Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Thirteen derivatives were designed and synthesized based on the excellent lead compound Matrine.

Objective

This study aimed to discover novel anticancer agents with superior anticancer activity and to support the discovery of new drugs.

Methods

The antiproliferative activity of all derivatives against four human cancer cells, A549, HGC-27, HCT-116, and HeLa, was determined by MTT. The best active compounds were subjected to cell cloning, migration, cell cycle and apoptosis, and molecular docking.

Results

Compound showed the best activity against all four cell lines, especially against A549 cells, with an IC of 5.805 μmol/L. The antiproliferative activity of was much higher than that of matrine and only slightly weaker than that of Cisplatin, a multi-targeted small molecule inhibitor. also showed excellent inhibitory activity in cell cycle, apoptosis, cell scratch, and cell cloning assays and has shown good affinity in docking studies.

Conclusion

has excellent antiproliferative activity, significantly inhibits cell cloning and migration, affects cancer cell cycle distribution, and induces apoptosis in a concentration-dependent manner, making it a potential anticancer drug agent.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808300981240408063655
2024-04-15
2025-01-24
Loading full text...

Full text loading...

References

  1. JuanesM. SaragiR.T. EnríquezL. JaraízM. LesarriA. Molecular rotation spectrum of tetracyclic quinolizidines: Observation of trans -matrine and the elusive cis -matrine.J. Org. Chem.20218621861186710.1021/acs.joc.0c02689 33405924
    [Google Scholar]
  2. NiW. LiC. LiuY. SongH. WangL. SongH. WangQ. Various bioactivity and relationship of structure–activity of matrine analogues.J. Agric. Food Chem.201765102039204710.1021/acs.jafc.6b05474 28248103
    [Google Scholar]
  3. ZhangX. HouG. LiuA. XuH. GuanY. WuY. DengJ. CaoX. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways.Cell Death Dis.2019101077010.1038/s41419‑019‑2013‑3 31601793
    [Google Scholar]
  4. ZouY. SaremM. XiangS. HuH. XuW. ShastriV.P. Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling.BMC Cancer201919194910.1186/s12885‑019‑6199‑7 31615459
    [Google Scholar]
  5. GuJ. ZhangY. WangX. XiangJ. ShenJ. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway.BMC Complement. Med. Ther.2020201
    [Google Scholar]
  6. ZhangF. ZhangH. QianW. XiY. ChangL. WuX. LiM. Matrine exerts antitumor activity in cervical cancer by protective autophagy via the Akt/mTOR pathway in vitro and in vivo. Oncol. Lett.202223411010.3892/ol.2022.13230 35242238
    [Google Scholar]
  7. ZhangM.F. ShenY.Q. Progress of anti-upper gastrointestinal tumour effects of oxidized matrine.Yaowu Pingjia Yanjiu20204355
    [Google Scholar]
  8. ZhangX. XuH. BiX. HouG. LiuA. ZhaoY. WangG. CaoX. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways.Cell Death Dis.2021121093110.1038/s41419‑021‑04221‑6 34642304
    [Google Scholar]
  9. ZhuN. HouJ. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology.Sci. Rep.2021111100510.1038/s41598‑020‑80297‑y 33441867
    [Google Scholar]
  10. ChuY.J. MaW.D. ThomeR. PingJ.D. LiuF.Z. WangM.R. ZhangM.L. ZhangG. ZhuL. Matrine inhibits cns autoimmunity through an ifn-β-dependent mechanism.Front. Immunol.20201156953010.3389/fimmu.2020.569530 33101289
    [Google Scholar]
  11. LuoD. WuZ.N. ZhangJ.H. LinQ. ChenN.H. ChenS. TangQ. ZhanZ-C. FanC-L. LiY-L. WangG-C. ZhangY-B. Sophaloseedlines A—G: Diverse matrine‐based alkaloids from sophora alopecuroides with potential anti‐hepatitis b virus activities.Chin. J. Chem.20213992555256210.1002/cjoc.202100279
    [Google Scholar]
  12. LiuF LiY YangY LiM DuY ZhangY Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology.Drug Delivery
    [Google Scholar]
  13. Pourahmad JaktajiR. KoochakiS. In vitro activity of honey, total alkaloids of Sophora alopecuroides and matrine alone and in combina-tion with antibiotics against multidrug-resistant Pseudomonas aeruginosa isolates.Lett. Appl. Microbiol.2022751708010.1111/lam.13705 35322896
    [Google Scholar]
  14. ZhangX. HuC. ZhangN. WeiW.Y. TangQ.Z. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice.Acta Pharmacol. Sin.2020424112 32694761
    [Google Scholar]
  15. KangJ. LiuS. SongY. ChuY. ZhuL. Matrine treatment reduces retinal ganglion cell apoptosis in experimental optic neuritis.Nature202110.1038/s41598‑021‑89086‑7
    [Google Scholar]
  16. ZhouW. WuJ. ZhangJ. LiuX. GuoS. JiaS. ZhangX. ZhuY. WangM. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology.Sci. Rep.20201011274510.1038/s41598‑020‑69708‑2 32728182
    [Google Scholar]
  17. YouL. YangC. DuY. WangW. SunM. LiuJ. MaB. PangL. ZengY. ZhangZ. DongX. YinX. NiJ. A systematic review of the pharmacology, toxicology and pharmacokinetics of matrine.Front. Pharmacol.2020110106710.3389/fphar.2020.01067 33041782
    [Google Scholar]
  18. FranzénR.G. Recent advances in the preparation of heterocycles on solid support: a review of the literature.J. Comb. Chem.20002319521410.1021/cc000002f 10827923
    [Google Scholar]
  19. HantzschA. WeberJ.H. Ueber verbindungen des thiazols (pyridins der thiophenreihe).Ber. Dtsch. Chem. Ges.18872023118313210.1002/cber.188702002200
    [Google Scholar]
  20. PetrouA. FesatidouM. GeronikakiA. Thiazole ring—A biologically active scaffold.Molecules20212611316610.3390/molecules26113166 34070661
    [Google Scholar]
  21. ArshadM.F. AlamA. AlshammariA.A. AlhazzaM.B. AlzimamI.M. AlamM.A. MustafaG. AnsariM.S. AlotaibiA.M. AlotaibiA.A. KumarS. AsdaqS.M.B. ImranM. DebP.K. VenugopalaK.N. JomahS. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents.Molecules20222713399410.3390/molecules27133994 35807236
    [Google Scholar]
  22. BishayeeA. KarmakarR. MandalA. KunduS.N. ChatterjeeM. Vanadium-mediated chemoprotection against chemical hepatocarcin-ogenesis in rats: haematological and histological characteristics.Eur. J. Cancer Prev.199761587010.1097/00008469‑199702000‑00010 9161814
    [Google Scholar]
  23. GopalM. PadmashaliB. ManoharaY.N. GurupadayyaB.M. Synthesis and pharmacological evaluation of azetidin-2-ones and thiazolidin-4-ones encompassing benzothiazole.Indian J. Pharm. Sci.200870557257710.4103/0250‑474X.45393 21394251
    [Google Scholar]
  24. HargraveK.D. HessF.K. OliverJ.T. N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents.J. Med. Chem.19832681158116310.1021/jm00362a014 6876084
    [Google Scholar]
  25. MuhammadZ.A. MasaretG.S. AminM.M. AbdallahM.A. FarghalyT.A. Anti-inflammatory, Analgesic and Anti-ulcerogenic Activities of Novel bis-thiadiazoles, bis-thiazoles and bis-formazanes.Med. Chem.201713322623810.2174/1573406412666160920091146 27659119
    [Google Scholar]
  26. LaczkowskiK.Z. BiernasiukA. Baranowska-LaczkowskaA. MisiuraK. MalmA. PlechT. PanethA. Synthesis, antibacterial activity, interaction with nucleobase and molecular docking studies of 4-formylbenzoic acid based thiazoles.Med. Chem.201612655356210.2174/1573406412666160201121310 26833073
    [Google Scholar]
  27. PattW.C. HamiltonH.W. TaylorM.D. RyanM.J. TaylorD.G.Jr ConnollyC.J.C. DohertyA.M. KlutchkoS.R. SircarI. SteinbaughB.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors.J. Med. Chem.199235142562257210.1021/jm00092a006 1635057
    [Google Scholar]
  28. KaradeH.N. AcharyaB.N. SatheM. KaushikM.P. Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids.Med. Chem. Res.2008171192910.1007/s00044‑008‑9089‑0
    [Google Scholar]
  29. PattanS. DigheN. NirmalS. MerekarA. LawareR. ShindeH. Synthesis and biological evaluation of some substituted amino thiazole derivatives.Asian J. Res. Chem200922196201
    [Google Scholar]
  30. AndreaniA. RambaldiM. MascellaniG. RugarliP. Synthesis and diuretic activity of imidazo[2,1-b]thiazole acetohydrazones.Eur. J. Med. Chem.1987221192210.1016/0223‑5234(87)90169‑3
    [Google Scholar]
  31. VengurlekarS. PrachandS. JainS. GuptaR. Synthesis and evaluation of some thiazole derivatives as an antifungal agent.Int. J. Pharm. & Life Sci.201455
    [Google Scholar]
  32. ErgençN. ÇapanG. GünayN.S. ÖzkirimliS. GüngörM. ÖzbeyS. KendiE. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives.Arch. Pharm.19993321034334710.1002/(SICI)1521‑4184(199910)332:10<343::AID‑ARDP343>3.0.CO;2‑0 10575366
    [Google Scholar]
  33. KoufakiM. KiziridiC. NikoloudakiF. AlexisM.N. Design and synthesis of 1,2-dithiolane derivatives and evaluation of their neuroprotective activity.Bioorg. Med. Chem. Lett.200717154223422710.1016/j.bmcl.2007.05.036 17531485
    [Google Scholar]
  34. JubieS. GowrammaB. NitinK. JawaharN. KalirajanR. GomathyS. Synthesis and biological evaluation of some 3-(methoxy phenyl)-2-aryl-thiazolidin-4-one derivatives.Indian J. Pharm. Sci.2009113238
    [Google Scholar]
  35. LinR. JohnsonS.G. ConnollyP.J. WetterS.K. BinnunE. HughesT.V. MurrayW.V. PandeyN.B. Moreno-MazzaS.J. AdamsM. Fuentes-PesqueraA.R. MiddletonS.A. Synthesis and evaluation of 2,7-diamino-thiazolo[4,5-d] pyrimidine analogues as anti-tumor epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors.Bioorg. Med. Chem. Lett.20091982333233710.1016/j.bmcl.2009.02.067 19286381
    [Google Scholar]
  36. El-SubbaghH.I. Al-ObaidA.M. 2,4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation.Eur. J. Med. Chem.199631121017102110.1016/S0223‑5234(97)86181‑8
    [Google Scholar]
  37. GadekarP.K. UrunkarG. RoychowdhuryA. SharmaR. BoseJ. KhannaS. DamreA. SarveswariS. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors.Bioorg. Chem.202111510515110.1016/j.bioorg.2021.105151 34333424
    [Google Scholar]
  38. Abdel-MaksoudM.S. KimM.R. El-GamalM.I. Gamal El-DinM.M. TaeJ. ChoiH.S. LeeK.T. YooK.H. OhC.H. Design, synthesis, in vitro antiproliferative evaluation, and kinase inhibitory effects of a new series of imidazo[2,1-b]thiazole derivatives.Eur. J. Med. Chem.20159545346310.1016/j.ejmech.2015.03.065 25841200
    [Google Scholar]
  39. CarosatiE. TochowiczA. MarvertiG. GuaitoliG. BenedettiP. FerrariS. StroudR.M. Finer-MooreJ. LucianiR. FarinaD. CrucianiG. CostiM.P. Inhibitor of ovarian cancer cells growth by virtual screening: a new thiazole derivative targeting human thymidylate synthase.J. Med. Chem.20125522102721027610.1021/jm300850v 23075414
    [Google Scholar]
  40. MumtazA. ShoaibM. ZaibS. ShahM.S. BhattiH.A. SaeedA. HussainI. IqbalJ. Synthesis, molecular modelling and biological evaluation of tetrasubstituted thiazoles towards cholinesterase enzymes and cytotoxicity studies.Bioorg. Chem.20187814114810.1016/j.bioorg.2018.02.024 29567428
    [Google Scholar]
  41. AlrohilyW.D. HabibM.E. El-MesseryS.M. AlqurshiA. El-SubbaghH. HabibE.S.E. Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors.Microb. Pathog.201913610367410.1016/j.micpath.2019.103674 31446042
    [Google Scholar]
  42. MishraB. ZhangS. ZhaoH. DarzynkiewiczZ. LeeE.Y.C. LeeM.Y.W.T. ZhangZ. Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties.Cancer Biol. Ther.201920447448610.1080/15384047.2018.1529126 30427259
    [Google Scholar]
  43. HuangL. JiangS. ShiY. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020).J. Hematol. Oncol.202013114310.1186/s13045‑020‑00977‑0 33109256
    [Google Scholar]
  44. KamalA. DastagiriD. RamaiahM.J. ReddyJ.S. BharathiE.V. SrinivasC. PushpavalliS.N.C.V.L. PalD. Pal-BhadraM. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents.ChemMedChem20105111937194710.1002/cmdc.201000346 20836120
    [Google Scholar]
  45. AndreaniA. BurnelliS. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. VaroliL. CalonghiN. CappadoneC. FarruggiaG. ZiniM. StefanelliC. MasottiL. RadinN.S. ShoemakerR.H. New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues.J. Med. Chem.200851480981610.1021/jm701246g 18251494
    [Google Scholar]
  46. AndreaniA. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. LenazG. FatoR. BergaminiC. FarruggiaG. Potential Antitumor Agents. 37. Synthesis and Antitumor Activity of Guanylhydrazones from Imidazo[2,1- b]thiazoles and from the New Heterocyclic System Thiazolo[2‘,3‘:2,3]imidazo[4,5- c]quinoline.J. Med. Chem.20054883085308910.1021/jm040888s 15828848
    [Google Scholar]
  47. AndreaniA. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. VaroliL. LanniganD. SmithJ. ScudieroD. KondapakaS. ShoemakerR.H. Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors.Eur. J. Med. Chem.20114694311432310.1016/j.ejmech.2011.07.001 21794960
    [Google Scholar]
  48. KamalA. BalakrishnaM. NayakV.L. ShaikT.B. FaazilS. NimbarteV.D. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents.ChemMedChem20149122766278010.1002/cmdc.201402310 25313981
    [Google Scholar]
  49. Substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinonesand analogues: synthesis, cytotoxic activity, and study of the mechanismof action(1).J. Med. Chem.2012
    [Google Scholar]
  50. KaurGurneet GillRupinder Kaur, Ramandeep Recent developments in tubulin polymerization inhibitors: An overview.Europ. J. Med. Chem.: Chimie Therapeutique2014
    [Google Scholar]
  51. Aryl-imidazothiadiazole analogues as microtubule disrupting agents.MedChemComm201561010.1039/C5MD00155B
    [Google Scholar]
  52. ShaikS.P. NayakV.L. SultanaF. RaoA.V.S. ShaikA.B. BabuK.S. KamalA. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents.Eur. J. Med. Chem.2017126365110.1016/j.ejmech.2016.09.06027744185
    [Google Scholar]
  53. XuY. LiangP. RashidH. WuL. XieP. WangH. ZhangS. WangL. JiangJ. Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents.Med. Chem. Res.201928101618162710.1007/s00044‑019‑02398‑2
    [Google Scholar]
  54. PhanT.G. CroucherP.I. The dormant cancer cell life cycle.Nat. Rev. Cancer202020739841110.1038/s41568‑020‑0263‑0 32488200
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808300981240408063655
Loading
/content/journals/lddd/10.2174/0115701808300981240408063655
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anticancer agents; antiproliferative; imidazo[2,1-b]thiazole; Matrine; synthesis; thiazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test