. RutherfordK. WoodV. De PonsJ.L. DwinellM.R. HaymanG.T. KaldunskiM.L. KwitekA.E. LaulederkindS.J.F. TutajM.A. VediM. WangS-J. D’EustachioP. AimoL. AxelsenK. BridgeA. Hyka-NouspikelN. MorgatA. AleksanderS.A. CherryJ.M. EngelS.R. KarraK. MiyasatoS.R. NashR.S. SkrzypekM.S. WengS. WongE.D. BakkerE. BerardiniT.Z. ReiserL. AuchinclossA. AxelsenK. Argoud-PuyG. BlatterM-C. BoutetE. BreuzaL. BridgeA. Casals-CasasC. CoudertE. EstreicherA. Livia FamigliettiM. FeuermannM. GosA. Gruaz-GumowskiN. HuloC. Hyka-NouspikelN. JungoF. Le MercierP. LieberherrD. MassonP. MorgatA. PedruzziI. PourcelL. PouxS. RivoireC. SundaramS. BatemanA. Bowler-BarnettE. Bye-A-JeeH. DennyP. IgnatchenkoA. IshtiaqR. LockA. LussiY. MagraneM. MartinM.J. OrchardS. RaposoP. SperettaE. TyagiN. WarnerK. ZaruR. DiehlA.D. LeeR. ChanJ. DiamantakisS. RacitiD. ZarowieckiM. FisherM. James-ZornC. PonferradaV. ZornA. RamachandranS. RuzickaL. WesterfieldM. The Gene Ontology knowledgebase in 2023.Genetics20232241iyad03110.1093/genetics/iyad031 36866529
    [Google Scholar]
  37. KanehisaM. GotoS. SatoY. FurumichiM. TanabeM. KEGG for integration and interpretation of large-scale molecular data sets.Nucleic Acids Res.201240D1D109D11410.1093/nar/gkr988 22080510
    [Google Scholar]
  38. KimS. ChengT. HeS. ThiessenP.A. LiQ. GindulyteA. BoltonE.E. PubChem protein, gene, pathway, and taxonomy data collections: Bridging biology and chemistry through target-centric views of pubchem data.J. Mol. Biol.20224341116751410.1016/j.jmb.2022.167514 35227770
    [Google Scholar]
  39. BurleyS.K. BermanH.M. BhikadiyaC. BiC. ChenL. CostanzoL.D. ChristieC. DuarteJ.M. DuttaS. FengZ. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. GuzenkoD. HudsonB.P. LiangY. LoweR. PeisachE. PeriskovaI. RandleC. RoseA. SekharanM. ShaoC. TaoY-P. ValasatavaY. VoigtM. WestbrookJ. YoungJ. ZardeckiC. ZhuravlevaM. KurisuG. NakamuraH. KengakuY. ChoH. SatoJ. KimJ.Y. IkegawaY. NakagawaA. YamashitaR. KudouT. BekkerG-J. SuzukiH. IwataT. YokochiM. KobayashiN. FujiwaraT. VelankarS. KleywegtG.J. AnyangoS. ArmstrongD.R. BerrisfordJ.M. ConroyM.J. DanaJ.M. DeshpandeM. GaneP. GáborováR. GuptaD. GutmanasA. KočaJ. MakL. MirS. MukhopadhyayA. NadzirinN. NairS. PatwardhanA. Paysan-LafosseT. PravdaL. SalihO. SehnalD. VaradiM. VařekováR. MarkleyJ.L. HochJ.C. RomeroP.R. BaskaranK. MaziukD. UlrichE.L. WedellJ.R. YaoH. LivnyM. IoannidisY.E. Protein Data Bank: The single global archive for 3D macromolecular structure data.Nucleic Acids Res.201947D1D520D52810.1093/nar/gky949 30357364
    [Google Scholar]
  40. YuanS. ChanH.C.S. HuZ. Using PYMOL as a platform for computational drug design.Wiley Interdiscip. Rev. Comput. Mol. Sci.201772e1298-, n/a10.1002/wcms.1298
    [Google Scholar]
  41. El-HachemN. Haibe-KainsB. KhalilA. KobeissyF.H. NemerG. AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study.Methods Mol. Biol.2017159839140310.1007/978‑1‑4939‑6952‑4_20 28508374
    [Google Scholar]
  42. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  43. GaillardT. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.J. Chem. Inf. Model.20185881697170610.1021/acs.jcim.8b00312 29989806
    [Google Scholar]
  44. LiangY. LvY. QinJ. DengW. Network Pharmacology Analysis of the Potential Pharmacological Mechanism of a Sleep Cocktail.Biomolecules202414663010.3390/biom14060630 38927034
    [Google Scholar]
  45. KumarB. DeshmukhR. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis.Curr. Pharm. Des.2024301288790110.2174/0113816128295952240306072100 38486383
    [Google Scholar]
  46. LiuT. ZhangR. JiangL. ZhouL. ZhangH. LiangF. XiongP. ChenH. WenT. ShenX. XieC. TianL. The potential application and molecular mechanisms of natural products in the treatment of allergic rhinitis: A review.Phytomedicine202412915566310.1016/j.phymed.2024.155663 38759345
    [Google Scholar]
  47. KhanD.A. Allergic rhinitis and asthma: Epidemiology and common pathophysiology.Allergy Asthma Proc.201435535736110.2500/aap.2014.35.3794 25295802
    [Google Scholar]
  48. SiddiquiZ.A. WalkerA. PirwaniM.M. TahiriM. SyedI. Allergic rhinitis: Diagnosis and management.Br. J. Hosp. Med. (Lond.)20228321910.12968/hmed.2021.0570 35243888
    [Google Scholar]
  49. RussoM. MocciaS. SpagnuoloC. TedescoI. RussoG.L. Roles of flavonoids against coronavirus infection.Chem. Biol. Interact.202032810921110.1016/j.cbi.2020.109211 32735799
    [Google Scholar]
  50. GandhiG.R. NetaM.T.S.L. SathiyabamaR.G. QuintansJ.S.S. de Oliveira e Silva, A.M.; Araújo, A.A.S.; Narain, N.; Júnior, L.J.Q.; Gurgel, R.Q. Flavonoids as Th1/Th2 cytokines immunomodulators: A systematic review of studies on animal models.Phytomedicine201844748410.1016/j.phymed.2018.03.057 29895495
    [Google Scholar]
  51. JafariniaM. Sadat HosseiniM. kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the potential effect on allergic diseases.Allergy Asthma Clin. Immunol.20201613610.1186/s13223‑020‑00434‑0 32467711
    [Google Scholar]
  52. MuD. ZhouL. ShiL. LiuT. GuoY. ChenH. LuoH. MaJ. ZhangH. XiongP. TianL. Quercetin-crosslinked chitosan nanoparticles: A potential treatment for allergic rhinitis.Sci. Rep.2024141402110.1038/s41598‑024‑54501‑2 38369554
    [Google Scholar]
  53. HuangY.F. BaiC. HeF. XieY. ZhouH. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19).Pharmacol. Res.202015810493910.1016/j.phrs.2020.104939 32445956
    [Google Scholar]
  54. HidayathullaS. ShahatA.A. AhamadS.R. Al MoqbilA.A.N. AlsaidM.S. DivakarD.D. GC/MS analysis and characterization of 2‐Hexadecen‐1‐ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial.J. Appl. Microbiol.201812451082109110.1111/jam.13704 29356238
    [Google Scholar]
  55. HanN.R. KimH.M. JeongH.J. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP.Exp. Biol. Med. (Maywood)2014239445446410.1177/1535370213520111 24510054
    [Google Scholar]
  56. AntwiA.O. ObiriD.D. OsafoN. EsselL.B. ForkuoA.D. AtobigaC. Stigmasterol Alleviates Cutaneous Allergic Responses in Rodents.BioMed Res. Int.2018201811310.1155/2018/3984068 30140696
    [Google Scholar]
  57. KimY.J. KimH.J. LeeJ.Y. KimD.H. KangM.S. ParkW. Anti-Inflammatory Effect of Baicalein on Polyinosinic–Polycytidylic Acid-Induced RAW 264.7 Mouse Macrophages.Viruses201810522410.3390/v10050224 29701676
    [Google Scholar]
  58. LimJ.H. KimS.E. KimH.J. SongG.G. JungJ.H. Intra-articular injection of stigmasterol-loaded nanoparticles reduce pain and inhibit the inflammation and joint destruction in osteoarthritis rat model: A pilot study.Drug Deliv. Transl. Res.20241471969198110.1007/s13346‑023‑01501‑w 38200400
    [Google Scholar]
  59. HanN.R. ParkH.J. KoS.G. MoonP.D. Stigmasterol Exerts an Anti-Melanoma Property through Down-Regulation of Reactive Oxygen Species and Programmed Cell Death Ligand 1 in Melanoma Cells.Antioxidants202413338010.3390/antiox13030380 38539913
    [Google Scholar]
  60. WangY. BuC. WuK. WangR. WangJ. Curcumin protects the pancreas from acute pancreatitis via the mitogen activated protein kinase signaling pathway.Mol. Med. Rep.20192043027303410.3892/mmr.2019.10547 31432122
    [Google Scholar]
  61. KerkisI. SilvaÁ.P. AraldiR.P. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions.Front. Immunol.202415140053310.3389/fimmu.2024.1400533 39015561
    [Google Scholar]
  62. CuiQ. LiJ. WangJ. The Assessment of TNF-α Gene Polymorphism Association with the Risk of Allergic Rhinitis in the Chinese Han Population.Int. J. Gen. Med.2021145183519210.2147/IJGM.S325969 34512001
    [Google Scholar]
  63. SudershanA. SudershanS. SharmaI. KumarH. PanjaliyaR.K. KumarP. Role of TNF-α in the Pathogenesis of Migraine.Pain Res. Manag.2024202411210.1155/2024/1377143 38213956
    [Google Scholar]
  64. RouzerC.A. MarnettL.J. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs.Chem. Rev.2020120157592764110.1021/acs.chemrev.0c00215 32609495
    [Google Scholar]
  65. ChengY. LiuX. QuW. WangX. SuH. LiW. XuW. Amentoflavone alleviated cartilage injury and inflammatory response of knee osteoarthritis through PTGS2.Naunyn Schmiedebergs Arch. Pharmacol.20242024032220322410.1007/s00210‑024‑03222‑4 38856914
    [Google Scholar]
  66. LiuS. LiS. DongY. QiaoK. ZhaoY. YuJ. Hispidulin targets PTGS2 to improve cyclophosphamide-induced cystitis by suppressing NLRP3 inflammasome.Naunyn Schmiedebergs Arch. Pharmacol.202420240298710.1007/s00210‑024‑02987‑y 38321213
    [Google Scholar]
  67. KimH.Y. NamS.Y. HongS.W. KimM.J. JeongH.J. KimH.M. Protective effects of rutin through regulation of vascular endothelial growth factor in allergic rhinitis.Am. J. Rhinol. Allergy2015293e87e9410.2500/ajra.2015.29.4195 25975244
    [Google Scholar]
  68. ZengZ. LiS. YeX. WangY. WangQ. ChenZ. WangZ. ZhangJ. WangQ. ChenL. ZhangS. ZouZ. LinM. ChenX. ZhaoG. McAlindenC. LeiH. ZhouX. HuangJ. Genome editing VEGFA prevents corneal neovascularization in vivo.Adv. Sci. (Weinh.)20241125240171010.1002/advs.202401710 38582513
    [Google Scholar]
  69. Bezerra BarrosG.C. Paiva FerreiraL.K.D. FerreiraL.A.M.P. Mozzini MonteiroT. AlvesA.F. PereiraR.A. PiuvezamM.R. 4-Carvomenthenol ameliorates the murine combined allergic rhinitis and asthma syndrome by inhibiting IL-13 and mucus production via p38MAPK/NF-κB signaling pathway axis.Int. Immunopharmacol.20208810693810.1016/j.intimp.2020.106938 33182052
    [Google Scholar]
  70. MarçalJ.R.B. SamuelR.O. FernandesD. de AraujoM.S. NapimogaM.H. PereiraS.A.L. Clemente-NapimogaJ.T. AlvesP.M. MattarR. RodriguesV.Jr RodriguesD.B.R. T-helper cell type 17/regulatory T-cell immunoregulatory balance in human radicular cysts and periapical granulomas.J. Endod.201036699599910.1016/j.joen.2010.03.020 20478453
    [Google Scholar]
  71. MiossecP. Local and systemic effects of IL-17 in joint inflammation: A historical perspective from discovery to targeting.Cell. Mol. Immunol.202118486086510.1038/s41423‑021‑00644‑5 33692481
    [Google Scholar]
  72. NiuY. WangJ. LiZ. YaoK. WangL. SongJ. HIF1α Deficiency in Dendritic Cells Attenuates Symptoms and Inflammatory Indicators of Allergic Rhinitis in a SIRT1-Dependent Manner.Int. Arch. Allergy Immunol.2020181858559310.1159/000506862 32541149
    [Google Scholar]
  73. WangX. LiuC. WuL. ZhuS. Potent ameliorating effect of Hypoxia-inducible factor 1α (HIF-1α) antagonist YC-1 on combined allergic rhinitis and asthma syndrome (CARAS) in Rats.Eur. J. Pharmacol.201678834335010.1016/j.ejphar.2016.07.040 27498367
    [Google Scholar]
  74. LebrecH. PonceR. PrestonB.D. IlesJ. BornT.L. HooperM. Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk.Curr. Med. Res. Opin.201531355757410.1185/03007995.2015.1011778 25651481
    [Google Scholar]
  75. IbrahimO.M. BasseP.H. JiangW. GuruK. ChattaG. KalinskiP. NFκB-Activated COX2/PGE2/EP4 Axis Controls the Magnitude and Selectivity of BCG-Induced Inflammation in Human Bladder Cancer Tissues.Cancers (Basel)2021136132310.3390/cancers13061323 33809455
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808316186240913081055
Loading
/content/journals/lddd/10.2174/0115701808316186240913081055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test