Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Inhibitors of topoisomerases, essential regulators of cancer development, are promising as cancer treatments. These enzymes regulate DNA topology and eliminate topological constraints during various biological processes, including replication, transcription, and recombination. Nature has continually offered scientists pathways to explore the development of new drugs. Indeed, since ancient times, various plant extracts have been utilized in treating multiple pathologies.

Objective

It’s intriguing to diversify the therapeutic classes of natural topoisomerase 1 inhibitors. We aimed to explore the relationship between the toxicity of certain medicinal plants in North Africa and their anti-topoisomerase 1 enzyme activity. This investigation aims to discover potentially valuable compounds for fighting cancer by inhibiting the Topo1 enzyme, enriching the anticancer therapeutic class.

Methods

This study has conducted a virtual screening of the African Natural Products Database to identify new scaffolds as topoisomerase 1 inhibitors. Molecular docking as a structure-based drug design approach was selected as one of the best approaches, and the complex code ID: 1K4T was used for this purpose.

Results and Discussion

The molecular docking of more than 5790 natural products extracted from this database was docked into the binding site of the above-cited complex using the Modlock optimizer and Moldock score as search and scoring function algorithms, respectively. The top-ranked compounds have been assessed, analyzed, and compared to Topotecan and Irinotecan as reference ligands and drugs.

Conclusion

Consequently, the seven natural products have shown a strong affinity to topoisomerase 1 and DNA. They establish a clear link between topoisomerase 1 inhibition and the anticancer activity of their corresponding plant extracts. Therefore, these are promising and serve as a base for further development of new topoisomerase 1 inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808280302240117055932
2024-02-06
2024-12-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. StewartL. IretonG.C. ChampouxJ.J. Reconstitution of human topoisomerase i by fragment complementation11edited by P. E. WrightJ. Mol. Biol;1997269335537210.1006/jmbi.1997.1056
    [Google Scholar]
  3. WangJ.C. Cellular roles of DNA topoisomerases: A molecular perspective.Nat. Rev. Mol. Cell Biol.20023643044010.1038/nrm83112042765
    [Google Scholar]
  4. PommierY. LeoE. ZhangH. MarchandC. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.Chem. Biol.201017542143310.1016/j.chembiol.2010.04.01220534341
    [Google Scholar]
  5. PommierY. NussenzweigA. TakedaS. AustinC. Human topoisomerases and their roles in genome stability and organization.Nat. Rev. Mol. Cell Biol.202223640742710.1038/s41580‑022‑00452‑335228717
    [Google Scholar]
  6. BjornstiM.A. KaufmannS.H. Topoisomerases and cancer chemotherapy: Recent advances and unanswered questions.F1000 Res.20198170410.12688/f1000research.20201.131602296
    [Google Scholar]
  7. PommierY. SunY. HuangS.N. NitissJ.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability.Nat. Rev. Mol. Cell Biol.2016171170372110.1038/nrm.2016.11127649880
    [Google Scholar]
  8. SantellaR.M. GammonM. TerryM. SenieR. ShenJ. KennedyD. AgrawalM. FaragliaB. ZhangF. DNA adducts, DNA repair genotype/phenotype and cancer risk.Mutat. Res.20055921-2293510.1016/j.mrfmmm.2005.06.00116023682
    [Google Scholar]
  9. SchoefflerA.J. BergerJ.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology.Q. Rev. Biophys.20084114110110.1017/S003358350800468X18755053
    [Google Scholar]
  10. LiuL.F. DNA topoisomerase poisons as antitumor drugs.Annu. Rev. Biochem.198958135137510.1146/annurev.bi.58.070189.0020312549853
    [Google Scholar]
  11. ChillemiG. RedinboM. BrusellesA. DesideriA. Role of the linker domain and the 203-214 N-terminal residues in the human topoisomerase I DNA complex dynamics.Biophys. J.20048764087409710.1529/biophysj.104.04492515347588
    [Google Scholar]
  12. LeppardJ.B. ChampouxJ.J. Human DNA topoisomerase I: Relaxation, roles, and damage control.Chromosoma20051142758510.1007/s00412‑005‑0345‑515830206
    [Google Scholar]
  13. CapranicoG. MarinelloJ. ChillemiG. Type I DNA topoisomerases.J. Med. Chem.20176062169219210.1021/acs.jmedchem.6b0096628072526
    [Google Scholar]
  14. ThomasA. PommierY. Targeting topoisomerase I in the era of precision medicine.Clin. Cancer Res.201925226581658910.1158/1078‑0432.CCR‑19‑108931227499
    [Google Scholar]
  15. StewartL. RedinboM.R. QiuX. HolW.G.J. ChampouxJ.J. A model for the mechanism of human topoisomerase I. Science199827953561534154110.1126/science.279.5356.15349488652
    [Google Scholar]
  16. GirstunA. Kowalska-LothB. CzubatyA. KlocekM. StarońK. Fragment responsible for translocation in the N-terminal domain of human topoisomerase I.Biochem. Biophys. Res. Commun.2008366125025710.1016/j.bbrc.2007.11.13118054778
    [Google Scholar]
  17. ChampouxJ.J. DNA topoisomerases: Structure, function, and mechanism.Annu. Rev. Biochem.200170136941310.1146/annurev.biochem.70.1.36911395412
    [Google Scholar]
  18. RedinboM.R. StewartL. KuhnP. ChampouxJ.J. HolW.G.J. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.Science199827953561504151310.1126/science.279.5356.15049488644
    [Google Scholar]
  19. KroghS. MortensenU.H. WestergaardO. BonvenB.J. Eukaryotic topoisomerase I-DNA interaction is stabilized by helix curvature.Nucleic Acids Res.19911961235124110.1093/nar/19.6.12351851553
    [Google Scholar]
  20. IretonG.C. StewartL. ParkerL.H. ChampouxJ.J. Expression of human topoisomerase I with a partial deletion of the linker region yields monomeric and dimeric enzymes that respond differently to camptothecin.J. Biol. Chem.200027533258202583010.1074/jbc.M00214420010827183
    [Google Scholar]
  21. BrodieA.M.H. Aromatase inhibitors in the treatment of breast cancer.J. Steroid Biochem. Mol. Biol.1994494-628128710.1016/0960‑0760(94)90269‑08043490
    [Google Scholar]
  22. LiC.J. AverboukhL. PardeeA.B. beta-Lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin.J. Biol. Chem.199326830224632246810.1016/S0021‑9258(18)41552‑98226754
    [Google Scholar]
  23. ZamboniW.C. RamalingamS. FriedlandD.M. EdwardsR.P. StollerR.G. StrychorS. MarucaL. ZamboniB.A. BelaniC.P. RamanathanR.K. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies.Clin. Cancer Res.20091541466147210.1158/1078‑0432.CCR‑08‑140519190127
    [Google Scholar]
  24. MoukharskayaJ. VerschraegenC. Topoisomerase 1 inhibitors and cancer therapy.Hematol. Oncol. Clin. North Am.2012263507525[vii].10.1016/j.hoc.2012.03.00222520977
    [Google Scholar]
  25. DelgadoJ.L. HsiehC.M. ChanN.L. HiasaH. Topoisomerases as anticancer targets.Biochem. J.2018475237339810.1042/BCJ2016058329363591
    [Google Scholar]
  26. StehlinJ.S. GiovanellaB.C. NatelsonE.A. De IpolyiP.D. CoilD. DavisB. WolkD. WallaceP. TrojacekA. A study of 9-nitrocamptothecin (RFS-2000) in patients with advanced pancreatic cancer.Int. J. Oncol.199914582183110.3892/ijo.14.5.82110200331
    [Google Scholar]
  27. LeeJ.H. LeeJ.M. KimJ.K. AhnS.K. LeeS.J. KimM.Y. JewS.S. ParkJ.G. HongC.I. Antitumor activity of 7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin, CKD602, as a potent DNA topoisomerase I inhibitor.Arch. Pharm. Res.199821558159010.1007/BF029753799875499
    [Google Scholar]
  28. TakiguchiS. KumazawaE. ShimazoeT. TohgoA. KonoA. Antitumor effect of DX-8951, a novel camptothecin analog, on human pancreatic tumor cells and their CPT-11-resistant variants cultured in vitro and xenografted into nude mice.Jpn. J. Cancer Res.199788876076910.1111/j.1349‑7006.1997.tb00448.x9330608
    [Google Scholar]
  29. StewartL. IretonG.C. ChampouxJ.J. A functional linker in human topoisomerase I is required for maximum sensitivity to camptothecin in a DNA relaxation assay.J. Biol. Chem.199927446329503296010.1074/jbc.274.46.3295010551862
    [Google Scholar]
  30. LoosW.J. KehrerD. BrouwerE. VerweijJ. de BruijnP. HamiltonM. GillS. NooterK. StoterG. SparreboomA. Liposomal lurtotecan (NX211): Determination of total drug levels in human plasma and urine by reversed-phase high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.2000738115516310.1016/S0378‑4347(99)00513‑710778937
    [Google Scholar]
  31. StakerB.L. FeeseM.D. CushmanM. PommierY. ZembowerD. StewartL. BurginA.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex.J. Med. Chem.20054872336234510.1021/jm049146p15801827
    [Google Scholar]
  32. MitsuiI. KumazawaE. HirotaY. AonumaM. SugimoriM. OhsukiS. UotoK. EjimaA. TerasawaH. SatoK. A new water-soluble camptothecin derivative, DX-8951f, exhibits potent antitumor activity against human tumors in vitro and in vivo.Jpn. J. Cancer Res.199586877678210.1111/j.1349‑7006.1995.tb02468.x7559102
    [Google Scholar]
  33. LavergneO. Lesueur-GinotL. Pla RodasF. KasprzykP.G. PommierJ. DemarquayD. PrévostG. UlibarriG. RollandA. Schiano-Liberatore, A.M.; Harnett, J.; Pons, D.; Camara, J.; Bigg, D.C.H. Homocamptothecins: Synthesis and antitumor activity of novel E-ring-modified camptothecin analogues.J. Med. Chem.199841275410541910.1021/jm980400l9876111
    [Google Scholar]
  34. LacoG.S. CollinsJ.R. LukeB.T. KrothH. SayerJ.M. JerinaD.M. PommierY. Human topoisomerase I inhibition: Docking camptothecin and derivatives into a structure-based active site model.Biochemistry20024151428143510.1021/bi011774a11814334
    [Google Scholar]
  35. LiuL.F. DesaiS.D. LiT.K. MaoY. SunM. SimS.P. Mechanism of action of camptothecin.Ann. N. Y. Acad. Sci.2000922111010.1111/j.1749‑6632.2000.tb07020.x11193884
    [Google Scholar]
  36. HertzbergR.P. CaranfaM.J. HechtS.M. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex.Biochemistry198928114629463810.1021/bi00437a0182548584
    [Google Scholar]
  37. PommierY. TopoisomeraseI. Topoisomerase I inhibitors: Camptothecins and beyond.Nat. Rev. Cancer200661078980210.1038/nrc197716990856
    [Google Scholar]
  38. KhaiwaN. MaaroufN.R. DarwishM.H. AlhamadD.W.M. SebastianA. HamadM. OmarH.A. OriveG. Al-TelT.H. Camptothecin’s journey from discovery to WHO essential medicine: Fifty years of promise.Eur. J. Med. Chem.202122311363910.1016/j.ejmech.2021.11363934175539
    [Google Scholar]
  39. NishidaM. TerabayashiT. MatsuokaS. OkumaT. AdachiS. TomoT. KawanoM. TanakaK. TsumuraH. AnaiH. IshizakiT. NishidaY. HanadaK. Mechanism of action of non-camptothecin inhibitor Genz-644282 in topoisomerase I inhibition.Commun. Biol.20225198210.1038/s42003‑022‑03920‑w36114357
    [Google Scholar]
  40. LavergneO. HarnettJ. RollandA. LancoC. Lesueur-GinotL. DemarquayD. HuchetM. CoulombH. BiggD.C.H. BN 80927: A novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II.Bioorg. Med. Chem. Lett.19999172599260210.1016/S0960‑894X(99)00428‑X10498216
    [Google Scholar]
  41. HsiangY.H. HertzbergR. HechtS. LiuL.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.J. Biol. Chem.198526027148731487810.1016/S0021‑9258(17)38654‑42997227
    [Google Scholar]
  42. HanahanD. CoussensL.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment.Cancer Cell201221330932210.1016/j.ccr.2012.02.02222439926
    [Google Scholar]
  43. van HattumA.H. PinedoH.M. SchlüperH.M.M. ErkelensC.A.M. TohgoA. BovenE. The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer.Biochem. Pharmacol.20026481267127710.1016/S0006‑2952(02)01297‑212234607
    [Google Scholar]
  44. DemarquayD. HuchetM. CoulombH. Lesueur-GinotL. LavergneO. KasprzykP.G. BaillyC. CamaraJ. BiggD.C.H. The homocamptothecin BN 80915 is a highly potent orally active topoisomerase I poison.Anticancer Drugs200112191910.1097/00001813‑200101000‑0000311272292
    [Google Scholar]
  45. ComeauxE.Q. van WaardenburgR.C.A.M. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target.Drug Metab. Rev.201446449450710.3109/03602532.2014.97195725327705
    [Google Scholar]
  46. CardamoneF. PizziS. IacovelliF. FalconiM. DesideriA. Virtual screening for the development of dual-inhibitors targeting topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1.Curr. Drug Targets201718554455510.2174/138945011666615072711474226212266
    [Google Scholar]
  47. ZhaoX.Z. WangW. LountosG.T. KiselevE. TropeaJ.E. NeedleD. PommierY. BurkeT.R. Jr Identification of multidentate tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that simultaneously access the DNA, protein and catalytic-binding sites by oxime diversification.RSC Chem. Biol.20234533434310.1039/D2CB00230B37181631
    [Google Scholar]
  48. DragoJ.Z. ModiS. ChandarlapatyS. Unlocking the potential of antibody–drug conjugates for cancer therapy.Nat. Rev. Clin. Oncol.202118632734410.1038/s41571‑021‑00470‑833558752
    [Google Scholar]
  49. HuD.X. TangW.L. ZhangY. YangH. WangW. AgamaK. PommierY. AnL.K. Synthesis of methoxy-, methylenedioxy-, hydroxy-, and halo-substituted benzophenanthridinone derivatives as dna topoisomerase ib (TOP1) and tyrosyl-dna phosphodiesterase 1 (TDP1) Inhibitors and their biological activity for drug-resistant cancer.J. Med. Chem.202164117617762910.1021/acs.jmedchem.1c0031834008967
    [Google Scholar]
  50. SyedY.Y. Sacituzumab govitecan: First approval.Drugs202080101019102510.1007/s40265‑020‑01337‑532529410
    [Google Scholar]
  51. SinghA. KaurN. SinghG. SharmaP. BediP.M.S. SharmaS. NepaliK. Topoisomerase I and II inhibitors: A patent review.Recent Patents Anticancer Drug Discov.201611440142310.2174/092986652366616072009594027450102
    [Google Scholar]
  52. Ahmed SeddekY.-C. T.-D. Madeira, Christian ; Annamalai, Thirunavukkarasu .; Mederos, Christopher ; Tiwari, Purushottam B. ; Welch, Aaron Z. A yeast-based screening system for differential identification of poisons and suppressors of human topoisomerase I.FBL 20222739310.31083/j.fbl2703093
    [Google Scholar]
  53. El-KalyoubiS. ElbaramawiS.S. ZordokW.A. MalebariA.M. SafoM.K. IbrahimT.S. TaherE.S. Design and synthesis of ura-cil/thiouracil based quinoline scaffolds as topoisomerases I/II inhibitors for chemotherapy: A new hybrid navigator with DFT calculation.Bioorg. Chem.202313610656010.1016/j.bioorg.2023.10656037121108
    [Google Scholar]
  54. KaurM. MehtaV. AroraS. MunshiA. SinghS. KumarR. Design, synthesis and biological evaluation of new 5‐(2‐Nitrophenyl)‐1‐aryl‐1 H ‐pyrazoles as topoisomerase inhibitors.ChemistrySelect20216266644665110.1002/slct.202101459
    [Google Scholar]
  55. LuzzioM.J. BestermanJ.M. EmersonD.L. EvansM.G. LackeyK. LeitnerP.L. McIntyreG. MortonB. MyersP.L. PeelM. SiscoJ.M. SternbachD.D. TongW.Q. TruesdaleA. UehlingD.E. VuongA. YatesJ. Synthesis and antitumor activity of novel water soluble derivatives of camptothecin as specific inhibitors of topoisomerase I.J. Med. Chem.199538339540110.1021/jm00003a0017853331
    [Google Scholar]
  56. StakerB.L. HjerrildK. FeeseM.D. BehnkeC.A. BurginA.B.Jr StewartL. The mechanism of topoisomerase I poisoning by a camptothecin analog.Proc. Natl. Acad. Sci. USA20029924153871539210.1073/pnas.24225959912426403
    [Google Scholar]
  57. GairolaK. GururaniS. BahugunaA. GariaV. PujariR. DubeyS.K. Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics.J. Food Biochem.2021457e1377210.1111/jfbc.1377234028051
    [Google Scholar]
  58. GordalizaM. Natural products as leads to anticancer drugs.Clin. Transl. Oncol.200791276777610.1007/s12094‑007‑0138‑918158980
    [Google Scholar]
  59. LiuX. LvL. JiangC. BaiJ. GaoY. MaZ. JiangP. A natural product, (S)-10-Hydroxycamptothecin inhibits pseudorabies virus proliferation through DNA damage dependent antiviral innate immunity.Vet. Microbiol.202226510931310.1016/j.vetmic.2021.10931334968801
    [Google Scholar]
  60. TanW. LuJ. HuangM. LiY. ChenM. WuG. GongJ. ZhongZ. XuZ. DangY. GuoJ. ChenX. WangY. Anti-cancer natural products isolated from chinese medicinal herbs.Chin. Med.2011612710.1186/1749‑8546‑6‑2721777476
    [Google Scholar]
  61. ShengC. MiaoZ. ZhangW. Chapter 1 - Topoisomerase I inhibitors derived from natural products: Structure–activity relationships and antitumor potency.Studies in Natural Products ChemistryAtta-ur-Rahman, Ed.; Studies in Natural Products Chemistry: Elsevier20164712810.1016/B978‑0‑444‑63603‑4.00001‑2
    [Google Scholar]
  62. HongL.L. DingY.F. ZhangW. LinH.W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018).Mar. Life Sci. Technol.20224335637210.1007/s42995‑022‑00132‑337073163
    [Google Scholar]
  63. EfferthT. WinkM. Chemical-biology of natural products from medicinal plants for cancer therapy.Alternative and Complementary Therapies for Cancer: Integrative Approaches and Discovery of Conventional Drugs. Alaoui-JamaliM. Boston, MASpringer US201055758210.1007/978‑1‑4419‑0020‑3_22
    [Google Scholar]
  64. EfferthT. SaeedM.E.M. KadiogluO. SeoE.J. ShirooieS. MbavengA.T. NabaviS.M. KueteV. Collateral sensitivity of natural products in drug-resistant cancer cells.Biotechnol. Adv.20203810734210.1016/j.biotechadv.2019.01.00930708024
    [Google Scholar]
  65. ChenL. MorrowJ.K. TranH.T. PhatakS.S. Du-CunyL. ZhangS. From laptop to benchtop to bedside: Structure-based drug design on protein targets.Curr. Drug Metab.20121891217123910.2174/13892001279936283722316152
    [Google Scholar]
  66. FaisalM. Recent advances in drug design with machine learning.Drug Design Using Machine Learning; Inamuddin. AltalhiT. CruzJ.N. RefatM.S.E. Wiley202216519410.1002/9781394167258.ch6
    [Google Scholar]
  67. AndersonA.C. The process of structure-based drug design.Chem. Biol.200310978779710.1016/j.chembiol.2003.09.00214522049
    [Google Scholar]
  68. FangY. LuY. ZangX. WuT. QiX. PanS. XuX. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors.Sci. Rep.2016612363410.1038/srep2363427049530
    [Google Scholar]
  69. ChenG.L. TianY.Q. WuJ.L. LiN. GuoM.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I.Sci. Rep.2016613828410.1038/srep3828427922057
    [Google Scholar]
  70. SandhausS. ChapagainP.P. Tse-DinhY.C. Discovery of novel bacterial topoisomerase I inhibitors by use of in silico docking and in vitro assays.Sci. Rep.201881143710.1038/s41598‑018‑19944‑429362471
    [Google Scholar]
  71. CaiC. WuQ. HongH. HeL. LiuZ. GuY. ZhangS. WangQ. FanX. FangJ. In silico identification of natural products from traditional chinese medicine for cancer immunotherapy.Sci. Rep.2021111333210.1038/s41598‑021‑82857‑233558586
    [Google Scholar]
  72. DaiS.X. LiW.X. HanF.F. GuoY.C. ZhengJ.J. LiuJ.Q. WangQ. GaoY.D. LiG.H. HuangJ.F. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.Sci. Rep.2016612546210.1038/srep2546227145869
    [Google Scholar]
  73. ZhangX. ShenT. ZhouX. TangX. GaoR. XuL. WangL. ZhouZ. LinJ. HuY. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer.Sci. Rep.20201011573010.1038/s41598‑020‑72797‑832978480
    [Google Scholar]
  74. BoudjedirA. KraimK. SaihiY. Attoui-YahiaO. FerkousF. Khorief NacereddineA. A computational molecular docking study of camptothecin similars as inhibitors for topoisomerase 1.Struct. Chem.202132268969710.1007/s11224‑020‑01633‑6
    [Google Scholar]
  75. Ntie-KangF. TelukuntaK.K. DöringK. SimobenC.V. AMoumbock A.F.; Malange, Y.I.; Njume, L.E.; Yong, J.N.; Sippl, W.; Günther, S. NANPDB: A resource for natural products from northern african sources.J. Nat. Prod.20178072067207610.1021/acs.jnatprod.7b0028328641017
    [Google Scholar]
  76. SimobenC.V. QaseemA. MoumbockA.F.A. TelukuntaK.K. GüntherS. SipplW. Ntie-KangF. Pharmacoinformatic investigation of medicinal plants from east africa.Mol. Inform.20203911200016310.1002/minf.20200016332964659
    [Google Scholar]
  77. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e16722650
    [Google Scholar]
  78. KorbO. StützleT. ExnerT.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS.J. Chem. Inf. Model.2009491849610.1021/ci800298z19125657
    [Google Scholar]
  79. ChoK.H. PezzutoJ.M. BoltonJ.L. SteeleV.E. KelloffG.J. LeeS.K. ConstantinouA. Selection of cancer chemopreventive agents based on inhibition of topoisomerase II activity.Eur. J. Cancer200036162146215610.1016/S0959‑8049(00)00300‑211044654
    [Google Scholar]
  80. ChungY.C. LuL.C. TsaiM.H. ChenY.J. ChenY.Y. YaoS.P. HsuC.P. The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/30670523843871
    [Google Scholar]
  81. PapoutsiZ. KassiE. TsiaparaA. FokialakisN. ChrousosG.P. MoutsatsouP. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta.J. Agric. Food Chem.200553207715772010.1021/jf051053916190622
    [Google Scholar]
  82. SinghS. SharmaB. KanwarS.S. KumarA. Lead phytochemicals for anticancer drug development.Front. Plant Sci.20167166710.3389/fpls.2016.0166727877185
    [Google Scholar]
  83. UmesalmaS. NagendraprabhuP. SudhandiranG. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells.Mol. Cell. Biochem.20153991-230331310.1007/s11010‑014‑2257‑225355159
    [Google Scholar]
  84. ConstantinouA. MehtaR. RunyanC. RaoK. VaughanA. MoonR. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.J. Nat. Prod.199558221722510.1021/np50116a0097769390
    [Google Scholar]
  85. FanM. ChenG. SunB. WuJ. LiN. SarkerS.D. NaharL. GuoM. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS.Phytochem. Rev.20201951231126110.1007/s11101‑019‑09635‑x
    [Google Scholar]
  86. ChenG. GuoM. Screening for natural inhibitors of topoisomerases I from Rhamnus davurica by affinity ultrafiltration and high-performance liquid chromatography–mass spectrometry.Front. Plant Sci.20178152110.3389/fpls.2017.0152128919906
    [Google Scholar]
  87. BoegeF. StraubT. KehrA. BoesenbergC. ChristiansenK. AndersenA. JakobF. KöhrleJ. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I.J. Biol. Chem.199627142262227010.1074/jbc.271.4.22628567688
    [Google Scholar]
  88. MizushinaY. ShiomiK. KuriyamaI. TakahashiY. YoshidaH. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation.Int. J. Oncol.20134341117112410.3892/ijo.2013.203223900272
    [Google Scholar]
  89. TselepiM. PapachristouE. EmmanouilidiA. AngelisA. AligiannisN. SkaltsounisA.L. KouretasD. LiadakiK. Catalytic inhibition of eukaryotic topoisomerases I and II by flavonol glycosides extracted from Vicia faba and Lotus edulis.J. Nat. Prod.201174112362237010.1021/np200292u22014228
    [Google Scholar]
  90. FernandesA.S. de Melo BisnetoA.V. SilvaL.S. BailãoE.F.L.C. CardosoC.G. CarneiroC.C. da Costa SantosS. Chen-ChenL. Pedunculagin and tellimagrandin-I stimulate inflammation and angiogenesis and upregulate vascular endothelial growth factor and tumor necrosis factor-alpha in vivo.Microvasc. Res.202415110461510.1016/j.mvr.2023.10461537797833
    [Google Scholar]
  91. YiZ.C. LiuY.Z. LiH.X. YinY. ZhuangF.Y. FanY.B. WangZ. TellimagrandinI. Tellimagrandin I enhances gap junctional communication and attenuates the tumor phenotype of human cervical carcinoma HeLa cells in vitro.Cancer Lett.20062421778710.1016/j.canlet.2005.10.04416338066
    [Google Scholar]
  92. YiZ.C. LiuY.Z. LiH.X. WangZ. Chebulinic acid and tellimagrandin I inhibit DNA strand breaks by hydroquinone/Cu(II) and H2O2/Cu(II), but potentiate DNA strand breaks by H2O2/Fe(II).Toxicol. In Vitro 200923466767310.1016/j.tiv.2009.03.00919328845
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808280302240117055932
Loading
/content/journals/lddd/10.2174/0115701808280302240117055932
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test