Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Metastatic Castration-resistant Prostate Cancer (mCRPC) represents a critical challenge in current prostate cancer treatment. Benzimidazole Derivative XY123 has emerged as a novel inhibitor for its treatment.

Objective

This study aims to establish a robust Quantitative Structure-Activity Relationship (QSAR) model for predicting the activity of Benzimidazole Derivative XY123 derivatives, aiding the development of novel anti-prostate cancer drugs.

Methods

Utilizing CODESSA software, descriptors were computed based on various moieties of Benzimidazole Derivative XY123 derivatives. Multiple linear regression models were constructed, and both linear and nonlinear QSAR models were developed using heuristics and gene expression programming.

Results

The linear model with two descriptors demonstrated the best predictive capacity for inhibitor activity, while the nonlinear model generated through Gene Expression Programming (GEP) exhibited correlation coefficients of 0.83 and 0.82 for the training and test sets, respectively. The average errors were 0.03 and 0.05, indicating the stability and the improved predictive ability of the nonlinear model.

Conclusion

The QSAR linear model has an advantage over the nonlinear model in optimizing Benzimidazole Derivative XY123, providing a direction for the development of effective drugs for mCRPC treatment.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808291381240226094729
2024-03-06
2024-12-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. HettleR. MihaiA. LangS.H. TatmanS. SwiftS.L. Real-world outcomes for first line next-generation hormonal agents in metastatic prostate cancer: A systematic review.Future Oncol.202319362425244310.2217/fon‑2023‑0377 37681288
    [Google Scholar]
  3. HendrixL.N. HamiltonD.A.Jr KyprianouN. Emerging therapeutics targeting castration-resistant prostate cancer: The ARmageddon of tumor epithelial–mesenchymal transition.Expert Rev. Endocrinol. Metab.20138440341610.1586/17446651.2013.811914 30736155
    [Google Scholar]
  4. StoråsA.H. TsurudaK. FossåS.D. AndreassenB.K. Time trends in systemic treatment for patients with metastatic prostate cancer: A national cohort study.Acta Oncol.202362121716172210.1080/0284186X.2023.2257876 37725527
    [Google Scholar]
  5. SaleemS. RashidA.B. ShehzadiS. MumtazH. SaqibM. BseisoA. VillasenorA.V. AhmedA. SoniaS.N. Contemporaneous and upcoming trends in immunotherapy for prostate cancer review.Ann. Med. Surg.20238584005401410.1097/MS9.0000000000001070 37554896
    [Google Scholar]
  6. VaraprasadG.L. GuptaV.K. PrasadK. KimE. TejM.B. MohantyP. VermaH.K. RajuG.S.R. BhaskarL.V.K.S. HuhY.S. Recent advances and future perspectives in the therapeutics of prostate cancer.Exp. Hematol. Oncol.20231218010.1186/s40164‑023‑00444‑9 37740236
    [Google Scholar]
  7. LinC. ChenY. ShiL. LinH. XiaH. YinW. Advances in bio-immunotherapy for castration-resistant prostate cancer.J. Cancer Res. Clin. Oncol.202314914134511345810.1007/s00432‑023‑05152‑9 37460807
    [Google Scholar]
  8. GebraelG. FortunaG.G. SayeghN. SwamiU. AgarwalN. Advances in the treatment of metastatic prostate cancer.Trends Cancer202391084085410.1016/j.trecan.2023.06.009 37442702
    [Google Scholar]
  9. MaselliF.M. GiulianiF. LafaceC. PerroneM. MelaccioA. De SantisP. SantoroA.N. GuariniC. IaiaM.L. FedeleP. Immunotherapy in prostate cancer: State of art and new therapeutic perspectives.Curr. Oncol.20233065769579410.3390/curroncol30060432 37366915
    [Google Scholar]
  10. KotaniN. WilkinsJ.J. WadeJ.R. DangS. SutariaD.S. YoshidaK. SundraniS. DingH. GarciaJ. HintonH. SaneR. ChanuP. Characterization of exposure–response relationships of ipatasertib in patients with metastatic castration-resistant prostate cancer in the IPATential150 study.Cancer Chemother. Pharmacol.202290651152110.1007/s00280‑022‑04488‑2 36305957
    [Google Scholar]
  11. LabadieB.W. MorrisD.S. BryceA.H. GivenR. ZhangJ. AbidaW. ChowdhuryS. PatnaikA. Guidelines for management of treatment-emergent adverse events during rucaparib treatment of patients with metastatic castration-resistant prostate cancer.Cancer Manag. Res.20221467368610.2147/CMAR.S335962 35210863
    [Google Scholar]
  12. FizaziK. AzadA.A. MatsubaraN. CarlesJ. FayA.P. De GiorgiU. JoungJ.Y. FongP.C.C. VoogE. JonesR.J. ShoreN.D. DunsheeC. ZschäbitzS. OldenburgJ. YeD. LinX. HealyC.G. Di SantoN. LairdA.D. ZohrenF. AgarwalN. Publisher correction: First-line talazoparib with enzalutamide in HRR-deficient metastatic castration-resistant prostate cancer: The phase 3 TALAPRO-2 trial.Nat. Med.202410.1038/s41591‑024‑02835‑9 38297094
    [Google Scholar]
  13. HaS. O, J.H.; Park, C.; Boo, S.H.; Yoo, I.R.; Moon, H.W.; Chi, D.Y.; Lee, J.Y. Dosimetric analysis of a phase I study of PSMA-targeting radiopharmaceutical therapy with [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer.Korean J. Radiol.202425217918810.3348/kjr.2023.0656 38288897
    [Google Scholar]
  14. SepeP. ProcopioG. PircherC.C. BassoU. CaffoO. CappellettiV. ClapsM. De GiorgiU. FratinoL. GuadalupiV. MiodiniP. De MarcoC. PerrucciB. MennittoA. SantiniD. SpinaF. StellatoM. de BraudF. VerzoniE. A phase II study evaluating the efficacy of enzalutamide and the role of liquid biopsy for evaluation of ARv7 in mCRPC patients with measurable metastases including visceral disease (Excalibur study).Ther. Adv. Med. Oncol.2024161758835923121795810.1177/17588359231217958 38264520
    [Google Scholar]
  15. RehmanO.U. NadeemZ.A. FatimaE. AkramU. ImranH. HusnainA. NadeemA. RasheedW. The efficacy of ketoconazole containing regimens in castration-resistant prostate cancer: A systematic review and meta-analysis.Clin. Genitourin. Cancer2024S1558-76732400005310.1016/j.clgc.2024.01.003 38296679
    [Google Scholar]
  16. SigorskiD. WilkM. Gawlik-UrbanA. Sałek-ZańA. KiszkaJ. MalikM. CzerkoK. KućK. SzczylikC. KubiatowskiT. Cybulska-StopaB. Filipczyk-CisarżE. BodnarL. SkonecznaI. Real-life data of abiraterone acetate and enzalutamide treatment in post-chemotherapy metastatic castration-resistant prostate cancer in Poland.Front. Oncol.202313110893710.3389/fonc.2023.1108937 37077831
    [Google Scholar]
  17. ShahY.B. ShaverA.L. KellyW.K. Lu-YaoG. A scoping review protocol to elucidate outcomes following abiraterone versus enzalutamide for prostate cancer.PLoS One2022178e027382610.1371/journal.pone.0273826 36037225
    [Google Scholar]
  18. YanagisawaT. RajwaP. KawadaT. MoriK. FukuokayaW. PetrovP. QuhalF. LaukhtinaE. von DeimlingM. BianchiA. MajdoubM. PradereB. KramerG. KimuraT. ShariatS.F. Efficacy of systemic treatment in prostate cancer patients with visceral metastasis: A systematic review, meta-analysis, and network meta-analysis.J. Urol.2023210341642910.1097/JU.0000000000003594 37339479
    [Google Scholar]
  19. DemirciA. BilirC. GülbağcıB. Hacıbekiroğluİ. Bayoğluİ.V. Bilgetekinİ. KocaS. ÇınkırH.Y. AkdenizN. GülD. VarımC. DemirciU. ÖksüzoğluB. Comparison of real-life data of abiraterone acetate and enzalutamide in metastatic castration-resistant prostate cancer.Sci. Rep.20211111413110.1038/s41598‑021‑93659‑x 34239026
    [Google Scholar]
  20. ArmstrongA.J. AzadA.A. IguchiT. SzmulewitzR.Z. PetrylakD.P. HolzbeierleinJ. VillersA. AlcarazA. AlekseevB. ShoreN.D. Gomez-VeigaF. RosbrookB. ZohrenF. YamadaS. HaasG.P. StenzlA. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer.J. Clin. Oncol.202240151616162210.1200/JCO.22.00193 35420921
    [Google Scholar]
  21. PaneR. LaibL. FormosoK. DétraitM. Sainte-MarieY. BourgailhF. RuffenachN. FaugerasH. SimonI. LhuillierE. Lezoualc’h, F.; Conte, C. Macromolecular complex including MLL3, carabin and calcineurin regulates cardiac remodeling.Circ. Res.2024134110011310.1161/CIRCRESAHA.123.323458 38084599
    [Google Scholar]
  22. CherkasovaM.V. ClarkL. BartonJ.J.S. StoesslA.J. WinstanleyC.A. Risk-promoting effects of reward-paired cues in human sign- and goal-trackers.Behav. Brain Res.202446111486510.1016/j.bbr.2024.114865 38220058
    [Google Scholar]
  23. AlshammariR.F.N. Abd RahmanA.H. ArshadH. AlbahriO.S. Real-time robotic presentation skill scoring using multi-model analysis and fuzzy delphi–analytic hierarchy process.Sensors20232324961910.3390/s23249619 38139465
    [Google Scholar]
  24. HyamL.E. PhillipsM. GracieL. AllenK. SchmidtU. Clinical staging across eating disorders: A scoping review protocol.BMJ Open20231311e07737710.1136/bmjopen‑2023‑077377 37993158
    [Google Scholar]
  25. VaidyaA. SimkhadaP. LeeA. JonesS. MukumbangF.C. Implementing a package of essential non-communicable diseases interventions in low- and middle-income countries: A realist review protocol.BMJ Open2023139e07433610.1136/bmjopen‑2023‑074336 37775288
    [Google Scholar]
  26. SoltL.A. GriffinP.R. BurrisT.P. Ligand regulation of retinoic acid receptor-related orphan receptors: Implications for development of novel therapeutics.Curr. Opin. Lipidol.201021320421110.1097/MOL.0b013e328338ca18 20463469
    [Google Scholar]
  27. HuhJ.R. LittmanD.R. Small molecule inhibitors of ROR γt: Targeting T h17 cells and other applications.Eur. J. Immunol.20124292232223710.1002/eji.201242740 22949321
    [Google Scholar]
  28. HolmquistR. Molecular phylogenetic trees: On the validity of the Goodman-Moore augmentation algorithm.J. Mol. Evol.197913217317810.1007/BF01732871 480372
    [Google Scholar]
  29. Abdel-RahmanS.A. BrogiS. GabrM.T. Lithocholic acid derivatives as potent modulators of the nuclear receptor RORγt.RSC Advances20241452918292810.1039/D3RA08086B 38239446
    [Google Scholar]
  30. ChoiH. OhD. KimH.J. ChambugongM. KimM. LeeM.O. ParkH. An RORα agonist, ODH-08, inhibits fibrogenic activation of hepatic stellate cells via suppression of SMAD3.Life Sci.202434012244310.1016/j.lfs.2024.122443 38242496
    [Google Scholar]
  31. KimH.J. LeeS.H. JeongC. HanY.H. LeeM.O. RORα– GABP–TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J. Cachexia Sarcopenia Muscle2024jcsm.13432.10.1002/jcsm.13432 38272857
    [Google Scholar]
  32. ZhangJ. ChangM. WangX. ZhouX. BaiQ. LangH. ZhangQ. YiL. MiM. ChenK. Pterostilbene targets the molecular oscillator RORγ to restore circadian rhythm oscillation and protect against sleep restriction induced metabolic disorders.Phytomedicine202412515532710.1016/j.phymed.2023.155327 38295659
    [Google Scholar]
  33. Agha-HosseiniF. MoosaviM.S. BahramiH. A systematic review of interleukin-17 in oral lichen planus: From etiopathogenesis to treatment.Clin. Med. Res.202321420121510.3121/cmr.2023.1822 38296640
    [Google Scholar]
  34. BehiryM. WadieM. MohamedN.A. FaridR. RamadanH. Assessment of interleukin 17 in egyptian systemic lupus erythematosus patients as a biomarker in disease activity.Curr. Rheumatol. Rev.20242010.2174/0115733971282065240123075748 38299415
    [Google Scholar]
  35. GanT. XingQ. LiN. DengZ. PanC. LiuX. ZhengL. Protective effect of vitexin against il‐17‐induced vascular endothelial inflammation through Keap1/Nrf2‐dependent signaling pathway.Mol. Nutr. Food Res.2024230033110.1002/mnfr.202300331 38299432
    [Google Scholar]
  36. LiY. ZhangQ. WangX. XuF. NiuJ. ZhaoJ. WangQ. IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region.Brain Res. Bull.202420811089010.1016/j.brainresbull.2024.110890 38302069
    [Google Scholar]
  37. McCarthyK.N. HoneS. McLoughlinR.M. MillsK.H.G. IL-17 and IFN-γ-producing respiratory tissue resident memory CD4 T cells persist for decades in adults immunized as children with whole cell pertussis vaccines.J. Infect. Dis.2024jiae03410.1093/infdis/jiae034 38290045
    [Google Scholar]
  38. ZeisbrichM. ThielJ. VenhoffN. The IL-17 pathway as a target in giant cell arteritis.Front. Immunol.202414119905910.3389/fimmu.2023.1199059 38299156
    [Google Scholar]
  39. AsenN.D. UdenigweC.C. AlukoR.E. Quantitative structure–activity relationship modeling of pea protein-derived acetylcholinesterase and butyrylcholinesterase inhibitory peptides.J. Agric. Food Chem.20237143163231633010.1021/acs.jafc.3c04880 37856319
    [Google Scholar]
  40. GhoshS. ChatterjeeM. RoyK. Quantitative read-across structure-activity relationship (q-RASAR): A new approach methodology to model aquatic toxicity of organic pesticides against different fish species.Aquat. Toxicol.202326510677610.1016/j.aquatox.2023.106776 38006764
    [Google Scholar]
  41. KhairullinaV. MartynovaY. Quantitative structure–activity relationship in the series of 5-ethyluridine, N2-guanine, and 6-oxopurine derivatives with pronounced anti-herpetic activity.Molecules20232823771510.3390/molecules28237715 38067446
    [Google Scholar]
  42. LiangX. LeiY. YangX. Quantitative structure–activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants.Environ. Sci. Process. Impacts202426119220810.1039/D3EM00329A 38050900
    [Google Scholar]
  43. MoulishankarA. ThirugnanasambandamS. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents.J. Recept. Signal Transduct. Res.2023433839210.1080/10799893.2023.2281671 37990804
    [Google Scholar]
  44. NovičM. Quantitative structure activity/toxicity relationship through neural networks for drug discovery or regulatory use.Curr. Top. Med. Chem.202323292792280410.2174/0115680266251327231017053718 37867278
    [Google Scholar]
  45. ShuklaN. SharmaB. Quantitative structure-activity relationship (QSAR) modelling of indomethacin derivatives using regression analysis.Curr. Med. Chem.20233110.2174/0109298673245890231004152136 37818563
    [Google Scholar]
  46. SiH. WangT. ZhangK. DuanY.B. YuanS. FuA. HuZ. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione.Anal. Chim. Acta2007591225526410.1016/j.aca.2007.03.070 17481417
    [Google Scholar]
  47. TropshaA. IsayevO. VarnekA. SchneiderG. CherkasovA. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR.Nat. Rev. Drug Discov.2024232141155 38066301
    [Google Scholar]
  48. WuX. ShenH. ZhangY. WangC. LiQ. ZhangC. ZhuangX. LiC. ShiY. XingY. XiangQ. XuJ. WuD. LiuJ. XuY. Discovery and characterization of benzimidazole derivative XY123 as a potent, selective, and orally available RORγ inverse agonist.J. Med. Chem.202164128775879710.1021/acs.jmedchem.1c00763 34121397
    [Google Scholar]
  49. KadayatT.M. ParkS. ShresthaA. JoH. HwangS.Y. KatilaP. ShresthaR. NepalM.R. NohK. KimS.K. KohW.S. KimK.S. JeonY.H. JeongT.C. KwonY. LeeE.S. Discovery and biological evaluations of halogenated 2,4-diphenyl indeno[1,2- b]pyridinol derivatives as potent topoisomerase IIα-targeted chemotherapeutic agents for breast cancer.J. Med. Chem.201962178194823410.1021/acs.jmedchem.9b00970 31398033
    [Google Scholar]
  50. ChenK.A. NishiyamaN.C. Kennedy NgM.M. ShumwayA. JoisaC.U. SchanerM.R. LianG. BeasleyC. ZhuL.C. BantumilliS. KapadiaM.R. GomezS.M. FureyT.S. SheikhS.Z. Linking gene expression to clinical outcomes in pediatric Crohn’s disease using machine learning.Sci. Rep.2024141266710.1038/s41598‑024‑52678‑0 38302662
    [Google Scholar]
  51. MayenoA.N. RobinsonJ.L. YangR.S.H. ReisfeldB. Predicting activation enthalpies of cytochrome-P450-mediated hydrogen abstractions. 2. Comparison of semiempirical PM3, SAM1, and AM1 with a density functional theory method.J. Chem. Inf. Model.20094971692170310.1021/ci8003946 19522482
    [Google Scholar]
  52. RamrajA. RajuR.K. WangQ. HillierI.H. BryceR.A. VincentM.A. An evaluation of the GLYCAM06 and MM3 force fields, and the PM3-D* molecular orbital method for modelling prototype carbohydrate–aromatic interactions.J. Mol. Graph. Model.201029332132510.1016/j.jmgm.2010.07.004 20801066
    [Google Scholar]
  53. GiesekingR.L.M. A new release of MOPAC incorporating the INDO/S semiempirical model with CI excited states.J. Comput. Chem.202142536537810.1002/jcc.26455 33227163
    [Google Scholar]
  54. MaiaJ.D.C. dos Anjos Formiga CabralL. RochaG.B. GPU algorithms for density matrix methods on MOPAC: Linear scaling electronic structure calculations for large molecular systems.J. Mol. Model.2020261131310.1007/s00894‑020‑04571‑6 33090341
    [Google Scholar]
  55. BainbridgeL. Transferring 24/7 sobriety from South Dakota to South London: The case of MOPAC’s alcohol abstinence monitoring requirement pilot.Addiction201911491696170510.1111/add.14609 30851219
    [Google Scholar]
  56. KatritzkyA.R. KulshynO.V. Stoyanova-SlavovaI. DobchevD.A. KuanarM. FaraD.C. KarelsonM. Antimalarial activity: A QSAR modeling using CODESSA PRO software.Bioorg. Med. Chem.20061472333235710.1016/j.bmc.2005.11.015 16426851
    [Google Scholar]
  57. SaitoN. FuwaA. Prediction for thermodynamic function of dioxins for gas phase using semi-empirical molecular orbital method with PM3 Hamiltonian.Chemosphere200040213114510.1016/S0045‑6535(99)00215‑5 10665426
    [Google Scholar]
  58. TaiY. LianZ. XiaH. ZhaiH. QSAR study of novel 1, 8-naphthimide derivatives targeting nuclear DNA.Anticancer. Agents Med. Chem.202323672673310.2174/1871520622666220822010953 36017845
    [Google Scholar]
  59. XiaQ.D. ZhangS.H. ZengN. LuY.C. QinB.L. WangS.G. Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives.Biomed. Pharmacother.202316811580610.1016/j.biopha.2023.115806 37925933
    [Google Scholar]
  60. BurkettB.J. BartlettD.J. McGarrahP.W. LewisA.R. JohnsonD.R. BerberoğluK. PandeyM.K. PackardA.T. HalfdanarsonT.R. HruskaC.B. JohnsonG.B. KendiA.T. A review of theranostics: Perspectives on emerging approaches and clinical advancements.Radiol. Imaging Cancer202354e22015710.1148/rycan.220157 37477566
    [Google Scholar]
  61. SiY. XuX. HuY. SiH. ZhaiH. Novel quantitative structure–activity relationship model to predict activities of natural products against COVID‐19.Chem. Biol. Drug Des.202197497898310.1111/cbdd.13822 33386649
    [Google Scholar]
  62. WangM. WuZ. WangJ. WengG. KangY. PanP. LiD. DengY. YaoX. BingZ. HsiehC.Y. HouT. Genetic algorithm- based receptor ligand: A genetic algorithm-guided generative model to boost the novelty and drug-likeness of molecules in a sampling chemical space.J. Chem. Inf. Model.2024acs.jcim.3c01964.10.1021/acs.jcim.3c01964 38302422
    [Google Scholar]
  63. AhlawatS. VasuM. ChoudharyV. AroraR. SharmaR. MirM.A. SinghM.K. Comprehensive evaluation and validation of optimal reference genes for normalization of qPCR data in different caprine tissues.Mol. Biol. Rep.202451126810.1007/s11033‑024‑09268‑0 38302649
    [Google Scholar]
  64. ChenA. KurmisA.P. Understanding immune-mediated cobalt/chromium allergy to orthopaedic implants: A meta-synthetic review.Arthroplasty202461110.1186/s42836‑023‑00227‑x 38303027
    [Google Scholar]
  65. ZhouH. ChenG. LuY. ChengX. XinH. A permutation-combination heuristics for crane-based automated storage and retrieval systems considering order fulfillment time and energy consumption.Math. Biosci. Eng.202321111614310.3934/mbe.2024006 38303416
    [Google Scholar]
  66. YoonH. Sabaté del RíoJ. ChoS.W. ParkT.E. Recent advances in micro-physiological systems for investigating tumor metastasis and organotropism.Lab Chip202410.1039/D3LC01033C 38303676
    [Google Scholar]
  67. OppermanC.J. SinghS. GoosenW. CoxH. WarrenR. EsmailA. Incorporating direct molecular diagnostics in management algorithms for nontuberculous mycobacteria: Is it high time?IJID Reg.20241014014510.1016/j.ijregi.2023.12.003 38304760
    [Google Scholar]
  68. GanY. LiL. ZhangL. YanS. GaoC. HuS. QiaoY. TangS. WangC. LuZ. Association between shift work and risk of prostate cancer: A systematic review and meta-analysis of observational studies.Carcinogenesis2018392879710.1093/carcin/bgx129 29126152
    [Google Scholar]
  69. HuangX. ChenX.X. ChenX. ChenQ.Z. WangL. LiC. TianJ.L. Feasibility of anterior lobe-preserving transurethral enucleation and resection of prostate on improving urinary incontinence in patients with benign prostatic hyperplasia: A retrospective cohort study.Medicine20231027e3288410.1097/MD.0000000000032884 36800610
    [Google Scholar]
  70. GaoY. LiuY. LiuY. PengY. YuanB. FuY. QiX. ZhuQ. CaoT. ZhangS. YinL. LiX. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications.Cancer Lett.202152017218310.1016/j.canlet.2021.07.012 34265399
    [Google Scholar]
  71. DorffT. HorvathL.G. AutioK. Bernard-TessierA. RettigM.B. MachielsJ.P. BilenM.A. LolkemaM.P. AdraN. RotteyS. GreilR. MatsubaraN. TanD.S.W. WongA. UemuraH. LemechC. MeranJ. YuY. MinochaM. McCombM. PennyH.L. GuptaV. HuX. JuridaG. Kouros-MehrH. Janát-AmsburyM.M. EggertT. TranB. A phase 1 study of acapatamab, a half-life extended, PSMA-targeting bispecific T-cell engager for metastatic castration-resistant prostate cancer.Clin. Cancer Res.202410.1158/1078‑0432.CCR‑23‑2978 38300720
    [Google Scholar]
  72. OuY. ChuG.C.Y. LyuJ. YinL. LimA. ZhaiN. CuiX. LewisM.S. EdderkaouiM. PandolS.J. WangR. ZhangY. Over-coming resistance in prostate cancer therapy using a DZ-simvastatin conjugate.Mol. Pharm.202421287388210.1021/acs.molpharmaceut.3c00993 38229228
    [Google Scholar]
  73. van der ZandeK. Tutuhatunewa-LouhanepessyR.D. HambergP. RasS. de FeijterJ.M. DezentjéV.O. BroeksA. CornelissenS. BeekerA. van der NoortV. ZwartW. BergmanA.M. Combined cabazitaxel and carboplatin treatment of metastatic castration resistant prostate cancer patients, with innate or acquired resistance to cabazitaxel monotherapy. Clin. Genitourin. Cancer2024S1558-76732300282310.1016/j.clgc.2023.12.016 38246830
    [Google Scholar]
  74. LiJ.M. LiX. ChanL.W.C. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  75. ShakoorA. AlamA. JanF. KhanM. AliM. UllahS. KhanA. AlAsmariA.F. AlasmariF. Al-GhafriA. Al-HarrasiA. Novel benzimidazole derivatives as effective inhibitors of prolyl oligopeptidase: synthesis, in vitro and in silico analysis.Future Med. Chem.2024161435810.4155/fmc‑2023‑0267 38054466
    [Google Scholar]
  76. AyazM. AlamA. Zainab; Assad, M.; Javed, A.; Islam, M.S.; Rafiq, H.; Ali, M.; Ahmad, W.; Khan, A.; Latif, A.; Al-Harrasi, A.; Ahmad, M. Biooriented synthesis of ibuprofen-clubbed novel bis -schiff base derivatives as potential hits for malignant glioma: In vitro anti-cancer activity and in silico approach.ACS Omega2023851492284924310.1021/acsomega.3c07216 38173864
    [Google Scholar]
  77. ZhouY. LiQ. PanR. WangQ. ZhuX. YuanC. CaiF. GaoY. CuiY. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae.Allergy202277246948210.1111/all.15111 34570913
    [Google Scholar]
  78. ZhouY. LiL. YuZ. GuX. PanR. LiQ. YuanC. CaiF. ZhuY. CuiY. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IGE ‐binding in asthmatic children, and immunogenicity.Pediatr. Allergy Immunol.2022338e1383510.1111/pai.13835 36003049
    [Google Scholar]
  79. ZhuY. HuangR. WuZ. SongS. ChengL. ZhuR. Deep learning-based predictive identification of neural stem cell differentiation.Nat. Commun.2021121261410.1038/s41467‑021‑22758‑0 33972525
    [Google Scholar]
  80. López-FontanaG. GuglielmiJ.M. López-FontanaR. Hinojosa-JuryM.L. López-FontanaC. López-LaurJ.D. Salvage radical prostatectomy in nonmetastatic castration-resistant prostate cancer.Arch. Esp. Urol.202275763864110.56434/j.arch.esp.urol.20227507.92 36214146
    [Google Scholar]
  81. ErtürkS.A. Şalkİ. YücelB. Ulaş BabacanÖ. HasbekZ. The relationship between the suvmax value obtained in Ga-68 PSMA PET/CT and lactate dehydrogenase and alkaline phosphatase in prostate cancer.Arch. Esp. Urol.202275655255810.37554/en‑j.arch.esp.urol‑20210903‑3536‑35 36138505
    [Google Scholar]
  82. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine202210215409010.1016/j.phymed.2022.154090 35580439
    [Google Scholar]
  83. BaiR. ZhuJ. BaiZ. MaoQ. ZhangY. HuiZ. LuoX. YeX.Y. XieT. Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma.J. Enzyme Inhib. Med. Chem.202237137938510.1080/14756366.2021.2016734 35012394
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808291381240226094729
Loading
/content/journals/lddd/10.2174/0115701808291381240226094729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test