Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

HIV-1, the primary causative agent of AIDS, remains a formidable and lethal virus globally, claiming the lives of millions over the past four decades since its discovery. Recent research has underscored the potential of HIV-1 protease as a therapeutic target, offering a promising strategy for inhibiting viral replication within the body.

Methods

In light of this, we have curated an extensive database comprising 193 derivatives of Darunavir (DRV), an HIV-1 protease inhibitor. Simultaneously, we have developed a comprehensive set of 3D-QSAR models to elucidate the structure-activity relationships of these 193 derivative inhibitors. Employing various computational simulation techniques, including Comparative Molecular Field Analysis (CoMFA), Comparative Similarity Indices Analysis (CoMSIA), and molecular docking, we have unveiled the fundamental three-dimensional structural features influencing their biological activity.

Results

Results indicate that the optimal CoMSIA model (Q2 = 0.500, R2 = 0.882, R2 = 0.797) surpasses other models, demonstrating superior predictive capability. Furthermore, docking results suggest that DRV derivatives maintain stable conformations within the binding cavity due to synergistic interactions, such as hydrogen bonding and non-bonded interactions. Drawing insights from the best computational models, we have designed five DRV derivatives with significant HIV-1 protease inhibitory activity through local modification, with theoretical calculations indicating favorable pharmacokinetic properties and synthetic feasibility for the newly proposed molecules.

Conclusion

It is hoped that the findings and conclusions obtained herein may furnish theoretical underpinning and directional guidance for the design, optimization, and experimental synthesis of DRV derivative compounds for pharmaceutical purposes.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808300511240527130649
2024-06-03
2025-06-24
Loading full text...

Full text loading...

References

  1. CaladoM. PiresD. ConceiçãoC. Santos-CostaQ. AnesE. Azevedo-PereiraJ.M. Human immunodeficiency virus transmission—Mechanisms underlying the cell‐to‐cell spread of human immunodeficiency virus.Rev. Med. Virol.2023336e248010.1002/rmv.2480 37698498
    [Google Scholar]
  2. BarryM.J. NicholsonW.K. SilversteinM. ChelmowD. CokerT.R. DavisE.M. DonahueK.E. JaénC.R. KubikM. LiL. OgedegbeG. RaoG. RuizJ.M. StevermerJ.J. TsevatJ. UnderwoodS.M. WongJ.B. Preexposure Prophylaxis to Prevent Acquisition of HIV.JAMA2023330873674510.1001/jama.2023.14461 37606666
    [Google Scholar]
  3. SalweS. SinghA. PadwalV. VelhalS. NagarV. PatilP. DeshpandeA. PatelV. Immune signatures for HIV-1 and HIV-2 induced CD4+T cell dysregulation in an Indian cohort.BMC Infect. Dis.201919113510.1186/s12879‑019‑3743‑7 30744575
    [Google Scholar]
  4. LuiK.J. DarrowW.W. RutherfordG.W. III A model-based estimate of the mean incubation period for AIDS in homosexual men.Science198824048571333133510.1126/science.3163848 3163848
    [Google Scholar]
  5. BhhataraiB. GargR. From SAR to comparative QSAR: role of hydrophobicity in the design of 4-hydroxy-5,6-dihydropyran-2-ones HIV-1 protease inhibitors.Bioorg. Med. Chem.200513124078408410.1016/j.bmc.2005.03.049 15911321
    [Google Scholar]
  6. FlexnerC. HIV drug development: the next 25 years.Nat. Rev. Drug Discov.200761295996610.1038/nrd2336 17932493
    [Google Scholar]
  7. YoshidaY. HonmaM. KimuraY. AbeH. Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIV‐1 Reverse Transcriptase Inhibitors (NRTIs).ChemMedChem202116574376610.1002/cmdc.202000695 33230979
    [Google Scholar]
  8. De ClercqE. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future.Chem. Biodivers.200411446410.1002/cbdv.200490012 17191775
    [Google Scholar]
  9. WangY. De ClercqE. LiG. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment.Expert Opin. Drug Metab. Toxicol.2019151081382910.1080/17425255.2019.1673367 31556749
    [Google Scholar]
  10. SangZ. ZhangT. WangZ. De ClercqE. PannecouqueC. KangD. ZhanP. LiuX. Design and synthesis of FSP 3 ‐ENRICHED SPIROCYCLIC‐SUBSTITUTED diarylpyrimidine derivatives as novel HIV ‐1 NNRTIS.Chem. Biol. Drug Des.20241033e1451010.1111/cbdd.14510 38519265
    [Google Scholar]
  11. ReevesJ.D. GalloS.A. AhmadN. MiamidianJ.L. HarveyP.E. SharronM. PöhlmannS. SfakianosJ.N. DerdeynC.A. BlumenthalR. HunterE. DomsR.W. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics.Proc. Natl. Acad. Sci. USA20029925162491625410.1073/pnas.252469399 12444251
    [Google Scholar]
  12. YiJ. LiL. YinZ. QuanY. TanR. ChenS. LangJ. LiJ. ZengJ. LiY. SunZ. ZhaoJ. Polypeptide from Moschus Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting NF-κ B-ROS/NLRP3 Pathway.Chin. J. Integr. Med.2023291089590410.1007/s11655‑023‑3598‑z 37542626
    [Google Scholar]
  13. PommierY. JohnsonA.A. MarchandC. Integrase inhibitors to treat HIV/Aids.Nat. Rev. Drug Discov.20054323624810.1038/nrd1660 15729361
    [Google Scholar]
  14. LuoG. ZhouZ. HuangC. ZhangP. SunN. ChenW. DengC. LiX. WuP. TangJ. QingL. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps.Heliyon202397e1790910.1016/j.heliyon.2023.e17909 37456049
    [Google Scholar]
  15. KempfD.J. ShamH.L. HIV Protease Inhibitors.Curr. Pharm. Des.19962222524610.2174/1381612802666220921175941 7712122
    [Google Scholar]
  16. LiJ.M. LiX. ChanL.W.C. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  17. AbediH. EbrahimzadehH. GhasemiJ.B. 3D-QSAR, CoMFA, and CoMSIA of new phenyloxazolidinones derivatives as potent HIV-1 protease inhibitors.Struct. Chem.201324243344410.1007/s11224‑012‑0092‑1
    [Google Scholar]
  18. GanY. XuY. ZhangX. HuH. XiaoW. YuZ. SunT. ZhangJ. WenC. ZhengS. Revisiting Supersaturation of a Biopharmaceutical Classification System IIB Drug: Evaluation via a Multi-Cup Dissolution Approach and Molecular Dynamic Simulation.Molecules20232819696210.3390/molecules28196962 37836805
    [Google Scholar]
  19. ZhouY. LiQ. PanR. WangQ. ZhuX. YuanC. CaiF. GaoY. CuiY. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae.Allergy202277246948210.1111/all.15111 34570913
    [Google Scholar]
  20. HuangY.M. AlharbiN.S. SunB. ShantharamC.S. RakeshK.P. QinH.L. Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review.Eur. J. Med. Chem.201918111156610.1016/j.ejmech.2019.111566 31401538
    [Google Scholar]
  21. SubbaiahM.A.M. MeanwellN.A. KadowJ.F. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties.Eur. J. Med. Chem.201713986588310.1016/j.ejmech.2017.07.044 28865281
    [Google Scholar]
  22. ZhouL. LiuY. SunH. LiH. ZhangZ. HaoP. Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction.Sens. Actuators B Chem.202236913231510.1016/j.snb.2022.132315
    [Google Scholar]
  23. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: improved access to chemical data.Nucleic Acids Res.201947D1D1102D110910.1093/nar/gky1033 30371825
    [Google Scholar]
  24. OlczakA. Darunavir, promising option in therapy multi-experience HIV-infected patients.HIV AIDS Rev.2008715910.1016/S1730‑1270(10)60059‑8
    [Google Scholar]
  25. BackD. SekarV. HoetelmansR.M.W. Darunavir: pharmacokinetics and drug interactions.Antivir. Ther.200813111410.1177/135965350801300101 18389894
    [Google Scholar]
  26. QinX. ZhangK. FanY. FangH. NieY. WuX.L. The Bacterial MtrAB Two-Component System Regulates the Cell Wall Homeostasis Responding to Environmental Alkaline Stress.Microbiol. Spectr.2022105e023112210.1128/spectrum.02311‑22 36073914
    [Google Scholar]
  27. HuB. DasP. LvX. ShiM. AaJ. WangK. DuanL. GilbertJ.A. NieY. WuX.L. Effects of ‘Healthy’ Fecal Microbiota Transplantation against the Deterioration of Depression in Fawn-Hooded Rats.mSystems202273e002182210.1128/msystems.00218‑22 35481347
    [Google Scholar]
  28. DeeksE.D. Darunavir: a review of its use in the management of HIV-1 infection.Drugs20147419912510.1007/s40265‑013‑0159‑3 24338166
    [Google Scholar]
  29. LinF. LiF. WangC. WangJ. YangY. YangL. LiY. Mechanism exploration of arylpiperazine derivatives targeting the 5-HT2A receptor by in silico methods.Molecules2017227106410.3390/molecules22071064 28672848
    [Google Scholar]
  30. WuQ. LiX. GaoQ. WangJ. LiY. YangL. Interaction mechanism exploration of HEA derivatives as BACE1 inhibitors by in silico analysis.Mol. Biosyst.20161241151116510.1039/C5MB00859J 26915506
    [Google Scholar]
  31. WangC. WangS. Wang, Z Andrographolide regulates H3 histone lactylation by interfering with p300 to alleviate aortic valve calcification. Br J Pharmacol., 2024. Online ahead of print 10.1111/bph.16332
    [Google Scholar]
  32. CramerR.D.III BunceJ.D. PattersonD.E. FrankI.E. Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies.Quant. Struct.-Act. Relationsh.198871182510.1002/qsar.19880070105
    [Google Scholar]
  33. ZhouY. LiL. YuZ. GuX. PanR. LiQ. YuanC. CaiF. ZhuY. CuiY. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IGE ‐binding in asthmatic children, and immunogenicity.Pediatr. Allergy Immunol.2022338e1383510.1111/pai.13835 36003049
    [Google Scholar]
  34. GhoshA.K. BrindisiM. Nature inspired molecular design: stereoselective synthesis of bicyclic and polycyclic ethers for potent HIV-1 protease inhibitors.Asian J. Org. Chem.2018781448146610.1002/ajoc.201800255 31595212
    [Google Scholar]
  35. GhoshA.K. BrindisiM. NyalapatlaP.R. TakayamaJ. Ella-MenyeJ.R. YashchukS. AgniswamyJ. WangY.F. AokiM. AmanoM. WeberI.T. MitsuyaH. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex.Bioorg. Med. Chem.201725195114512710.1016/j.bmc.2017.04.005 28434781
    [Google Scholar]
  36. GhoshA.K. FyvieW.S. BrindisiM. SteffeyM. AgniswamyJ. WangY.F. AokiM. AmanoM. WeberI.T. MitsuyaH. Design, synthesis, biological evaluation, and X-ray studies of HIV-1 protease inhibitors with modified P2′ ligands of darunavir.ChemMedChem201712231942195210.1002/cmdc.201700614 29110408
    [Google Scholar]
  37. GhoshA.K. Sean FyvieW. BrindisiM. SteffeyM. AgniswamyJ. WangY.F. AokiM. AmanoM. WeberI.T. MitsuyaH. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1′-P2′ ligands.Bioorg. Med. Chem. Lett.201727214925493110.1016/j.bmcl.2017.09.003 28958624
    [Google Scholar]
  38. GhoshA.K. JadhavR.D. SimpsonH. KovelaS. OsswaldH. AgniswamyJ. WangY.F. HattoriS. WeberI.T. MitsuyaH. Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors incorporating aminothiochromane and aminotetrahydronaphthalene carboxamide derivatives as the P2 ligands.Eur. J. Med. Chem.201816017118210.1016/j.ejmech.2018.09.046 30340140
    [Google Scholar]
  39. GhoshA.K. MartyrC.D. KassekertL.A. NyalapatlaP.R. SteffeyM. AgniswamyJ. WangY.F. WeberI.T. AmanoM. MitsuyaH. Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands.Org. Biomol. Chem.20151348116071162110.1039/C5OB01930C 26462551
    [Google Scholar]
  40. GhoshA.K. MartyrC.D. OsswaldH.L. SheriV.R. KassekertL.A. ChenS. AgniswamyJ. WangY.F. HayashiH. AokiM. WeberI.T. MitsuyaH. Design of HIV-1 protease inhibitors with amino-bis-tetrahydrofuran derivatives as P2-Ligands to enhance backbone-binding interactions: synthesis, biological evaluation, and protein-ligand X-ray studies.J. Med. Chem.201558176994700610.1021/acs.jmedchem.5b00900 26306007
    [Google Scholar]
  41. GhoshA.K. R NyalapatlaP. KovelaS. RaoK.V. BrindisiM. OsswaldH.L. AmanoM. AokiM. AgniswamyJ. WangY.F. WeberI.T. MitsuyaH. Design and synthesis of highly potent HIV-1 protease inhibitors containing tricyclic fused ring systems as novel P2 ligands: structure-activity studies, biological and X-ray structural analysis.J. Med. Chem.201861104561457710.1021/acs.jmedchem.8b00298 29763303
    [Google Scholar]
  42. GhoshA.K. OsswaldH.L. GlauningerK. AgniswamyJ. WangY.F. HayashiH. AokiM. WeberI.T. MitsuyaH. Probing lipophilic adamantyl group as the P1-ligand for HIV-1 protease inhibitors: design, synthesis, protein X-ray structural studies, and biological evaluation.J. Med. Chem.201659146826683710.1021/acs.jmedchem.6b00639 27389367
    [Google Scholar]
  43. GhoshA.K. RaoK.V. NyalapatlaP.R. OsswaldH.L. MartyrC.D. AokiM. HayashiH. AgniswamyJ. WangY.F. BulutH. DasD. WeberI.T. MitsuyaH. Design and development of highly potent HIV-1 protease inhibitors with a crown-like oxotricyclic core as the P2-ligand to combat multidrug-resistant HIV variants.J. Med. Chem.201760104267427810.1021/acs.jmedchem.7b00172 28418652
    [Google Scholar]
  44. GhoshA.K. RaoK.V. NyalapatlaP.R. KovelaS. BrindisiM. OsswaldH.L. Sekhara ReddyB. AgniswamyJ. WangY.F. AokiM. HattoriS. WeberI.T. MitsuyaH. Design of highly potent, dual acting and central nervous system penetrating HIV-1 protease inhibitors with excellent potency against multidrug resistant HIV-1 variants.ChemMedChem201813880381510.1002/cmdc.201700824 29437300
    [Google Scholar]
  45. GhoshA.K. SchiltzG.E. RusereL.N. OsswaldH.L. WaltersD.E. AmanoM. MitsuyaH. Design and synthesis of potent macrocyclic HIV-1 protease inhibitors involving P1–P2 ligands.Org. Biomol. Chem.201412356842685410.1039/C4OB00738G 25050776
    [Google Scholar]
  46. GhoshA.K. TakayamaJ. KassekertL.A. Ella-MenyeJ.R. YashchukS. AgniswamyJ. WangY.F. AokiM. AmanoM. WeberI.T. MitsuyaH. Structure-based design, synthesis, X-ray studies, and biological evaluation of novel HIV-1 protease inhibitors containing isophthalamide-derived P2-ligands.Bioorg. Med. Chem. Lett.201525214903490910.1016/j.bmcl.2015.05.052 26096678
    [Google Scholar]
  47. GhoshA.K. WilliamsJ.N. HoR.Y. SimpsonH.M. HattoriS. HayashiH. AgniswamyJ. WangY.F. WeberI.T. MitsuyaH. Design and synthesis of potent HIV-1 protease inhibitors containing bicyclic oxazolidinone scaffold as the P2 ligands: structure-activity studies and biological and X-ray structural studies.J. Med. Chem.201861219722973710.1021/acs.jmedchem.8b01227 30354121
    [Google Scholar]
  48. GhoshA.K. WilliamsJ.N. KovelaS. TakayamaJ. SimpsonH.M. WaltersD.E. HattoriS. AokiM. MitsuyaH. Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation.Bioorg. Med. Chem. Lett.201929182565257010.1016/j.bmcl.2019.08.006 31416666
    [Google Scholar]
  49. GhoshA.K. YashchukS. MizunoA. ChakrabortyN. AgniswamyJ. WangY.F. AokiM. GomezP.M.S. AmanoM. WeberI.T. MitsuyaH. Design of gem-difluoro-bis-tetrahydrofuran as P2 ligand for HIV-1 protease inhibitors to improve brain penetration: synthesis, X-ray studies, and biological evaluation.ChemMedChem201510110711510.1002/cmdc.201402358 25336073
    [Google Scholar]
  50. GhoshA.K. YuX. OsswaldH.L. AgniswamyJ. WangY.F. AmanoM. WeberI.T. MitsuyaH. Structure-based design of potent HIV-1 protease inhibitors with modified P1-biphenyl ligands: synthesis, biological evaluation, and enzyme-inhibitor X-ray structural studies.J. Med. Chem.201558135334534310.1021/acs.jmedchem.5b00676 26107245
    [Google Scholar]
  51. LiY. WangD. YangY. ZhangJ. HanC. WangJ. GaoW. ZhangG. SunX. WangB. ZhangS. YangL. The 3D-QSAR and pharmacophore studies of pyrimidine derivatives as HCV replication (replicase) inhibitor.Med. Chem. Res.20152452033204210.1007/s00044‑014‑1256‑x
    [Google Scholar]
  52. ClarkM. CramerR.D.III Van OpdenboschN. Validation of the general purpose tripos 5.2 force field.J. Comput. Chem.1989108982101210.1002/jcc.540100804
    [Google Scholar]
  53. PatelP.K. BhattH.G. Improved 3D-QSAR Prediction by Multiple Conformational Alignments and Molecular Docking Studies to Design and Discover HIV-I Protease Inhibitors.Curr. HIV Res.202119215417110.2174/1570162X18666201119143457 33213349
    [Google Scholar]
  54. WangW. LiB. WuY. LiM. MaS. YanD. LiD. ZhangJ. LiX. GaoQ. ZhaoL. HuZ. JiangY. LiuZ. LiuK. YanY. FengY. ZhengJ. ShuB. WangJ. WangH. HeL. ZhouS. WangD. ShenC. TangB.Z. LiaoY. Macrophage-derived biomimetic nanoparticles for light-driven theranostics toward Mpox.Matter2024731187120610.1016/j.matt.2024.01.004
    [Google Scholar]
  55. WuM. LiY. FuX. WangJ. ZhangS. YangL. Profiling the interaction mechanism of quinoline/quinazoline derivatives as MCHR1 antagonists: an in silico method.Int. J. Mol. Sci.2014159154751550210.3390/ijms150915475 25257526
    [Google Scholar]
  56. YuY. YangJ.P. ShiuC.S. SimoniJ.M. XiaoS. ChenW. RaoD. WangM. Psychometric testing of the Chinese version of the Medical Outcomes Study Social Support Survey among people living with HIV/AIDS in China.Appl. Nurs. Res.201528432833310.1016/j.apnr.2015.03.006 26608434
    [Google Scholar]
  57. LiuP. LongW. Current mathematical methods used in QSAR/QSPR studies.Int. J. Mol. Sci.20091051978199810.3390/ijms10051978 19564933
    [Google Scholar]
  58. GramaticaP. Principles of QSAR models validation: internal and external.QSAR Comb. Sci.200726569470110.1002/qsar.200610151
    [Google Scholar]
  59. MaoY. LiY. HaoM. ZhangS. AiC. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.J. Mol. Model.20121852185219810.1007/s00894‑011‑1236‑8 21947448
    [Google Scholar]
  60. BaroniM. CostantinoG. CrucianiG. RiganelliD. ValigiR. ClementiS. Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D‐QSAR Problems.Quant. Struct.-Act. Relationsh.199312192010.1002/qsar.19930120103
    [Google Scholar]
  61. SaxenaA.K. PrathipatiP. Comparison of MLR, PLS and GA-MLR in QSAR analysis.SAR QSAR Environ. Res.2003145-643344510.1080/10629360310001624015 14758986
    [Google Scholar]
  62. GuptaP. RoyN. GargP. Docking-based 3D-QSAR study of HIV-1 integrase inhibitors.Eur. J. Med. Chem.200944114276428710.1016/j.ejmech.2009.07.010 19647906
    [Google Scholar]
  63. VerdonkM.L. ColeJ.C. HartshornM.J. MurrayC.W. TaylorR.D. Improved protein–ligand docking using GOLD.Proteins200352460962310.1002/prot.10465 12910460
    [Google Scholar]
  64. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking.1997267372774810.1006/jmbi.1996.0897
    [Google Scholar]
  65. GhoshA.K. MartyrC.D. SteffeyM. WangY.F. AgniswamyJ. AmanoM. WeberI.T. MitsuyaH. Design of substituted bis-Tetrahydrofuran (bis-THF)-derived Potent HIV-1 Protease Inhibitors, Protein-ligand X-ray Structure, and Convenient Syntheses of bis-THF and Substituted bis-THF Ligands.ACS Med. Chem. Lett.20112429830210.1021/ml100289m 22509432
    [Google Scholar]
  66. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  67. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639:AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  68. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  69. SolisF.J. WetsR.J.B. Minimization by Random Search Techniques.Math. Oper. Res.198161193010.1287/moor.6.1.19
    [Google Scholar]
  70. HueyR. MorrisG.M. OlsonA.J. GoodsellD.S. A semiempirical free energy force field with charge‐based desolvation.J. Comput. Chem.20072861145115210.1002/jcc.20634 17274016
    [Google Scholar]
  71. AzizahR.N. SuhartiY. Yahmin, A molecular docking study of dehydroevodiamine as an inhibitor of epstein-barr virus protease.IOP Conf. Series Mater. Sci. Eng.2020833101200610.1088/1757‑899X/833/1/012006
    [Google Scholar]
  72. ForlemuN. WatkinsP. SloopJ. Molecular Docking of Selective Binding Affinity of Sulfonamide Derivatives as Potential Antimalarial Agents Targeting the Glycolytic Enzymes: GAPDH, Aldolase and TPI.Open J. Biophys.201771415710.4236/ojbiphy.2017.71004
    [Google Scholar]
  73. WangJ. LiF. LiY. YangY. ZhangS. YangL. Structural features of falcipain-3 inhibitors: an in silico study.Mol. Biosyst.2013992296231010.1039/c3mb70105k 23765034
    [Google Scholar]
  74. ZhengR. ZhaoY. WuJ. WangY. LiuJ.L. ZhouZ.L. ZhouX.T. ChenD.N. LiaoW.H. LiJ.D. A novel PNPLA6 compound heterozygous mutation identified in a Chinese patient with Boucher Neuhï¿1/2user syndrome.Mol. Med. Rep.201818126126710.3892/mmr.2018.8955 29749493
    [Google Scholar]
  75. YangY. WangJ. LiY. XiaoW. WangZ. ZhangJ. GaoW. ZhangS. YangL. Structure determinants of indolin-2-on-3-spirothiazolidinones as MptpB inhibitors: An in silico study.Soft Matter20139461105410.1039/c3sm51995c
    [Google Scholar]
  76. SongY. LiX. NieS. HuZ. ZhouD. SunD. ZhouG. WangY. LiuJ. SongT. WangS. Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate.Cancer Gene Ther.20233081156116610.1038/s41417‑023‑00627‑w 37231059
    [Google Scholar]
  77. JainS.V. GhateM. BhadoriyaK.S. BariS.B. ChaudhariA. BorseJ.S. 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.Org. Med. Chem. Lett.2012212210.1186/2191‑2858‑2‑22 22691718
    [Google Scholar]
  78. WangK. ZhouM. GongX. ZhouY. ChenJ. MaJ. ZhangP. Starch–protein interaction effects on lipid metabolism and gut microbes in host.Front. Nutr.20229101802610.3389/fnut.2022.1018026 36466418
    [Google Scholar]
  79. BaiR. ZhuJ. BaiZ. MaoQ. ZhangY. HuiZ. LuoX. YeX.Y. XieT. Second generation β-elemene nitric oxide derivatives with reasonable linkers: potential hybrids against malignant brain glioma.J. Enzyme Inhib. Med. Chem.202237137938510.1080/14756366.2021.2016734 35012394
    [Google Scholar]
  80. VenkatakrishnanB. PaliiM.L. Agbandje-McKennaM. McKennaR. Mining the protein data bank to differentiate error from structural variation in clustered static structures: an examination of HIV protease.Viruses20124334836210.3390/v4030348 22590675
    [Google Scholar]
  81. JacobsenH. HänggiM. OttM. DuncanI.B. OwenS. AndreoniM. VellaS. MousJ. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies.J. Infect. Dis.199617361379138710.1093/infdis/173.6.1379 8648209
    [Google Scholar]
  82. BrikA. WongC.H. HIV-1 protease: mechanism and drug discovery.Org. Biomol. Chem.20031151410.1039/b208248a 12929379
    [Google Scholar]
  83. PearlL.H. TaylorW.R. A structural model for the retroviral proteases.Nature1987329613735135410.1038/329351a0 3306411
    [Google Scholar]
  84. GulS. JanF. AlamA. ShakoorA. KhanA. AlAsmariA.F. AlasmariF. KhanM. BoL. Synthesis, molecular docking and DFT analysis of novel bis-Schiff base derivatives with thiobarbituric acid for α-glucosidase inhibition assessment.Sci. Rep.2024141341910.1038/s41598‑024‑54021‑z 38341468
    [Google Scholar]
  85. KohlN.E. EminiE.A. SchleifW.A. DavisL.J. HeimbachJ.C. DixonR.A. ScolnickE.M. SigalI.S. Active human immunodeficiency virus protease is required for viral infectivity.Proc. Natl. Acad. Sci. USA198885134686469010.1073/pnas.85.13.4686 3290901
    [Google Scholar]
  86. GhoshA.K. ChapsalB.D. Design of the anti-HIV protease inhibitor darunavir.Introduction to Biological and Small Molecule Drug Research and Development.Elsvier2013
    [Google Scholar]
  87. RobertsB.C. ManceraR.L. Ligand-protein docking with water molecules.J. Chem. Inf. Model.200848239740810.1021/ci700285e 18211049
    [Google Scholar]
  88. VerdonkM.L. ChessariG. ColeJ.C. HartshornM.J. MurrayC.W. NissinkJ.W.M. TaylorR.D. TaylorR. Modeling water molecules in protein-ligand docking using GOLD.J. Med. Chem.200548206504651510.1021/jm050543p 16190776
    [Google Scholar]
  89. WaheedM. IdrisS. JanF. AlamA. AlamA. IbrahimM. AlAsmariA.F. AlharbiM. AlasmariF. KhanM. Exploring the synthesis, structure, spectroscopy and biological activities of novel 4-benzylidene-1-(2-(2,4-dichloro phenyl)acetyl) thiosemicarbazide derivatives: An integrated experimental and theoretical investigation.Saudi Pharm. J.2023311210187410.1016/j.jsps.2023.101874 38088945
    [Google Scholar]
  90. IdrisS. JanF. WaheedM. AlamA. IbrahimM. AlAsmariA.F. AlasmariF. BoL. KhanM. Multifaceted bioactivity of thiosemicarbazide derivatives: Synthesis, characterization, and DFT investigations on inhibition of α-amylase, hydroxyl radical scavenging, and iron chelating activities with molecular docking insights.J. Mol. Struct.2024130413766910.1016/j.molstruc.2024.137669
    [Google Scholar]
  91. Medina-O’DonnellM. RivasF. Reyes-ZuritaF.J. Cano-MuñozM. MartinezA. LupiañezJ.A. ParraA. Oleanolic acid derivatives as potential inhibitors of HIV-1 protease.J. Nat. Prod.201982102886289610.1021/acs.jnatprod.9b00649 31617361
    [Google Scholar]
  92. SahinK. Investigation of novel indole-based HIV-1 protease inhibitors using virtual screening and text mining.J. Biomol. Struct. Dyn.202139103638364810.1080/07391102.2020.1775121 32496942
    [Google Scholar]
  93. TongJ.B. BaiM. ZhaoX. 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock.Med. Chem. Res.201625112619263010.1007/s00044‑016‑1701‑0
    [Google Scholar]
  94. TongJ. ZhanP. BaiM. YaoT. Molecular modeling studies of human immunodeficiency virus type 1 protease inhibitors using three‐dimensional quantitative structure‐activity relationship, virtual screening, and docking simulations.J. Chemometr.201630952353610.1002/cem.2809
    [Google Scholar]
  95. TongJ. WuY. BaiM. ZhanP. 3D-QSAR and molecular docking studies on HIV protease inhibitors.J. Mol. Struct.20171129172210.1016/j.molstruc.2016.09.052
    [Google Scholar]
  96. ZhouH. ZhuM. MaL. ZhouJ. DongB. ZhangG. CenS. WangY. WangJ. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study.PLoS One2020157e023548310.1371/journal.pone.0235483 32697773
    [Google Scholar]
  97. SchimerJ. CíglerP. VeselýJ. Grantz ŠaškováK. LepšíkM. BryndaJ. ŘezáčováP. KožíšekM. CísařováI. OberwinklerH. KraeusslichH.G. KonvalinkaJ. Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold.J. Med. Chem.20125522101301013510.1021/jm301249q 23050738
    [Google Scholar]
  98. TianY. ZhangS. YinH. YanA. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods.Chemom. Intell. Lab. Syst.202019610388810.1016/j.chemolab.2019.103888
    [Google Scholar]
  99. RaoS.N. BalajiG.A. BalajiV.N. Docking and 3-D QSAR studies on the binding of tetrahydropyrimid-2-one HIV-1 protease inhibitors.J. Mol. Struct.201310428610310.1016/j.molstruc.2013.03.022
    [Google Scholar]
  100. ParaiM.K. HugginsD.J. CaoH. NalamM.N.L. AliA. SchifferC.A. TidorB. RanaT.M. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance.J. Med. Chem.201255146328634110.1021/jm300238h 22708897
    [Google Scholar]
  101. KhedkarV.M. AmbreP.K. VermaJ. ShaikhM.S. PissurlenkarR.R.S. CoutinhoE.C. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors.J. Mol. Model.20101671251126810.1007/s00894‑009‑0636‑5 20069323
    [Google Scholar]
  102. UngwitayatornJ. WiwatC. SameeW. NunthanavanitP. PhosrithongN. Synthesis, in vitro evaluation, and docking studies of novel chromone derivatives as HIV-1 protease inhibitor.J. Mol. Struct.201110011-315216110.1016/j.molstruc.2011.06.035
    [Google Scholar]
  103. SroczyńskiD. MalinowskiZ. SzcześniakA.K. PakulskaW. New 1(2 H)-phthalazinone derivatives as potent nonpeptidic HIV-1 protease inhibitors: molecular docking studies, molecular dynamics simulation, oral bioavailability and ADME prediction.Mol. Simul.201642862864110.1080/08927022.2015.1067808
    [Google Scholar]
  104. TakamatsuY. AokiM. BulutH. DasD. AmanoM. SheriV.R. KovariL.C. HayashiH. DelinoN.S. GhoshA.K. MitsuyaH. Novel protease inhibitors containing C-5-modified bis-tetrahydrofuranylurethane and aminobenzothiazole as P2 and P2′ ligands that exert potent antiviral activity against highly multidrug-resistant HIV-1 with a high genetic barrier against the emergence of drug resistance.Antimicrob. Agents Chemother.2019638e00372e1910.1128/AAC.00372‑19 31085520
    [Google Scholar]
  105. TieY. KovalevskyA.Y. BorossP. WangY.F. GhoshA.K. TozserJ. HarrisonR.W. WeberI.T. Atomic resolution crystal structures of HIV‐1 protease and mutants V82A and I84V with saquinavir.Proteins200767123224210.1002/prot.21304 17243183
    [Google Scholar]
  106. YedidiR.S. GarimellaH. AokiM. Aoki-OgataH. DesaiD.V. ChangS.B. DavisD.A. FyvieW.S. KaufmanJ.D. SmithD.W. DasD. WingfieldP.T. MaedaK. GhoshA.K. MitsuyaH. A conserved hydrogen-bonding network of P2 bis-tetrahydrofuran-containing HIV-1 protease inhibitors (PIs) with a protease active-site amino acid backbone aids in their activity against PI-resistant HIV.Antimicrob. Agents Chemother.20145873679368810.1128/AAC.00107‑14 24752271
    [Google Scholar]
  107. MahalingamB. WangY.F. BorossP.I. TozserJ. LouisJ.M. HarrisonR.W. WeberI.T. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir‐binding site.Eur. J. Biochem.200427181516152410.1111/j.1432‑1033.2004.04060.x 15066177
    [Google Scholar]
  108. WangR.G. ZhangH.X. ZhengQ.C. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses.Phys. Chem. Chem. Phys.20202284464448010.1039/C9CP06657H 32057044
    [Google Scholar]
  109. GerlitsO. KeenD.A. BlakeleyM.P. LouisJ.M. WeberI.T. KovalevskyA. Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K.J. Med. Chem.20176052018202510.1021/acs.jmedchem.6b01767 28195728
    [Google Scholar]
  110. RusereL.N. LockbaumG.J. HenesM. LeeS.K. SpielvogelE. RaoD.N. KosovrastiK. NalivaikaE.A. SwanstromR. Kurt YilmazN. SchifferC.A. AliA. Structural Analysis of Potent Hybrid HIV-1 Protease Inhibitors Containing Bis-tetrahydrofuran in a Pseudosymmetric Dipeptide Isostere.J. Med. Chem.202063158296831310.1021/acs.jmedchem.0c00529 32672965
    [Google Scholar]
  111. ClementeJ.C. ComanR.M. ThiavilleM.M. JankaL.K. JeungJ.A. NukoolkarnS. GovindasamyL. Agbandje-McKennaM. McKennaR. LeelamanitW. GoodenowM.M. DunnB.M. Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: structural determinants for maintaining sensitivity and developing resistance to atazanavir.Biochemistry200645175468547710.1021/bi051886s 16634628
    [Google Scholar]
  112. WangY. LiuZ. BrunzelleJ.S. KovariI.A. DewdneyT.G. ReiterS.J. KovariL.C. The higher barrier of darunavir and tipranavir resistance for HIV-1 protease.Biochem. Biophys. Res. Commun.2011412473774210.1016/j.bbrc.2011.08.045 21871444
    [Google Scholar]
  113. YedidiR.S. MaedaK. FyvieW.S. SteffeyM. DavisD.A. PalmerI. AokiM. KaufmanJ.D. StahlS.J. GarimellaH. DasD. WingfieldP.T. GhoshA.K. MitsuyaH. P2′ benzene carboxylic acid moiety is associated with decrease in cellular uptake: evaluation of novel nonpeptidic HIV-1 protease inhibitors containing P2 bis-tetrahydrofuran moiety.Antimicrob. Agents Chemother.201357104920492710.1128/AAC.00868‑13 23877703
    [Google Scholar]
  114. BahiaM.S. KaspiO. TouitouM. BinayevI. DhailS. SpiegelJ. KhazanovN. YosipofA. SenderowitzH. A comparison between 2D and 3D descriptors in QSAR modeling based on bio‐active conformations.Mol. Inform.2023424220018610.1002/minf.202200186 36617991
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808300511240527130649
Loading
/content/journals/lddd/10.2174/0115701808300511240527130649
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3D-QSAR; CoMFA; CoMSIA; DRV derivatives; HIV-1 PIs; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test