Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Although indazole derivatives are rare and may not be available easily in nature, there are many reports demonstrating their pharmaceutical and other applications.

Objective

This study aimed to synthesize new indazole derivatives and evaluate their anti-proliferative activity to produce new anti-cancer agents.

Methods

Compounds - were synthesized through the reaction. The 2-aryllidenecyclohexane-1,3-dione derivatives were obtained through the reaction of cyclohexane-1,3-dione with aromatic aldehydes used for the synthesis of thieno-[3,2-]indazole derivatives. These derivatives were characterized by extensive analytical and spectral studies and were further used as starting materials for some heterocyclic transformations to produce biologically active compounds. The antiproliferative activities of the newly synthesized compounds were evaluated against the six cancer cell lines, A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460. Most of the tested compounds exhibited high cytotoxicity except a few compounds.

Results

In this study, new compounds were synthesized, characterized, and evaluated toward the selected six cancer cell lines. All tested compounds displayed potent c-Met enzymatic activity with IC values ranging from 0.25 to 10.30 nM and potent prostate PC-3 cell line inhibition with IC values ranging from 0.17 to 9.31 μM.

Conclusion

The results obtained in this work demonstrated that the variations in substituents within the aryl moiety, together with the attached heterocyclic ring, have a notable influence on the antiproliferative activity. The results obtained in this work encourage further work in the future.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808287763240302165049
2024-03-13
2025-01-24
Loading full text...

Full text loading...

References

  1. SchmidtA. BeutlerA. SnovydovychB. Recent advances in the chemistry of indazoles.Eur. J. Org. Chem.20082008244073409510.1002/ejoc.200800227
    [Google Scholar]
  2. Atta-ur-Rahman, Malik, S.; Cun-heng, H.; Clardy, J. Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of.Tetrahedron Lett.198526232759276210.1016/S0040‑4039(00)94904‑9
    [Google Scholar]
  3. LiuY.M. YangJ.S. LiuQ.H. A new alkaloid and its artificial derivative with an indazole ring from Nigella glandulifera.Chem. Pharm. Bull.200452445445510.1248/cpb.52.454 15056964
    [Google Scholar]
  4. RahmanA. MalikS. HasanS.S. ChoudharyM.I. NiC.Z. ClardyJ. Nigellidine — A new indazole alkaloid from the seeds of Nigella sativa.Tetrahedron Lett.199536121993199610.1016/0040‑4039(95)00210‑4
    [Google Scholar]
  5. ElliottE.L. BushellS.M. CaveroM. TolanB. KellyT.R. Total synthesis of nigellicine and nigeglanine hydrobromide.Org. Lett.20057122449245110.1021/ol050769m 15932220
    [Google Scholar]
  6. SagitullinaG.P. GarkushenkoA.K. PoendaevN.V. SagitullinR.S. Simple and efficient synthesis of substituted 1H-indazoles.Mendeleev Commun.201222316716810.1016/j.mencom.2012.05.020
    [Google Scholar]
  7. BüchelG.E. StepanenkoI.N. HejlM. JakupecM.A. KepplerB.K. HeffeterP. BergerW. ArionV.B. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity.J. Inorg. Biochem.2012113475410.1016/j.jinorgbio.2012.04.001 22687494
    [Google Scholar]
  8. CerecettoH. GerpeA. GonzálezM. AránV. de OcárizC. Pharmacological properties of indazole derivatives: Recent developments.Mini Rev. Med. Chem.200551086987810.2174/138955705774329564 16250831
    [Google Scholar]
  9. HuangS. LiR. ConnollyP.J. EmanuelS. Fuentes-PesqueraA. AdamsM. GruningerR.H. SerajJ. MiddletonS.A. DavisJ.M. MoffatD.F.C. Synthesis and biological study of 2-amino-4-aryl-5-chloropyrimidine analogues as inhibitors of VEGFR-2 and cyclin dependent kinase 1 (CDK1).Bioorg. Med. Chem. Lett.20071782179218310.1016/j.bmcl.2007.01.086 17317182
    [Google Scholar]
  10. BouissaneL. El-KazzoulliS. LéonceS. PfeifferB. RakibE.M. KhouiliM. GuillaumetG. Synthesis and biological evaluation of N-(7-indazolyl)benzene-sulfonamide derivatives as potent cell cycle inhibitors.Bioorg. Med. Chem.2006141078108810.1016/j.bmc.2005.09.037
    [Google Scholar]
  11. HeskethP.J. GandaraD.R. Serotonin antagonists: A new class of antiemetic agents.J. Natl. Cancer Inst.199183961362010.1093/jnci/83.9.613 1850806
    [Google Scholar]
  12. PanS.L. GuhJ.H. PengC.Y. WangS.W. ChangY.L. ChengF.C. ChangJ.H. KuoS.C. LeeF.Y. TengC.M. YC-1[3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models.J. Pharmacol. Exp. Ther.20053141354210.1124/jpet.105.085126 15784655
    [Google Scholar]
  13. DaidoneG. RaffaD. MaggioB. Valeria RaimondiM. PlesciaF. SchillaciD. Synthesis and antiproliferative activity of triazenoindazoles and triazenopyrazoles: A comparative study.Eur. J. Med. Chem.200439321922410.1016/j.ejmech.2003.11.012 15051169
    [Google Scholar]
  14. SimoniD. RomagnoliR. BaruchelloR. RondaninR. RizziM. PavaniM.G. AlloattiD. GianniniG. MarcelliniM. RiccioniT. CastorinaM. GuglielmiM.B. BucciF. CarminatiP. PisanoC. Novel combretastatin analogues endowed with antitumor activity.J. Med. Chem.200649113143315210.1021/jm0510732 16722633
    [Google Scholar]
  15. PinnaG.A. PirisiM.A. MussinuJ.M. MurinedduG. LorigaG. PauA. GrellaG.E. Chromophore-modified bis-benzo[g]indole carboxamides: Synthesis and antiproliferative activity of bis-benzo[g]indazole-3-carboxamides and related dimers.Farmaco200358974976310.1016/S0014‑827X(03)00131‑9 13679168
    [Google Scholar]
  16. KrapchoA.P. HaydarS.N. Synthesis of regioisomeric 2,5‐bis‐substituted‐aza‐benzothiopyranoindazoles.J. Heterocycl. Chem.20013851153116610.1002/jhet.5570380520
    [Google Scholar]
  17. GaikwadD.D. ChapolikarA.D. DevkateC.G. WaradK.D. TayadeA.P. PawarR.P. DombA.J. Synthesis of indazole motifs and their medicinal importance: An overview.Eur. J. Med. Chem.20159070773110.1016/j.ejmech.2014.11.029 25506810
    [Google Scholar]
  18. JonesP. AltamuraS. BoueresJ. FerrignoF. FonsiM. GiominiC. LamartinaS. MonteagudoE. OntoriaJ.M. OrsaleM.V. PalumbiM.C. PesciS. RoscilliG. ScarpelliR. FademrechtC.S. ToniattiC. RowleyM. Discovery of 2-{4-[(3S)-Piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): A novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors.J. Med. Chem.2009527170718510.1021/jm901188v 19873981
    [Google Scholar]
  19. TiwariA. TiwariV. KumarS. KumarM. SaharanR. VarmaN. SahooB.M. KaushikD. SharmaR.K. Molecular docking and simulation analysis of cyclopeptides as anticancer agents.Curr. Drug Ther.202318324726110.2174/1574885518666230222113033
    [Google Scholar]
  20. Suresh KumarS. TiwariA. TiwariV. KhokraS.L. SaharanR. KumarM. SharmaA. VirmaniT. VirmaniR. KumarG. AlhalmiA. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A.BioMed. Res. Inter20239289141
    [Google Scholar]
  21. HummelJ.R. EllmanJ.A. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades.J. Am. Chem. Soc.2015137149049810.1021/ja5116452 25494296
    [Google Scholar]
  22. JeongT. HanS.H. HanS. SharmaS. ParkJ. LeeJ.S. KwakJ.H. JungY.H. KimI.S. Access to 3-Acyl-(2 H)-indazoles via Rh(III)-Catalyzed C–H addition and cyclization of azobenzenes with α-keto aldehydes.Org. Lett.201618223223510.1021/acs.orglett.5b03368 26741169
    [Google Scholar]
  23. RafiqueR. SaadS.M. Arshia; Khan, K.M.; Perveen, S.; Taha, M. Facile CuCl2·2H2O catalyzed one-pot conversion of dimedone into highly functionalized indazole based N-arylhydrazinecarbothioamides.J. Saudi Chem. Soc.2020241929710.1016/j.jscs.2019.09.006
    [Google Scholar]
  24. OhnmachtS.A. CulshawA.J. GreaneyM.F. Direct arylations of 2H-indazoles on water.Org. Lett.201012222422610.1021/ol902537d 20014781
    [Google Scholar]
  25. NeogiS. GhoshA.K. MajhiK. SamantaS. KibriyaG. HajraA. Organophotoredox-catalyzed direct C–H amination of 2 H -indazoles with amines.Org. Lett.202022145605560910.1021/acs.orglett.0c01973 32578430
    [Google Scholar]
  26. BogondaG. KimH.Y. OhK. Direct acyl radical addition to 2H-indazoles using Ag-catalyzed decarboxylative cross-coupling of a-keto acids.Org. Lett.20182092711271510.1021/acs.orglett.8b00920 29672060
    [Google Scholar]
  27. SingsardarM. LaruS. MondalS. HajraA. Visible-light-induced regioselective cross-dehydrogenative coupling of 2 H -indazoles with ethers.J. Org. Chem.20198474543455010.1021/acs.joc.9b00318 30875224
    [Google Scholar]
  28. MahantyK. MaitiD. De SarkarS. Regioselective C–H sulfonylation of 2 H -indazoles by electrosynthesis.J. Org. Chem.20208553699370810.1021/acs.joc.9b03330 32003566
    [Google Scholar]
  29. MuruganA. GorantlaK.R. MallikB.S. SharadaD.S. Iron promoted C3–H nitration of 2 H -indazole: direct access to 3-nitro-2 H -indazoles.Org. Biomol. Chem.201816285113511810.1039/C8OB00931G 29978885
    [Google Scholar]
  30. GhoshP. MondalS. HajraA. Metal-free trifluoromethylation of indazoles.J. Org. Chem.20188321136181362310.1021/acs.joc.8b02312 30346165
    [Google Scholar]
  31. DeyA. HajraA. Potassium persulfate‐mediated thiocyanation of 2 H ‐indazole under iron‐catalysis.Adv. Synth. Catal.2019361484284910.1002/adsc.201801232
    [Google Scholar]
  32. MoharebR.M. HelalM.E. MayhoubA.E. AbdallahA.E. Multicomponent synthesis of pyrazolo[1,5-a]quinoline, thiazole and thiophene derivatives as cytotoxic agents.Bull. Chem. Soc. Ethiop.2023371251153810.4314/bcse.v37i6.17
    [Google Scholar]
  33. AlwanE. MoharebR. Synthesis of biologically active chromene, coumarin, azole, azine and thiophene derivatives from 1,3-diketone.Organic Communications202114316322710.25135/acg.oc.105.21.03.2027
    [Google Scholar]
  34. IstyastonoE.P. Synthesis of a potential angiogenesis inhibitor compound: 2-benzylidene cyclohexane-1,3-dione.Indonesian J. of Chem.20092018
    [Google Scholar]
  35. MoharebR.M. ManhiF.M. AbdelwahabA. Synthesis of heterocyclic compounds derived from dimedone and their anti-tumor and tyrosine kinase inhibitions.Acta Chim. Slov.2020671839510.17344/acsi.2019.5224 33558929
    [Google Scholar]
  36. ShaabanM.A. KamelM.M. MiladY.R. Synthesis and cytotoxicity of heterocyclic compounds derived from cyclohexane-1,3-dione.OAlib20141911610.4236/oalib.1101115
    [Google Scholar]
  37. DömlingA. Recent developments in isocyanide based multicomponent reactions in applied chemistry.Chem. Rev.20061061178910.1021/cr0505728 16402771
    [Google Scholar]
  38. RiveraD.G. LeónF. ConcepciónO. MoralesF.E. WessjohannL.A. A multiple multicomponent approach to chimeric peptide-peptoid podands.Chemistry201319206417642810.1002/chem.201201591 23512744
    [Google Scholar]
  39. UgiI. WernerB. DömlingA. The chemistry of isocyanides, their multicomponent reactions and their libraries.Molecules200381536610.3390/80100053
    [Google Scholar]
  40. Van BerkelS.S. BögelsB.G. WijdevenM.A. WestermannB. RutjesF.P. Recent advances in asymmetric isocyanide-based multicomponent reactions.J. Org. Chem.2012201235433559
    [Google Scholar]
  41. BonsignoreL. LoyG. SecciD. CalignanoA. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives.Eur. J. Med. Chem.199328651752010.1016/0223‑5234(93)90020‑F
    [Google Scholar]
  42. Adbel Aziz HafezE. Abdel Aziz HafezE. Hilmy ElnagdiM. Ghani Ali ElagameyA. Mohamed Abdel Aziz El-TaweelF. Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline derivatives.Heterocycles198726490390710.3987/R‑1987‑04‑0903
    [Google Scholar]
  43. DarbarwarM. SundaramurthyV. Synthesis of coumarins with 3:4-fused ringsystems and their physiological activity.Synthesis19821982533738810.1055/s‑1982‑29806
    [Google Scholar]
  44. KemnitzerW. DreweJ. JiangS. ZhangH. WangY. ZhaoJ. JiaS. HerichJ. LabrequeD. StorerR. MeerovitchK. BouffardD. RejR. DenisR. BlaisC. LamotheS. AttardoG. GourdeauH. TsengB. KasibhatlaS. CaiS.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group.J. Med. Chem.200447256299631010.1021/jm049640t 15566300
    [Google Scholar]
  45. LiuL. SiegmundA. XiN. Kaplan-LefkoP. RexK. ChenA. LinJ. MoriguchiJ. BerryL. HuangL. TefferaY. YangY. ZhangY. BellonS.F. LeeM. ShimanovichR. BakA. DominguezC. NormanM.H. HarmangeJ.C. DussaultI. KimT.S. Discovery of a potent, selective, and orally bioavailable c-met inhibitor: 1-(2-Hydroxy-2-methylpropyl)- N -(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1 H -pyrazole-4-carboxamide (AMG 458).J. Med. Chem.200851133688369110.1021/jm800401t 18553959
    [Google Scholar]
  46. PeachM.L. TanN. ChoykeS.J. GiubellinoA. AthaudaG. BurkeT.R.Jr NicklausM.C. BottaroD.P. BottaroD.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening.J. Med. Chem.200952494395110.1021/jm800791f 19199650
    [Google Scholar]
  47. De BaccoF. LuraghiP. MedicoE. ReatoG. GirolamiF. PereraT. GabrieleP. ComoglioP.M. BoccaccioC. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.J. Natl. Cancer Inst.2011103864566110.1093/jnci/djr093 21464397
    [Google Scholar]
  48. El-SharkawyK.A. MohamedA.A. Al FaroukF.O. MoharebR.M. New approaches for the synthesis N-alkylated Benzo[b]thiophene derivatives together with their antiproliferative and molecular docking studies.Anticancer. Agents Med. Chem.202323121429144610.2174/1871520623666230316103419 36927433
    [Google Scholar]
  49. BoydM.R. PaullK.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen.Drug Dev. Res.19953429110910.1002/ddr.430340203
    [Google Scholar]
  50. VerrasM. LeeJ. XueH. LiT.H. WangY. SunZ. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression.Cancer Res.200767396797510.1158/0008‑5472.CAN‑06‑3552 17283128
    [Google Scholar]
  51. RubinJ.S. BottaroD.P. AaronsonS.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product.Biochim. Biophys. Acta199311553357371 8268192
    [Google Scholar]
  52. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_suppl)(SupplS7S1910.1177/1758834011422556 22128289
    [Google Scholar]
  53. JeffersM. RongS. Vande WoudeG.F. WoudeV. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis.J. Mol. Med.199674950551310.1007/BF00204976 8892055
    [Google Scholar]
  54. KnudsenB.S. GmyrekG.A. InraJ. ScherrD.S. VaughanE.D. NanusD.M. KattanM.W. GeraldW.L. Vande WoudeG.F. High expression of the Met receptor in prostate cancer metastasis to bone.Urology20026061113111710.1016/S0090‑4295(02)01954‑4 12475693
    [Google Scholar]
  55. HumphreyP.A. ZhuX. ZarnegarR. SwansonP.E. RatliffT.L. VollmerR.T. DayM.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma.Am. J. Pathol.19951472386396 7639332
    [Google Scholar]
  56. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.013 23628470
    [Google Scholar]
  57. GarofaloS. RosaR. BiancoR. TortoraG. EGFR-targeting agents in oncology.Expert Opin. Ther. Pat.200818888990110.1517/13543776.18.8.889
    [Google Scholar]
  58. Al-SuwaidanI.A. Abdel-AzizN.I. El-AzabA.S. El-SayedM.A.A. AlanaziA.M. El-AshmawyM.B. Abdel-AzizA.A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues.J. Enzyme Inhib. Med. Chem.201530467968710.3109/14756366.2014.960863 25472776
    [Google Scholar]
  59. RathkeC. BarckmannB. BurkhardS. Jayaramaiah-RajaS. RooteJ. Renkawitz-PohlR. Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis.Eur. J. Cell Biol.201089432633810.1016/j.ejcb.2009.09.001 20138392
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808287763240302165049
Loading
/content/journals/lddd/10.2174/0115701808287763240302165049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test