Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Temperature-sensitive (thermo-sensitive) formulations are a novel drug delivery dosage form that shows bio-inspired behavior in various applications. The structure and properties of a thermosensitive polymer are critical in designing an intelligent biometric polymer that contains lipopeptide biosurfactants.

Objective

In this study, thermo-sensitive hydrogels with lipopeptide biosurfactants as a potential wound dressing dosage form were formulated and examined regarding physicochemical properties.

Methods

The lipopeptide biosurfactants were isolated from the B6 bacterial strain and loaded on a formulation of poloxamer 407® and carboxymethyl cellulose as a gelling agent. Numerous experiments were carried out to evaluate the physicochemical properties of these formulations, such as the stability, spreadability, release profile, and kinetic.

Results

The formulation (Poloxamer 407® (19% w/v), carboxymethyl cellulose (2% w/v), lipopeptide biosurfactants (5 mg/mL), benzyl alcohol (1% v/v), and 0.1 mL polyethylene glycol 400) was select as the optimum formulation. The selected formulation released 26.9% of the lipopeptide biosurfactants with anomalous transport kinetics after 10 hours.

Conclusion

The results showed that a thermo-sensitive formulation could help achieve a sustained release of lipopeptide biosurfactants and potentially be used as a dressing formulation for wounds in future studies.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808296878240419065845
2024-04-29
2025-06-22
Loading full text...

Full text loading...

References

  1. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  2. PeppasN.A. MikosA.G. Preparation methods and structure of hydrogels.Hydrogels in medicine and pharmacy.CRC Press201912610.1201/9780429285097
    [Google Scholar]
  3. Raeisi EstabraghM.A. Sajadi BamiM. DehghannoudehG. NoudehY.D. MoghimipourE. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review.Int. J. Biol. Macromol.202324112453810.1016/j.ijbiomac.2023.124538 37085064
    [Google Scholar]
  4. ChenY. ZhengK. NiuL. ZhangY. LiuY. WangC. ChuF. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles.Int. J. Biol. Macromol.201912841442010.1016/j.ijbiomac.2019.01.099 30682469
    [Google Scholar]
  5. SuoH. ZhangD. YinJ. QianJ. WuZ.L. FuJ. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering.Mater. Sci. Eng. C20189261262010.1016/j.msec.2018.07.016 30184788
    [Google Scholar]
  6. SaroiaJ. YanenW. WeiQ. ZhangK. LuT. ZhangB. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective.BioDes. Manuf.201814265279
    [Google Scholar]
  7. KordeJ.M. KandasubramanianB. Naturally biomimicked smart shape memory hydrogels for biomedical functions.Chem. Eng. J.202037912243010.1016/j.cej.2019.122430
    [Google Scholar]
  8. SalehiT. EstabraghR.M.A. SalarpourS. OhadiM. DehghannoudehG. Absorption enhancer approach for protein delivery by various routes of administration: A rapid review.J. Drug Target.202331995096110.1080/1061186X.2023.2271680 37842966
    [Google Scholar]
  9. HuangH. QiX. ChenY. WuZ. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review.Saudi Pharm. J.201927799099910.1016/j.jsps.2019.08.001 31997906
    [Google Scholar]
  10. ZarrintajP. JouyandehM. GanjaliM.R. HadavandB.S. MozafariM. SheikoS.S. VarnoosfaderaniV.M. GutiérrezT.J. SaebM.R. Thermo-sensitive polymers in medicine: A review.Eur. Polym. J.201911740242310.1016/j.eurpolymj.2019.05.024
    [Google Scholar]
  11. BamiM.S. Raeisi EstabraghM.A. KhazaeliP. OhadiM. DehghannoudehG. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application.J. Drug Deliv. Sci. Technol.20227010298710.1016/j.jddst.2021.102987
    [Google Scholar]
  12. GioffrediE. BoffitoM. CalzoneS. GiannitelliS.M. RainerA. TrombettaM. MozeticP. ChionoV. Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications.Procedia CIRP20164912513210.1016/j.procir.2015.11.001
    [Google Scholar]
  13. JungY. ParkW. ParkH. LeeD.K. NaK. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery.Carbohydr. Polym.201715640340810.1016/j.carbpol.2016.08.068 27842839
    [Google Scholar]
  14. PhamD.T. PhewchanP. NavesitK. ChokamonsirikunA. KhemwongT. TiyaboonchaiW. Development of metronidazole-loaded in situ thermosensitive hydrogel for periodontitis treatment.Turk. J. Pharmaceut. Sci.202118451051610.4274/tjps.galenos.2020.09623
    [Google Scholar]
  15. AdelA. Abou-YoussefH. El-GendyA. NadaA. Carboxymethylated cellulose hydrogel; sorption behavior and characterization.Nat. Sci.201088244256
    [Google Scholar]
  16. XieJ. LiA. LiJ. Advances in pH‐sensitive polymers for smart insulin delivery.Macromol. Rapid Commun.20173823170041310.1002/marc.201700413 28976043
    [Google Scholar]
  17. LoriM.S. OhadiM. EstabraghM.A.R. AfsharipourS. BanatI.M. DehghannoudehG. pH-Sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review.Protein Pept. Lett.202128111230123710.2174/0929866528666210720142841 34303327
    [Google Scholar]
  18. LimT. TangQ. ZhuZ. WeiX. ZhangC. Sustained release of human platelet lysate growth factors by thermosensitive hydroxybutyl chitosan hydrogel promotes skin wound healing in rats.J. Biomed. Mater. Res. A2020108102111212210.1002/jbm.a.36970 32323472
    [Google Scholar]
  19. ZhangJ. YunS. KaramiA. JingB. ZannettinoA. Du, Y 3D printing of a thermosensitive hydrogel for skin tissue engineering: A proof of concept study.Int J Bioprinting202019e00089
    [Google Scholar]
  20. KondapiA.K. Surfactant‐and biosurfactant‐based therapeutics: structure, properties, and recent developments in drug delivery and therapeutic applications.. In: Biosurfactants for a sustainable future: production and applications in the environment and biomedicine; 202137339510.1002/9781119671022.ch17
    [Google Scholar]
  21. NaughtonP.J. MarchantR. NaughtonV. BanatI.M. Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries.J. Appl. Microbiol.20191271122810.1111/jam.14243 30828919
    [Google Scholar]
  22. NadheS.B. WadhwaniS.A. SinghR. ChopadeB.A. Green synthesis of AuNPs by Acinetobacter sp. GWRVA25: optimization, characterization, and its antioxidant activity.Front Chem.2020847410.3389/fchem.2020.00474 32626688
    [Google Scholar]
  23. Sajadi BamiM. Raeisi EstabraghM.A. OhadiM. BanatI.M. DehghannoudehG. Biosurfactants aided bioremediation mechanisms: A mini-review.Soil Sediment Contam.202231780181710.1080/15320383.2021.2016603
    [Google Scholar]
  24. NeshaniA. SedighianH. MirhosseiniS.A. GhazviniK. ZareH. JahangiriA. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections.Microb. Pathog.202014610423810.1016/j.micpath.2020.104238 32387392
    [Google Scholar]
  25. ChoiJ. JangA. YoonY.K. KimY. Development of novel peptides for the antimicrobial combination therapy against carbapenem-resistant acinetobacter baumannii infection.Pharmaceutics20211311180010.3390/pharmaceutics13111800 34834215
    [Google Scholar]
  26. OhadiM. ForootanfarH. DehghannoudehN. BanatI.M. DehghannoudehG. The role of surfactants and biosurfactants in the wound healing process: A review.J. Wound Care202332S43910.12968/jowc.2023.32.Sup4a.xxxix
    [Google Scholar]
  27. AduS.A. TwiggM.S. NaughtonP.J. MarchantR. BanatI.M. Characterisation of cytotoxicity and immunomodulatory effects of glycolipid biosurfactants on human keratinocytes.Appl. Microbiol. Biotechnol.2023107113715210.1007/s00253‑022‑12302‑5 36441210
    [Google Scholar]
  28. OhadiM. ForootanfarH. DehghannoudehG. EslaminejadT. AmeriA. ShakibaieM. Adeli-SardouM. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6.Microb. Pathog.202013810380610.1016/j.micpath.2019.103806 31629797
    [Google Scholar]
  29. OhadiM. ForootanfarH. RahimiH.R. JafariE. ShakibaieM. EslaminejadT. DehghannoudehG. Antioxidant potential and wound healing activity of biosurfactant produced by Acinetobacter junii B6.Curr. Pharm. Biotechnol.2018181190090810.2174/1389201018666171122121350 29173159
    [Google Scholar]
  30. AfsharipourS. AsadiA. OhadiM. RanjbarM. ForootanfarH. JafariE. DehghannoudehG. Preparation and characterization of nano-lipopeptide biosurfactant hydrogel and evaluation of wound-healing properties.Bionanoscience20211141061106910.1007/s12668‑021‑00896‑5
    [Google Scholar]
  31. OhadiM. DehghannoudehG. ShakibaieM. BanatI.M. PournamdariM. ForootanfarH. Isolation, characterization, and optimization of biosurfactant production by an oil-degrading Acinetobacter junii B6 isolated from an Iranian oil excavation site.Biocatal. Agric. Biotechnol.2017121910.1016/j.bcab.2017.08.007
    [Google Scholar]
  32. OhadiM. DehghannoudehG. ForootanfarH. ShakibaieM. RajaeeM. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6.Int. J. Biol. Macromol.201811271271910.1016/j.ijbiomac.2018.01.209 29425877
    [Google Scholar]
  33. RajaeeM. TalachiA. PardakhtyA. MohajeriE. DehghannoudehN. BasirM. DehghannoudehG. NajafiL.M. Preparation and evaluation of physicochemical properties of the doxepin mucoadhesive gel.Jundishapur J. Nat. Pharm. Prod.202015410.5812/jjnpp.66864
    [Google Scholar]
  34. IorioF. BosottiR. ScacheriE. BelcastroV. MithbaokarP. FerrieroR. MurinoL. TagliaferriR. PierriB.N. IsacchiA. di BernardoD. Discovery of drug mode of action and drug repositioning from transcriptional responses.Proc. Natl. Acad. Sci. 201010733146211462610.1073/pnas.1000138107 20679242
    [Google Scholar]
  35. BhowmikB.B. NayakB.S. ChatterjeeA. Formulation development and characterization of metronidazole microencapsulated bioadhesive vaginal gel.Int. J. Pharm. Pharm. Sci.200911240257
    [Google Scholar]
  36. MohammedA.M. OsmanS.K. SalehK.I. SamyA.M. In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems.AAPS PharmSciTech202021413110.1208/s12249‑020‑01672‑6 32405869
    [Google Scholar]
  37. SupeS. TakudageP. Methods for evaluating penetration of drug into the skin: A review.Skin Res. Technol.202127329930810.1111/srt.12968 33095948
    [Google Scholar]
  38. Raeisi EstabraghM.A. PardakhtyA. AhmadzadehS. DabiriS. AfsharM.R. AbbasiA.M. Successful application of alpha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model.Adv. Pharm. Bull.202212354154910.34172/apb.2022.058 35935040
    [Google Scholar]
  39. KhazaeliP. PardakhtyA. ShoorabiH. Caffeine-loaded niosomes: Characterization and in vitro release studies.Drug Deliv.200714744745210.1080/10717540701603597 17994362
    [Google Scholar]
  40. StanD. TanaseC. AvramM. ApetreiR. MincuN.B. MateescuA.L. StanD. Wound healing applications of creams and “smart” hydrogels.Exp. Dermatol.20213091218123210.1111/exd.14396 34009648
    [Google Scholar]
  41. YuY. ChengY. TongJ. ZhangL. WeiY. TianM. Recent advances in thermo-sensitive hydrogels for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20219132979299210.1039/D0TB02877K 33885662
    [Google Scholar]
  42. AhmedL. AtifR. EldeenT.S. YahyaI. OmaraA. EltayebM. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release.IJLTEMAS201985256
    [Google Scholar]
  43. KurtF. SözenS. KanatB.H. KutluerN. SakalliO. GençtürkM. KanatZ. Effect of platelet-rich plasma on healing in laser pilonidoplasty for pilonidal sinus disease.Lasers Med. Sci.20213651015102110.1007/s10103‑020‑03137‑5 32862404
    [Google Scholar]
  44. FanR. ChengY. WangR. ZhangT. ZhangH. LiJ. SongS. ZhengA. Thermosensitive hydrogels and advances in their application in disease therapy.Polymers 20221412237910.3390/polym14122379 35745954
    [Google Scholar]
  45. EstabraghR.M.A. BamiM.S. OhadiM. BanatI.M. DehghannoudehG. Carrier‐based systems as strategies for oral delivery of therapeutic peptides and proteins: A mini‐review.Int. J. Pept. Res. Ther.20212721589159610.1007/s10989‑021‑10193‑0
    [Google Scholar]
  46. PatelP. MandalA. GoteV. PalD. MitraA.K. Thermosensitive hydrogel-based drug delivery system for sustained drug release.J. Polym. Res.201926613110.1007/s10965‑019‑1771‑z
    [Google Scholar]
  47. ChenI.C. SuC.Y. ChenP.Y. HoangT.C. TsouY.S. FangH.W. Investigation and characterization of factors affecting rheological properties of poloxamer-based thermo-sensitive hydrogel.Polymers 20221424535310.3390/polym14245353 36559720
    [Google Scholar]
  48. DasD. PalS. Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin.Int. J. Biol. Macromol.20157217117810.1016/j.ijbiomac.2014.08.007 25138539
    [Google Scholar]
  49. MorsiN.M. AbdelbaryG.A. AhmedM.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro /in vivo characterization.Eur. J. Pharm. Biopharm.201486217818910.1016/j.ejpb.2013.04.018 23688805
    [Google Scholar]
  50. ChenQ. XiaC. ShiB. ChenC. YangC. MaoG. ShiF. Extracorporeal shock wave combined with teriparatide-loaded hydrogel injection promotes segmental bone defects healing in osteoporosis.Tissue Eng. Regen. Med.20211861021103310.1007/s13770‑021‑00381‑w 34427911
    [Google Scholar]
  51. ÇakıcıG.T. KayaS. DoğanS.Y. SolakE.K. Quercetin‐loaded sodium alginate/collagen/h‐boron nitride potential wound dressings prepared using the Box‐Behnken experimental design.Biotechnol. J.2024191230014710.1002/biot.202300147 37897145
    [Google Scholar]
  52. ChopraH. BibiS. KumarS. KhanM.S. KumarP. SinghI. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application.Gels20228211110.3390/gels8020111 35200493
    [Google Scholar]
  53. ZhangL. YinH. LeiX. LauJ.N.Y. YuanM. WangX. ZhangF. ZhouF. QiS. ShuB. WuJ. A systematic review and meta-analysis of clinical effectiveness and safety of hydrogel dressings in the management of skin wounds.Front. Bioeng. Biotechnol.2019734210.3389/fbioe.2019.00342 31824935
    [Google Scholar]
  54. DinhL. HongJ. Min KimD. LeeG. Jung ParkE. Hyuk BaikS. HwangS.J. A novel thermosensitive poloxamer-hyaluronic acid- kappa-carrageenan-based hydrogel anti-adhesive agent loaded with 5-fluorouracil: A preclinical study in Sprague-Dawley rats.Int. J. Pharm.202262112177110.1016/j.ijpharm.2022.121771 35487401
    [Google Scholar]
  55. NazarH. FatourosD.G. van der MerweS.M. BouropoulosN. AvgouropoulosG. TsibouklisJ. RoldoM. Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride.Eur. J. Pharm. Biopharm.201177222523210.1016/j.ejpb.2010.11.022 21130876
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808296878240419065845
Loading
/content/journals/lddd/10.2174/0115701808296878240419065845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test