Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Novel sulfonamides containing pyrazole and 1,2,3-triazole were synthesized, and their inhibitory effects on six common pathogenic bacteria and COX-2 were investigated to screen new sulfonamides antimicrobial agents and COX-2 inhibitors with better effects.

Methods

The compounds with bacteriostatic effect were screened by using the ring of inhibition method and MTT chromogenic method, and the mechanism of bacteriostatic inhibition and description of bacteriostatic effect of the synthesized compounds were investigated with the aid of MOE molecular docking simulation and Gaussian molecular weighting calculations. The inhibitory effect of the synthesized compounds on COX-2 was studied using the phenylmethyl acetate color development method.

Results

The results of bacterial inhibition experiments revealed that compounds 11d and 11e had better inhibition effects on pathogenic bacteria, especially on , essentially the same as that of the positive control, FLUCZ. The compounds 4f, 7b, and 11c had the best inhibitory effect by COX-2 inhibition experiments, especially 11c, which had a better inhibitory effect than the positive control acetazolamide.

Conclusion

A series of derivatives obtained by introducing pyrazole and 1,2,3-triazole ring into sulfonamides have good bacteriostatic and COX-2 inhibition effects and have the potential to be developed as novel antimicrobial agents and enzyme inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808308364240422131751
2024-05-30
2025-06-23
Loading full text...

Full text loading...

References

  1. GafferH.E. ElgoharyM.R. EtmanH.A. ShaabanS. Antibacterial evaluation of cotton fabrics by using novel sulfonamide reactive dyes.Pigm. Resin Technol.201746321021710.1108/PRT‑08‑2015‑0080
    [Google Scholar]
  2. MoC.Y. CulybaM.J. SelwoodT. KubiakJ.M. HostetlerZ.M. JurewiczA.J. KellerP.M. PopeA.J. QuinnA. SchneckJ. WiddowsonK.L. KohliR.M. Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic-industry partnership.ACS Infect. Dis.20184334935910.1021/acsinfecdis.7b00122 29275629
    [Google Scholar]
  3. PervaizM. RiazA. MunirA. SaeedZ. HussainS. RashidA. YounasU. AdnanA. Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents.J. Mol. Struct.2020120212728410.1016/j.molstruc.2019.127284
    [Google Scholar]
  4. MoC.Y. ManningS.A. RoggianiM. CulybaM.J. SamuelsA.N. SniegowskiP.D. GoulianM. KohliR.M. DunmanP. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics.MSphere201614e00163e1610.1128/mSphere.00163‑16 27536734
    [Google Scholar]
  5. MingoiaM. ConteC. Di RienzoA. DimmitoM.P. MarinucciL. MagiG. TurkezH. CufaroM.C. Del BoccioP. Di StefanoA. CacciatoreI. Synthesis and biological evaluation of novel cinnamic acid-based antimicrobials.Pharmaceuticals202215222810.3390/ph15020228 35215340
    [Google Scholar]
  6. SinghL.R. AvulaS.R. RajS. SrivastavaA. PalnatiG.R. TripathiC.K.M. PasupuletiM. SashidharaK.V. Coumarin–benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation.J. Antibiot. 201770995496110.1038/ja.2017.70 28634338
    [Google Scholar]
  7. GangulyS. JacobS.K. Therapeutic outlook of pyrazole analogs: A mini review.Mini Rev. Med. Chem.20171711959983 26586126
    [Google Scholar]
  8. BozorovK. ZhaoJ. AisaH.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.Bioorg. Med. Chem.201927163511353110.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  9. MondalS. MalakarS. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances.Tetrahedron2020764813166210.1016/j.tet.2020.131662
    [Google Scholar]
  10. BaiR. SunJ. LiangZ. YoonY. SalgadoE. FengA. OumY. XieY. ShimH. Anti-inflammatory hybrids of secondary amines and amide-sulfamide derivatives.Eur. J. Med. Chem.201815019520510.1016/j.ejmech.2018.02.085 29529500
    [Google Scholar]
  11. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: Biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  12. da S M Forezi L.; Lima, C.G.S.; Amaral, A.A.P.; Ferreira, P.G.; de Souza, M.C.B.V.; Cunha, A.C.; de C da Silva, F.; Ferreira, V.F. Bioactive 1,2,3‐Triazoles: An account on their synthesis, structural diversity and biological applications.Chem. Rec.202121102782280710.1002/tcr.202000185 33570242
    [Google Scholar]
  13. TerrettN.K. Combinatorial chemistry online.Comb. Chem.2010128293110.1016/j.comche.2010.07.001
    [Google Scholar]
  14. ChuC. LiuR. Application of click chemistry on preparation of separation materials for liquid chromatography.Chem. Soc. Rev.20114052177218810.1039/c0cs00066c 21212875
    [Google Scholar]
  15. MohammadY.M. MinaY. GiuseppeC. VahdatP. BehroozN. PierangeloB. HosseinB.B. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy.Life Sci.20201262
    [Google Scholar]
  16. FitzgeraldD.M. RosenbergS.M. Biology before the SOS response—DNA damage mechanisms at chromosome fragile sites.Cells2021109227510.3390/cells10092275 34571923
    [Google Scholar]
  17. JaramilloA.V.C. CoryM.B. LiA. KohliR.M. WuestW.M. Exploration of inhibitors of the bacterial LexA repressor-protease.Bioorg. Med. Chem. Lett.20226512870210.1016/j.bmcl.2022.128702 35351585
    [Google Scholar]
  18. IvanovaJ. AbdoliM. NocentiniA. ŽalubovskisR. SupuranC.T. 1,2,3-Benzoxathiazine-2,2-dioxides – effective inhibitors of human carbonic anhydrases.J. Enzyme Inhib. Med. Chem.202338122523810.1080/14756366.2022.2142787 36373195
    [Google Scholar]
  19. TalukderS. AhmedK.S. HossainH. HasanT. LiyaI.J. AmanatM. NaharN. ShuvoM.S.R. DaulaA.F.M.S.U. Fimbristylis aestivalis Vahl: A potential source of cyclooxygenase-2 (COX-2) inhibitors.Inflammopharmacology20223062301231510.1007/s10787‑022‑01057‑0 36056995
    [Google Scholar]
  20. AngeliA. CartaF. DonniniS. CapperucciA. FerraroniM. TaniniD. SupuranC.T. Selenolesterase enzyme activity of carbonic anhydrases.Chem. Commun. 202056324444444710.1039/D0CC00995D 32195510
    [Google Scholar]
  21. SmithK.S. FerryJ.G. Prokaryotic carbonic anhydrases.FEMS Microbiol. Rev.200024433536610.1111/j.1574‑6976.2000.tb00546.x 10978542
    [Google Scholar]
  22. NathooN. BarnettG.H. GolubicM. The eicosanoid cascade: Possible role in gliomas and meningiomas.J. Clin. Pathol.200457161310.1136/jcp.57.1.6 14693827
    [Google Scholar]
  23. LiS. JiangM. WangL. YuS. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement.Biomed. Pharmacother.202012911038910.1016/j.biopha.2020.110389 32540642
    [Google Scholar]
  24. LewisE.B. MudipalliR. EghbalM.M. CulybaM.J. Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity.DNA Repair 202110310313010.1016/j.dnarep.2021.103130 33991871
    [Google Scholar]
  25. BerbeckaM. FormaA. BajJ. Furtak-NiczyporukM. MaciejewskiR. SitarzR. A systematic review of the cyclooxygenase-2 (COX-2) expression in rectal cancer patients treated with preoperative radiotherapy or radiochemotherapy.J. Clin. Med.20211019444310.3390/jcm10194443 34640461
    [Google Scholar]
  26. MohamedL.W. ShaabanM.A. ZaherA.F. AlhamakyS.M. ElsaharA.M. Synthesis of new pyrazoles and pyrozolo [3,4-b] pyridines as anti-inflammatory agents by inhibition of COX-2 enzyme.Bioorg. Chem.201983475410.1016/j.bioorg.2018.10.014 30342385
    [Google Scholar]
  27. WangX. ChenY.F. YanW. CaoL.L. YeY.H. Synthesis and biological evaluation of benzimidazole phenylhydrazone derivatives as antifungal agents against phytopathogenic fungi.Molecules20162111157410.3390/molecules21111574 27879685
    [Google Scholar]
  28. ZhangM. DaiZ.C. QianS.S. LiuJ.Y. XiaoY. LuA.M. ZhuH.L. WangJ.X. YeY.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives.J. Agric. Food Chem.201462409637964310.1021/jf504359p 25229541
    [Google Scholar]
  29. DuanX. WangY. FengW. YangY. LiH. LiS. YangX. ZhangJ. WangS. ZhouG. ZhouC. Design, synthesis and biological evaluation of some novel N-arylpyrazole derivatives bearing the sulfonamide moiety as cytotoxic agents.Res. Chem. Intermed.201743127128110.1007/s11164‑016‑2620‑x
    [Google Scholar]
  30. ScholtzC. RileyD.L. Improved batch and flow syntheses of the nonsteroidal anti-inflammatory COX-2 inhibitor celecoxib.React. Chem. Eng.20216113814610.1039/D0RE00346H
    [Google Scholar]
  31. AhlströmM.M. RidderströmM. ZamoraI. LuthmanK. CYP2C9 structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors.J. Med. Chem.200750184444445210.1021/jm0705096 17696334
    [Google Scholar]
  32. AttaryanO.S. AntanosyanS.K. PanosyanG.A. AsratyanG.V. MatsoyanS.G. Vilsmeier-Haak formylation of 3,5-dimethylpyrazoles.Russ. J. Gen. Chem.200676111817181910.1134/S1070363206110260
    [Google Scholar]
  33. Abdel-AzizA.A.M. El-AzabA.S. AlSaifN.A. AlanaziM.M. El-GendyM.A. ObaidullahA.J. AlkahtaniH.M. AlmehiziaA.A. Al-SuwaidanI.A. Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: A molecular docking study.J. Enzyme Inhib. Med. Chem.202035161062110.1080/14756366.2020.1722120 32013633
    [Google Scholar]
  34. WangP. LengY. WuY. Copper (I)‐catalyzed regioselective tandem cyanoalkylative cyclization of 1, 5‐dienes with cyclobutanone oxime esters.Eur. J. Org. Chem.2022202245e20220109110.1002/ejoc.202201091
    [Google Scholar]
  35. AimeneY. EychenneR. Mallet-LadeiraS. SaffonN. WinumJ.Y. NocentiniA. SupuranC.T. BenoistE. SeridiA. Novel Re(I) tricarbonyl coordination compounds based on 2-pyridyl-1,2,3-triazole derivatives bearing a 4-amino-substituted benzenesulfonamide arm: synthesis, crystal structure, computational studies and inhibitory activity against carbonic anhydrase I, II, and IX isoforms.J. Enzyme Inhib. Med. Chem.201934177378210.1080/14756366.2019.1585835 30843736
    [Google Scholar]
  36. Al-HujajH.H. JassemA.M. Al-MasoudiN.A. Al-MasoudiN.A. A click synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB 231) and anti-HIV activities of new 1, 4-disubstituted-1, 2, 3-triazole thymine derivatives.Russ. J. Bioorganic Chem.202046336037010.1134/S1068162020030024
    [Google Scholar]
  37. AssaliM. AbualhasanM. SawaftahH. HawashM. MousaA. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors.J. Chem.-NY,20202020114
    [Google Scholar]
  38. ChambersJ.M. HillP.A. AaronJ.A. HanZ. ChristiansonD.W. KuzmaN.N. DmochowskiI.J. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.J. Am. Chem. Soc.2009131256356910.1021/ja806092w 19140795
    [Google Scholar]
  39. BekheitM.S. MohamedH.A. Abdel-WahabB.F. FouadM.A. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors.Med. Chem. Res.20213051125113810.1007/s00044‑021‑02716‑7
    [Google Scholar]
  40. HuQ. WangC. XiangQ. WangR. ZhangC. ZhangM. XueX. LuoG. LiuX. WuX. ZhangY. WuD. XuY. Discovery and optimization of novel N-benzyl-3,6-dimethylbenzo[d]isoxazol-5-amine derivatives as potent and selective TRIM24 bromodomain inhibitors with potential anti-cancer activities.Bioorg. Chem.20209410342410.1016/j.bioorg.2019.103424 31776034
    [Google Scholar]
  41. GutiérrezR.U. RebollarA. BautistaR. PelayoV. VárgasJ.L. MontenegroM.M. Espinoza-HicksC. AyalaF. BernalP.M. CarrascoC. ZepedaL.G. DelgadoF. TamarizJ. Functionalized α-oximinoketones as building blocks for the construction of imidazoline-based potential chiral auxiliaries.Tetrahedron Asymmetry201526423024610.1016/j.tetasy.2015.01.011
    [Google Scholar]
  42. YuF. WolinR.L. WeiJ. DesaiP.J. McGovernP.M. DunfordP.J. KarlssonL. ThurmondR.L. Pharmacological characterization of oxime agonists of the histamine H4 receptor. J. Recept.Ligand Channel Res200933749
    [Google Scholar]
  43. Deepak SwarnkarD.S. Rakshit AmetaR.A. Ritu VyasR.V. Microwave-assisted synthesis of some pyrazole derivatives via Vilsmeier-Haack formylation and their biological activity.Med. Chem. Res.201429699706
    [Google Scholar]
  44. PokhodyloN.T. ShiikaO.Y. MatiichukV.S. ObushakN.D. Synthesis of [5-(1H-1,2,3-triazol-4-yl)-1,3,4-oxadiazol-2-yl]pyridines.Russ. J. Org. Chem.201046341742110.1134/S1070428010030206
    [Google Scholar]
  45. KumarR. SharmaV. BuaS. SupuranC.T. SharmaP.K. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity.J. Enzyme Inhib. Med. Chem.20173211187119410.1080/14756366.2017.1367775 28891338
    [Google Scholar]
  46. WangZ.J. GaoY. HouY.L. ZhangC. YuS.J. BianQ. LiZ.M. ZhaoW.G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues.Eur. J. Med. Chem.201486879410.1016/j.ejmech.2014.08.029 25147150
    [Google Scholar]
  47. ZhouS. LiaoH. LiuM. FengG. FuB. LiR. ChengM. ZhaoY. GongP. Discovery andw biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201422226438645210.1016/j.bmc.2014.09.037 25438768
    [Google Scholar]
  48. ObushakN.D. PokhodyloN.T. PidlypnyiN.I. MatiichukV.S. Synthesis of 1,2,4- and 1,3,4-oxadiazoles from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chlorides.Russ. J. Org. Chem.200844101522152710.1134/S1070428008100217
    [Google Scholar]
  49. DongH.S. LiuS.Q. The study on synthesis of some new 1, 2, 3‐triazolylurea and carbonyl amide derivatives.J. Chin. Chem. Soc. 20035061215121910.1002/jccs.200300174
    [Google Scholar]
  50. Al-ShawabkehJ.D. Al-NadafA.H. DahabiyehL.A. TahaM.O. Design, synthesis and structure–activity relationship of new HSL inhibitors guided by pharmacophore models.Med. Chem. Res.201423112714510.1007/s00044‑013‑0616‑2
    [Google Scholar]
  51. DemchukD.V. SametA.V. ChernyshevaN.B. UshkarovV.I. StashinaG.A. KonyushkinL.D. RaihstatM.M. FirgangS.I. PhilchenkovA.A. ZavelevichM.P. KuiavaL.M. ChekhunV.F. BlokhinD.Y. KiselyovA.S. SemenovaM.N. SemenovV.V. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines.Bioorg. Med. Chem.201422273875510.1016/j.bmc.2013.12.015 24387982
    [Google Scholar]
  52. DongG. ChenW. WangX. YangX. XuT. WangP. ZhangW. RaoY. MiaoC. ShengC. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors.J. Med. Chem.201760197965798310.1021/acs.jmedchem.7b00467 28885834
    [Google Scholar]
  53. ZhaoY. WangG. LiY. WangS. LiZ. Design, synthesis and insecticidal activities of novel N‐oxalyl derivatives of neonicotinoid compound.Chin. J. Chem.201028347547910.1002/cjoc.201090099
    [Google Scholar]
  54. ZhangY. WuY-T. ZhengW. HanX-X. JiangY-H. HuP-L. TangZ-X. ShiL-E. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae.J. Funct. Foods20173827327910.1016/j.jff.2017.09.047
    [Google Scholar]
  55. KumarS. TiwariA. TiwariV. KhokraS.L. SaharanR. KumarM. SharmaA. VirmaniT. VirmaniR. KumarG. AlhalmiA. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A.BioMed Res. Int.2023202311110.1155/2023/9289141
    [Google Scholar]
  56. KubilayA. DuruA. In vitro antibacterial activities of grape, Vitis vinifera, vinegar against Flavobacterium psychrophilum.Fish Shellfish Immunol.20165311310.1016/j.fsi.2016.04.088
    [Google Scholar]
  57. ZhouH. ChenL. OuyangK. ZhangQ. WangW. Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus.Front. Microbiol.202313110347610.3389/fmicb.2022.1103476 36704556
    [Google Scholar]
  58. Srinivas ReddyM. Nath AnisettiR. Durga PrasadK. SannigrahiS. Arvinda ReddyP. Synthesis, characterization and biological evaluation of some novel 2-substituted mercaptobenzimidazole derivatives.Pharm. Chem. J.2011441164264510.1007/s11094‑011‑0537‑7
    [Google Scholar]
  59. QiJ. GongM. ZhangR. SongY. LiuQ. ZhouH. WangJ. MeiY. Evaluation of the antibacterial effect of tea tree oil on Enterococcus faecalis and biofilm in vitro.J. Ethnopharmacol.202128111456610.1016/j.jep.2021.114566 34450163
    [Google Scholar]
  60. MehyarN. MashhourA. IslamI. GulS. AdedejiA.O. AskarA.S. BoudjelalM. Using in silico modelling and FRET-based assays in the discovery of novel FDA-approved drugs as inhibitors of MERS-CoV helicase.SAR QSAR Environ. Res.2021321517010.1080/1062936X.2020.1857437 33401979
    [Google Scholar]
  61. Abdel AzizA.A. RamadanR.M. SidqiM.E. SayedM.A. Structural characterisation of novel mononuclear Schiff base metal complexes, DFT calculations, molecular docking studies, free radical scavenging, DNA binding evaluation and cytotoxic activity.Appl. Organomet. Chem.2023372e695410.1002/aoc.6954
    [Google Scholar]
  62. TiwariA. TiwariV. KumarS. KumarM. SaharanR. VarmaN. SahooB.M. KaushikD. SharmaR.K. Molecular docking and simulation analysis of cyclopeptides as anticancer agents.Curr. Drug Ther.202318324726110.2174/1574885518666230222113033
    [Google Scholar]
  63. KanagatharaN. MaryAnjalin, F.; Ragavendran, V.; Dhanasekaran, D.; Usha, R.; Rao, R.G.S.; Marchewka, M.K. Experimental and theoretical (DFT) investigation of crystallographic, spectroscopic and Hirshfeld surface analysis of anilinium arsenate.J. Mol. Struct.2021122312896510.1016/j.molstruc.2020.128965
    [Google Scholar]
  64. KavithaT. VelrajG. Structural, spectroscopic (FT-IR, FT-Raman, NMR) and computational analysis (DOS, NBO, Fukui) of 3,5-dimethylisoxazole and 4-(chloromethyl)-3,5-dimethylisoxazole: A DFT study.J. Theor. Comput. Chem.2016155165003910.1142/S0219633616500395
    [Google Scholar]
  65. PeerzadaM.N. KhanP. AhmadK. HassanM.I. AzamA. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents.Eur. J. Med. Chem.2018155132310.1016/j.ejmech.2018.05.034 29852328
    [Google Scholar]
  66. RasganiaJ. GavadiaR. JakharK. Facile synthesis, pharmacological and In silico analysis of succinimide derivatives: An approach towards drug discovery.J. Mol. Struct.2023127413442410.1016/j.molstruc.2022.134424
    [Google Scholar]
  67. YuyamaM. ItoT. AraiY. KadowakiY. IiyamaN. KeinoA. HiraokaY. KanayaT. MomoseY. KuriharaM. Risk Prediction method for anticholinergic action using auto-quantitative structure–activity relationship and docking study with molecular operating environment.Chem. Pharm. Bull. 202068877377810.1248/cpb.c20‑00249 32741919
    [Google Scholar]
  68. BrownG.M. The biosynthesis of folic acid. II. Inhibition by sulfonamides.J. Biol. Chem.1962237253654010.1016/S0021‑9258(18)93957‑8 13873645
    [Google Scholar]
  69. FenniriH. MathivananP. VidaleK.L. ShermanD.M. HallengaK. WoodK.V. StowellJ.G. Helical rosette nanotubes: Design, self-assembly, and characterization.J. Am. Chem. Soc.2001123163854385510.1021/ja005886l 11457132
    [Google Scholar]
  70. ZhangL. ZouK. ZhangA. HuangX. LiuM. ZhouS. Studies on synthesis and crystal structure of 3-(3-Hydroxypropyl)-6-(4-methoxyphenyl)-7H-1,2,4-triazolo [3,4-b]-1,3,4-thiadiazine hydrobromate.Youji Huaxue200525533
    [Google Scholar]
  71. ArjunanV. ThirunarayananS. MarchewkaM.K. MohanS. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4–triazolium hydrogenselenate.J. Mol. Struct.2017114521122110.1016/j.molstruc.2017.05.107
    [Google Scholar]
  72. MehmoodA. JonesS.I. TaoP. JaneskoB.G. An orbital-overlap complement to ligand and binding site electrostatic potential maps.J. Chem. Inf. Model.20185891836184610.1021/acs.jcim.8b00370 30160959
    [Google Scholar]
  73. LodgeJ.K. JohnsonR.L. WeinbergR.A. GordonJ.I. Comparison of myristoyl-CoA: Protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans.J. Biol. Chem.199426942996300910.1016/S0021‑9258(17)42038‑2 8300631
    [Google Scholar]
  74. López-LópezE. NavejaJ.J. Medina-FrancoJ.L. DataWarrior: An evaluation of the open-source drug discovery tool.Expert Opin. Drug Discov.201914433534110.1080/17460441.2019.1581170 30806519
    [Google Scholar]
  75. MolG.P.S. AruldhasD. JoeI.H. Chemical reactivity, molecular electrostatic potential and in-silico analysis on benzimidazole fungicide benomyl.Heliyon2022811e1141710.1016/j.heliyon.2022.e11417 36387528
    [Google Scholar]
  76. AnqiZ. ShujuanX. JianminH. ZuyuL. Molecular electrostatic potential studies on some nitroimidazolyl and nitroheterocyclic compounds.Int. J. Radiat. Biol.198956689390910.1080/09553008914552371 2574219
    [Google Scholar]
  77. TangQ. ReniereM.L. Listeria monocytogenes folate metabolism is required to generate N-formylmethionine during infection.MBio2023145e01385e2310.1128/mbio.01385‑23 37706879
    [Google Scholar]
  78. KongJ.Y. ZhangX. XuanG.S. Synthesis and evaluation of antibacterial properties of 1,2,3-triazole sulfonamide derivatives.Russ. J. Bioorganic Chem.202450232834410.1134/S1068162024020122
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808308364240422131751
Loading
/content/journals/lddd/10.2174/0115701808308364240422131751
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 1,2,3-triazole; antibacterial; COX-2; enzyme inhibition; pyrazole; Sulfonamide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test