Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Hypertension is one of the main causes of chronic kidney disease. (AM), an important traditional Chinese medicine for treating hypertensive nephropathy, has a complex composition that makes it challenging to explore its mechanism of action and limits its clinical application. This study aims to investigate the underlying mechanism of AM in treating hypertensive nephropathy.

Methods

We retrieved all the compound data of AM from the Traditional Chinese Medicine Systems Pharmacology database and screened out the active compounds and their target proteins. Then, a network of candidate compounds and target compounds of AM was constructed using Cytoscape software. Furthermore, hypertensive nephropathy-related genes from the DisGeNET and GeneCards databases were intersected with AM target proteins and hypertensive nephropathy-related genes to determine the potential targets of AM in treating hypertensive nephropathy. Finally, after performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, we conducted molecular docking to verify the interaction between the main active ingredients of AM and the core targets.

Results

A total of 87 effective components of AM were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. According to the network of active compounds and their target proteins, 18 of the 20 effective compounds in AM could act on 210 proteins. Taking the intersection of 274 hypertensive nephropathy-related genes and AM target proteins, 49 potential targets of AM in treating hypertensive nephropathy were identified. Using the median degree value, we determined 25 core targets of AM in treating hypertensive nephropathy. GO enrichment analysis showed that the biological processes of AM on hypertensive nephropathy mainly focused on the inflammatory response, hypoxia response, angiogenesis, cell proliferation, and cell migration. KEGG pathway enrichment analysis mainly involved cancer pathways, the AGE-RAGE signaling pathway in diabetic complications, blood flow shear stress, and atherosclerosis. Molecular docking results showed that quercetin, kaempferol, and 7-O-methylisomucronulatol had strong binding activity with several target proteins and may exert protective effects by stabilizing the interaction between molecules through the intermolecular forces of hydrogen bonds.

Conclusion

This study reveals the targets of AM in treating hypertensive nephropathy using network pharmacology and molecular docking, providing new clues for developing novel drugs for hypertensive nephropathy and basic research development.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808285471240216040105
2024-02-26
2024-12-23
Loading full text...

Full text loading...

References

  1. ZhouB. Carrillo-LarcoR.M. DanaeiG. RileyL.M. PaciorekC.J. StevensG.A. Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; Sophiea, M.K.; Iurilli, M.L.C.; Lhoste, V.P.F.; Cowan, M.J.; Savin, S.; Woodward, M.; Balanova, Y.; Cifkova, R.; Damasceno, A.; Elliott, P.; Farzadfar, F.; He, J.; Ikeda, N.; Kengne, A.P.; Khang, Y-H.; Kim, H.C.; Laxmaiah, A.; Lin, H-H.; Margozzini Maira, P.; Miranda, J.J.; Neuhauser, H.; Sundström, J.; Varghese, C.; Widyahening, I.S.; Zdrojewski, T.; Abarca-Gómez, L.; Abdeen, Z.A.; Abdul Rahim, H.F.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Afzal, S.; Agdeppa, I.A.; Aghazadeh-Attari, J.; Aguilar-Salinas, C.A.; Agyemang, C.; Ahmad, N.A.; Ahmadi, A.; Ahmadi, N.; Ahmadi, N.; Ahmadizar, F.; Ahmed, S.H.; Ahrens, W.; Ajlouni, K.; Al-Raddadi, R.; Alarouj, M.; AlBuhairan, F.; AlDhukair, S.; Ali, M.M.; Alkandari, A.; Alkerwi, A.; Allin, K.; Aly, E.; Amarapurkar, D.N.; Amougou, N.; Amouyel, P.; Andersen, L.B.; Anderssen, S.A.; Anjana, R.M.; Ansari-Moghaddam, A.; Ansong, D.; Aounallah-Skhiri, H.; Araújo, J.; Ariansen, I.; Aris, T.; Arku, R.E.; Arlappa, N.; Aryal, K.K.; Aspelund, T.; Assah, F.K.; Assunção, M.C.F.; Auvinen, J.; Avdićová, M.; Azevedo, A.; Azimi-Nezhad, M.; Azizi, F.; Azmin, M.; Babu, B.V.; Bahijri, S.; Balakrishna, N.; Bamoshmoosh, M.; Banach, M.; Banadinović, M.; Bandosz, P.; Banegas, J.R.; Baran, J.; Barbagallo, C.M.; Barceló, A.; Barkat, A.; Barreto, M.; Barros, A.J.D.; Barros, M.V.G.; Bartosiewicz, A.; Basit, A.; Bastos, J.L.D.; Bata, I.; Batieha, A.M.; Batyrbek, A.; Baur, L.A.; Beaglehole, R.; Belavendra, A.; Ben Romdhane, H.; Benet, M.; Benson, L.S.; Berkinbayev, S.; Bernabe-Ortiz, A.; Bernotiene, G.; Bettiol, H.; Bezerra, J.; Bhagyalaxmi, A.; Bhargava, S.K.; Bia, D.; Biasch, K.; Bika Lele, E.C.; Bikbov, M.M.; Bista, B.; Bjerregaard, P.; Bjertness, E.; Bjertness, M.B.; Björkelund, C.; Bloch, K.V.; Blokstra, A.; Bo, S.; Bobak, M.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bojesen, S.E.; Bongard, V.; Bonilla-Vargas, A.; Bopp, M.; Borghs, H.; Bovet, P.; Boyer, C.B.; Braeckman, L.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Brenner, H.; Brewster, L.M.; Briceño, Y.; Brito, M.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bueno, G.; Bugge, A.; Burns, C.; Bursztyn, M.; Cabrera de León, A.; Cacciottolo, J.; Cameron, C.; Can, G.; Cândido, A.P.C.; Capanzana, M.V.; Čapková, N.; Capuano, E.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, J.; Casanueva, F.F.; Censi, L.; Cervantes-Loaiza, M.; Chadjigeorgiou, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chee, M.L.; Chen, C-J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C-Y.; Cheraghian, B.; Cherkaoui Dekkaki, I.; Chetrit, A.; Chien, K-L.; Chiolero, A.; Chiou, S-T.; Chirita-Emandi, A.; Chirlaque, M-D.; Cho, B.; Christensen, K.; Christofaro, D.G.; Chudek, J.; Cinteza, E.; Claessens, F.; Clarke, J.; Clays, E.; Cohen, E.; Concin, H.; Cooper, C.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crampin, A.C.; Crujeiras, A.B.; Cruz, J.J.; Csilla, S.; Cui, L.; Cureau, F.V.; Cuschieri, S.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Dankner, R.; Dantoft, T.M.; Dauchet, L.; Davletov, K.; De Backer, G.; De Bacquer, D.; De Curtis, A.; de Gaetano, G.; De Henauw, S.; de Oliveira, P.D.; De Ridder, D.; De Smedt, D.; Deepa, M.; Deev, A.D.; DeGennaro, V.J.; Delisle, H.; Demarest, S.; Dennison, E.; Deschamps, V.; Dhimal, M.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dickerson, T.T.; Dika, Z.; Djalalinia, S.; Do, H.T.P.; Dobson, A.J.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Dorobantu, M.; Dörr, M.; Doua, K.; Dragano, N.; Drygas, W.; Duante, C.A.; Duboz, P.; Duda, R.B.; Dulskiene, V.; Dushpanova, A.; Džakula, A.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Eddie, R.; Eftekhar, E.; Eggertsen, R.; Eghtesad, S.; Eiben, G.; Ekelund, U.; El-Khateeb, M.; El Ati, J.; Eldemire-Shearer, D.; Eliasen, M.; Elosua, R.; Erasmus, R.T.; Erbel, R.; Erem, C.; Eriksen, L.; Eriksson, J.G.; Escobedo-de la Peña, J.; Eslami, S.; Esmaeili, A.; Evans, A.; Faeh, D.; Fakhretdinova, A.A.; Fall, C.H.; Faramarzi, E.; Farjam, M.; Fattahi, M.R.; Fawwad, A.; Felix-Redondo, F.J.; Felix, S.B.; Ferguson, T.S.; Fernandes, R.A.; Fernández-Bergés, D.; Ferrante, D.; Ferrao, T.; Ferrari, M.; Ferrario, M.M.; Ferreccio, C.; Ferreira, H.S.; Ferrer, E.; Ferrieres, J.; Figueiró, T.H.; Fink, G.; Fischer, K.; Foo, L.H.; Forsner, M.; Fouad, H.M.; Francis, D.K.; Franco, M.C.; Frikke-Schmidt, R.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Fumihiko, M.; Furdela, V.; Furer, A.; Furusawa, T.; Gaciong, Z.; Galbarczyk, A.; Galenkamp, H.; Galvano, F.; Gao, J.; Gao, P.; Garcia-de-la-Hera, M.; Garcia, P.; Gareta, D.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gazzinelli, A.; Gehring, U.; Geleijnse, J.M.; George, R.; Ghanbari, A.; Ghasemi, E.; Gheorghe-Fronea, OF.; Ghimire, A.; Gialluisi, A.; Giampaoli, S.; Gieger, C.; Gill, T.K.; Giovannelli, J.; Gironella, G.; Giwercman, A.; Gkiouras, K.; Goldberg, M.; Goldsmith, R.A.; Gomez, L.F.; Gomula, A.; Gonçalves, H.; Gonçalves, M.; Gonçalves Cordeiro da Silva, B.; Gonzalez-Chica, D.A.; Gonzalez-Gross, M.; González-Rivas, J.P.; González-Villalpando, C.; González-Villalpando, M-E.; Gonzalez, A.R.; Gorbea, M.B.; Gottrand, F.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Grammatikopoulou, M.G.; Gregor, R.D.; Grodzicki, T.; Grosso, G.; Gruden, G.; Gu, D.; Guan, O.P.; Gudmundsson, E.F.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.J.; Gupta, P.C.; Gupta, R.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Ha, S.; Hadaegh, F.; Haghshenas, R.; Hakimi, H.; Halkjær, J.; Hambleton, I.R.; Hamzeh, B.; Hange, D.; Hanif, A.A.M.; Hantunen, S.; Hao, J.; Hardman, C.M.; Hari Kumar, R.; Hashemi-Shahri, S.M.; Hata, J.; Haugsgjerd, T.; Hayes, A.J.; He, Y.; Heier, M.; Hendriks, M.E.; Henrique, R.S.; Henriques, A.; Hernandez Cadena, L.; Herqutanto, ; Herrala, S.; Heshmat, R.; Hill, A.G.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Holdsworth, M.; Homayounfar, R.; Horasan Dinc, G.; Horimoto, A.R.V.R.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Htike, M.M.T.; Hu, Y.; Huerta, J.M.; Huhtaniemi, I.T.; Huiart, L.; Huisman, M.; Husseini, A.S.; Huybrechts, I.; Hwalla, N.; Iacoviello, L.; Iannone, A.G.; Ibrahim, M.M.; Ibrahim Wong, N.; Ikram, M.A.; Iotova, V.; Irazola, V.E.; Ishida, T.; Isiguzo, G.C.; Islam, M.; Islam, S.M.S.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jaddou, H.Y.; Jafar, T.; James, K.; Jamrozik, K.; Janszky, I.; Janus, E.; Jarvelin, M-R.; Jasienska, G.; Jelaković, A.; Jelaković, B.; Jennings, G.; Jha, A.K.; Jiang, C.Q.; Jimenez, R.O.; Jöckel, K-H.; Joffres, M.; Johansson, M.; Jokelainen, J.J.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Joukar, F.; Jóżwiak, J.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kajantie, E.O.; Kalmatayeva, Z.; Kalpourtzi, N.; Kalter-Leibovici, O.; Kampmann, F.B.; Kannan, S.; Karaglani, E.; Kårhus, L.L.; Karki, K.B.; Katibeh, M.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.M.; Keil, U.; Keinan Boker, L.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kemper, H.C.G.; Keramati, M.; Kerimkulova, A.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khaw, K-T.; Kheiri, B.; Kheradmand, M.; Khosravi, A.; Kiechl-Kohlendorfer, U.; Kiechl, S.; Killewo, J.; Kim, D.W.; Kim, J.; Klakk, H.; Klimek, M.; Klumbiene, J.; Knoflach, M.; Kolle, E.; Kolsteren, P.; Kontto, J.P.; Korpelainen, R.; Korrovits, P.; Kos, J.; Koskinen, S.; Kouda, K.; Kowlessur, S.; Koziel, S.; Kratenova, J.; Kriaucioniene, V.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kujala, U.M.; Kulaga, Z.; Kumar, R.K.; Kurjata, P.; Kusuma, Y.S.; Kutsenko, V.; Kuulasmaa, K.; Kyobutungi, C.; Laatikainen, T.; Lachat, C.; Laid, Y.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Latt, T.S.; Le Coroller, G.; Le Nguyen Bao, K.; Le, T.D.; Lee, J.; Lee, J.; Lehmann, N.; Lehtimäki, T.; Lemogoum, D.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W-Y.; Lima-Costa, M.F.; Lin, X.; Lin, Y-T.; Lind, L.; Lingam, V.; Linneberg, A.; Lissner, L.; Litwin, M.; Lo, W-C.; Loit, H-M.; Lopez-Garcia, E.; Lopez, T.; Lotufo, P.A.; Lozano, J.E.; Lukačević Lovrenčić, I.; Lukrafka, J.L.; Luksiene, D.; Lundqvist, A.; Lundqvist, R.; Lunet, N.; Lustigová, M.; Luszczki, E.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machado-Rodrigues, A.M.; Macia, E.; Macieira, L.M.; Madar, A.A.; Maggi, S.; Magliano, D.J.; Magriplis, E.; Mahasampath, G.; Maire, B.; Majer, M.; Makdisse, M.; Malekzadeh, F.; Malekzadeh, R.; Malhotra, R.; Mallikharjuna Rao, K.; Malyutina, S.K.; Maniego, L.V.; Manios, Y.; Mann, J.I.; Mansour-Ghanaei, F.; Manzato, E.; Marcil, A.; Mårild, S.B.; Marinović Glavić, M.; Marques-Vidal, P.; Marques, L.P.; Marrugat, J.; Martorell, R.; Mascarenhas, L.P.; Matasin, M.; Mathiesen, E.B.; Mathur, P.; Matijasevich, A.; Matlosz, P.; Matsha, T.E.; Mavrogianni, C.; Mbanya, J.C.N.; Mc Donald Posso, A.J.; McFarlane, S.R.; McGarvey, S.T.; McLachlan, S.; McLean, R.M.; McLean, S.B.; McNulty, B.A.; Mediene Benchekor, S.; Medzioniene, J.; Mehdipour, P.; Mehlig, K.; Mehrparvar, A.H.; Meirhaeghe, A.; Meisinger, C.; Mendoza Montano, C.; Menezes, A.M.B.; Menon, G.R.; Mereke, A.; Meshram, I.I.; Metspalu, A.; Meyer, H.E.; Mi, J.; Michels, N.; Mikkel, K.; Milkowska, K.; Miller, J.C.; Minderico, C.S.; Mini, G.K.; Mirjalili, M.R.; Mirrakhimov, E.; Mišigoj-Duraković, M.; Modesti, P.A.; Moghaddam, S.S.; Mohajer, B.; Mohamed, M.K.; Mohamed, S.F.; Mohammad, K.; Mohammadi, M.R.; Mohammadi, Z.; Mohammadifard, N.; Mohammadpourhodki, R.; Mohan, V.; Mohanna, S.; Mohd Yusoff, M.F.; Mohebbi, I.; Mohebi, F.; Moitry, M.; Møllehave, L.T.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monterrubio-Flores, E.; Monyeki, K.D.K.; Moon, J.S.; Moosazadeh, M.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mostafavi, S-A.; Mota, J.; Motlagh, M.E.; Motta, J.; Moura-dos-Santos, M.A.; Mridha, M.K.; Msyamboza, K.P.; Mu, T.T.; Muhihi, A.J.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Musa, K.I.; Musić Milanović, S.; Musil, V.; Mustafa, N.; Nabipour, I.; Naderimagham, S.; Nagel, G.; Naidu, B.M.; Najafi, F.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Narake, S.; Ndiaye, N.C.; Neal, W.A.; Nejatizadeh, A.; Nenko, I.; Neovius, M.; Nguyen, C.T.; Nguyen, N.D.; Nguyen, Q.V.; Nguyen, Q.N.; Nieto-Martínez, R.E.; Niiranen, T.J.; Nikitin, Y.P.; Ninomiya, T.; Nishtar, S.; Njelekela, M.A.; Noale, M.; Noboa, O.A.; Noorbala, A.A.; Norat, T.; Nordendahl, M.; Nordestgaard, B.G.; Noto, D.; Nowak-Szczepanska, N.; Nsour, M.A.; Nunes, B.; O’Neill, T.W.; O’Reilly, D.; Ochimana, C.; Oda, E.; Odili, A.N.; Oh, K.; Ohara, K.; Ohtsuka, R.; Olié, V.; Olinto, M.T.A.; Oliveira, I.O.; Omar, M.A.; Onat, A.; Ong, S.K.; Ono, L.M.; Ordunez, P.; Ornelas, R.; Ortiz, P.J.; Osmond, C.; Ostojic, S.M.; Ostovar, A.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Paiva, K.M.; Pająk, A.; Palli, D.; Palmieri, L.; Pan, W-H.; Panda-Jonas, S.; Panza, F.; Paoli, M.; Papandreou, D.; Park, S-W.; Park, S.; Parnell, W.R.; Parsaeian, M.; Pasquet, P.; Patel, N.D.; Pavlyshyn, H.; Pećin, I.; Pednekar, M.S.; Pedro, J.M.; Peer, N.; Peixoto, S.V.; Peltonen, M.; Pereira, A.C.; Peres, K.G.D.A.; Peres, M.A.; Peters, A.; Petkeviciene, J.; Peykari, N.; Pham, S.T.; Pichardo, R.N.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pitakaka, F.; Piwonska, A.; Pizarro, A.; Plans-Rubió, P.; Polašek, O.; Porta, M.; Poudyal, A.; Pourfarzi, F.; Pourshams, A.; Poustchi, H.; Pradeepa, R.; Price, A.J.; Price, J.F.; Providencia, R.; Puhakka, S.E.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Queiroz, D.; Quoc Bao, T.; Radić, I.; Radisauskas, R.; Rahimikazerooni, S.; Rahman, M.; Raitakari, O.; Raj, M.; Rakhimova, E.M.; Ramachandra Rao, S.; Ramachandran, A.; Ramos, E.; Rampal, L.; Rampal, S.; Rangel Reina, D.A.; Rarra, V.; Rech, C.R.; Redon, J.; Reganit, P.F.M.; Regecová, V.; Revilla, L.; Rezaianzadeh, A.; Ribeiro, R.; Riboli, E.; Richter, A.; Rigo, F.; Rinke de Wit, T.F.; Ritti-Dias, R.M.; Robitaille, C.; Rodríguez-Artalejo, F.; Rodriguez-Perez, M.C.; Rodríguez-Villamizar, L.A.; Roggenbuck, U.; Rojas-Martinez, R.; Romaguera, D.; Romeo, E.L.; Rosengren, A.; Roy, J.G.R.; Rubinstein, A.; Ruidavets, J-B.; Ruiz-Betancourt, B.S.; Ruiz-Castell, M.; Rusakova, I.A.; Russo, P.; Rutkowski, M.; Sabanayagam, C.; Sabbaghi, H.; Sachdev, H.S.; Sadjadi, A.; Safarpour, A.R.; Safi, S.; Safiri, S.; Saidi, O.; Sakarya, S.; Saki, N.; Salanave, B.; Salazar Martinez, E.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sans, S.; Santos, D.A.; Santos, I.S.; Santos, L.C.; Santos, M.P.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Sarganas, G.; Sarrafzadegan, N.; Sathish, T.; Saum, K-U.; Savva, S.; Sawada, N.; Sbaraini, M.; Scazufca, M.; Schaan, B.D.; Schargrodsky, H.; Schipf, S.; Schmidt, C.O.; Schnohr, P.; Schöttker, B.; Schramm, S.; Schultsz, C.; Schutte, A.E.; Sebert, S.; Sein, A.A.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Servais, J.; Shalnova, S.A.; Shamah-Levy, T.; Shamshirgaran, M.; Shanthirani, C.S.; Sharafkhah, M.; Sharma, S.K.; Shaw, J.E.; Shayanrad, A.; Shayesteh, A.A.; Shi, Z.; Shibuya, K.; Shimizu-Furusawa, H.; Shin, D.W.; Shirani, M.; Shiri, R.; Shrestha, N.; Si-Ramlee, K.; Siani, A.; Siantar, R.; Sibai, A.M.; Silva, C.R.M.; Silva, D.A.S.; Simon, M.; Simons, J.; Simons, L.A.; Sjöström, M.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; So, H-K.; Soares, F.C.; Sobngwi, E.; Söderberg, S.; Soemantri, A.; Sofat, R.; Solfrizzi, V.; Somi, M.H.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Sørgjerd, E.P.; Sorić, M.; Sossa Jérome, C.; Soumaré, A.; Sparboe-Nilsen, B.; Sparrenberger, K.; Staessen, J.A.; Starc, G.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stronks, K.; Strufaldi, M.W.; Suka, M.; Sun, C-A.; Sung, Y-T.; Suriyawongpaisal, P.; Sy, R.G.; Syddall, H.E.; Sylva, R.C.; Szklo, M.; Tai, E.S.; Tammesoo, M-L.; Tamosiunas, A.; Tan, E.J.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarqui-Mamani, C.B.; Taylor, A.; Taylor, J.; Tebar, W.R.; Tell, G.S.; Tello, T.; Tham, Y.C.; Thankappan, K.R.; Theobald, H.; Theodoridis, X.; Thijs, L.; Thinggaard, M.; Thomas, N.; Thorand, B.; Thuesen, B.H.; Timmermans, E.J.; Tjandrarini, D.H.; Tjonneland, A.; Toft, U.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Tornaritis, M.J.; Torrent, M.; Torres-Collado, L.; Touloumi, G.; Traissac, P.; Triantafyllou, A.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tsugane, S.; Tuliakova, A.M.; Tulloch-Reid, M.K.; Tullu, F.; Tuomainen, T-P.; Tuomilehto, J.; Turley, M.L.; Twig, G.; Tynelius, P.; Tzourio, C.; Ueda, P.; Ugel, E.; Ulmer, H.; Uusitalo, H.M.T.; Valdivia, G.; Valvi, D.; van Dam, R.M.; van den Born, B-J.; Van der Heyden, J.; van der Schouw, Y.T.; Van Herck, K.; Van Minh, H.; Van Schoor, N.M.; van Valkengoed, I.G.M.; van Zutphen, E.M.; Vanderschueren, D.; Vanuzzo, D.; Varbo, A.; Vasan, S.K.; Vega, T.; Veidebaum, T.; Velasquez-Melendez, G.; Veronesi, G.; Verschuren, W.M.M.; Verstraeten, R.; Victora, C.G.; Viet, L.; Villalpando, S.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vlasoff, T.; Vollenweider, P.; Voutilainen, A.; Wade, A.N.; Walton, J.; Wambiya, E.O.A.; Wan Bebakar, W.M.; Wan Mohamud, W.N.; Wanderley Júnior, R.S.; Wang, M-D.; Wang, N.; Wang, Q.; Wang, X.; Wang, Y.X.; Wang, Y-W.; Wannamethee, S.G.; Wareham, N.; Wei, W.; Weres, A.; Werner, B.; Whincup, P.H.; Widhalm, K.; Wiecek, A.; Wilks, R.J.; Willeit, J.; Willeit, P.; Williams, E.A.; Wilsgaard, T.; Wojtyniak, B.; Wong-McClure, R.A.; Wong, A.; Wong, T.Y.; Woo, J.; Wu, F.C.; Wu, S.; Wyszynska, J.; Xu, H.; Xu, L.; Yaacob, N.A.; Yan, W.; Yang, L.; Yang, X.; Yang, Y.; Yasuharu, T.; Ye, X.; Yiallouros, P.K.; Yoosefi, M.; Yoshihara, A.; You, S-L.; Younger-Coleman, N.O.; Yusoff, A.F.; Zainuddin, A.A.; Zakavi, S.R.; Zamani, F.; Zambon, S.; Zampelas, A.; Zapata, M.E.; Zaw, K.K.; Zejglicova, K.; Zeljkovic Vrkic, T.; Zeng, Y.; Zhang, L.; Zhang, Z-Y.; Zhao, D.; Zhao, M-H.; Zhen, S.; Zheng, Y.; Zholdin, B.; Zhu, D.; Zins, M.; Zitt, E.; Zocalo, Y.; Zoghlami, N.; Zuñiga Cisneros, J.; Ezzati, M. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants.Lancet20213981030495798010.1016/S0140‑6736(21)01330‑134450083
    [Google Scholar]
  2. WuP. GreenM. MyersJ.E. Hypertensive disorders of pregnancy.BMJ2023381e07165310.1136/bmj‑2022‑07165337391211
    [Google Scholar]
  3. WheltonP.K. CareyR.M. ManciaG. KreutzR. BundyJ.D. WilliamsB. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood pressure/Hypertension guidelines: Comparisons, reflections, and recommendations.Circulation20221461186887710.1161/CIRCULATIONAHA.121.05460235950927
    [Google Scholar]
  4. UngvariZ. TothP. TarantiniS. ProdanC.I. SorondF. MerkelyB. CsiszarA. Hypertension-induced cognitive impairment: From pathophysiology to public health.Nat. Rev. Nephrol.2021171063965410.1038/s41581‑021‑00430‑634127835
    [Google Scholar]
  5. KhouryM. UrbinaE.M. Hypertension in adolescents: Diagnosis, treatment, and implications.Lancet Child Adolesc. Health20215535736610.1016/S2352‑4642(20)30344‑833711291
    [Google Scholar]
  6. HeF.J. TanM. MaY. MacGregorG.A. Salt reduction to prevent hypertension and cardiovascular disease.J. Am. Coll. Cardiol.202075663264710.1016/j.jacc.2019.11.05532057379
    [Google Scholar]
  7. BurnierM. DamianakiA. Hypertension as cardiovascular risk factor in chronic kidney disease.Circ. Res.202313281050106310.1161/CIRCRESAHA.122.32176237053276
    [Google Scholar]
  8. Sequeira-LopezM.L.S. GomezR.A. Renin cells, the kidney, and hypertension.Circ. Res.2021128788790710.1161/CIRCRESAHA.121.31806433793334
    [Google Scholar]
  9. FreedmanB.I. CohenA.H. Hypertension-attributed nephropathy: What’s in a name?Nat. Rev. Nephrol.2016121273610.1038/nrneph.2015.17226553514
    [Google Scholar]
  10. UdaniS. LazichI. BakrisG.L. Epidemiology of hypertensive kidney disease.Nat. Rev. Nephrol.201171112110.1038/nrneph.2010.15421079654
    [Google Scholar]
  11. LuceroC.M. Prieto-VillalobosJ. Marambio-RuizL. BalmazabalJ. AlvearT.F. VegaM. BarraP. RetamalM.A. OrellanaJ.A. GómezG.I. Hypertensive nephropathy: Unveiling the possible involvement of hemichannels and pannexons.Int. J. Mol. Sci.202223241593610.3390/ijms23241593636555574
    [Google Scholar]
  12. StompórT. Perkowska-PtasińskaA. Hypertensive kidney disease: True epidemic or rare disease?Pol. Arch. Intern. Med.2020130213013910.20452/pamw.1515031964856
    [Google Scholar]
  13. KoopmanJ.J.E. van EssenM.F. RennkeH.G. de VriesA.P.J. van KootenC. Deposition of the membrane attack complex in healthy and diseased human kidneys.Front. Immunol.20211159997410.3389/fimmu.2020.59997433643288
    [Google Scholar]
  14. FayK.S. CohenD.L. Resistant hypertension in people with CKD: A review.Am. J. Kidney Dis.202177111012110.1053/j.ajkd.2020.04.01732712185
    [Google Scholar]
  15. YangC. GaoB. ZhaoX. SuZ. SunX. WangH.Y. ZhangP. WangR. LiuJ. TangW. ZhangD. ChuH. WangJ. WangF. WangS. ZuoL. WangY. YuF. WangH. ZhangL. ZhangH. YangL. ChenJ. ZhaoM.H. Executive summary for China kidney disease network (CK-NET) 2016 Annual Data Report.Kidney Int.20209861419142310.1016/j.kint.2020.09.00333276868
    [Google Scholar]
  16. JiaQ. WangL. ZhangX. DingY. LiH. YangY. ZhangA. LiY. LvS. ZhangJ. Prevention and treatment of chronic heart failure through Traditional Chinese Medicine: Role of the gut microbiota.Pharmacol. Res.202015110455210.1016/j.phrs.2019.10455231747557
    [Google Scholar]
  17. HuY.W. Chinese herbal medicine use and risk of end-stage renal disease in patients with chronic kidney disease: Is there an immortal time bias?Kidney Int.201690122722810.1016/j.kint.2016.03.04427312455
    [Google Scholar]
  18. ZhangH.W. LinZ.X. XuC. LeungC. ChanL.S. Astragalus (A Traditional Chinese Medicine) for treating chronic kidney disease.Cochrane Libr.2014201410CD00836910.1002/14651858.CD008369.pub225335553
    [Google Scholar]
  19. ZhongY. DengY. ChenY. ChuangP.Y. CijiangHe J. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases.Kidney Int.20138461108111810.1038/ki.2013.27623868014
    [Google Scholar]
  20. CuiX. TrinhK. WangY.J. Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease.Cochrane Libr.201020101CD00655610.1002/14651858.CD006556.pub220091597
    [Google Scholar]
  21. ChenZ. LiuL. GaoC. ChenW. VongC.T. YaoP. YangY. LiX. TangX. WangS. WangY. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine.J. Ethnopharmacol.202025811289510.1016/j.jep.2020.11289532330511
    [Google Scholar]
  22. ZhangW. CuiY. ZhangJ. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia.Front. Pharmacol.20221394893910.3389/fphar.2022.94893935935868
    [Google Scholar]
  23. XueB. LiJ. ChaiQ. LiuZ. ChenL. Effect of total flavonoid fraction of Astragalus complanatus R. Brown on angiotensin II-induced portal-vein contraction in hypertensive rats.Phytomedicine200815975976210.1016/j.phymed.2007.11.03018406589
    [Google Scholar]
  24. LiN.Y. LiX.L. ZhaiX.P. WangQ.Y. ZhangX.W. ZhaoF. WangX.F. FanJ.Y. BaiF. YuJ. Effects of Mongolia Astragali Radix in protecting early cardiac and nephritic functions of patients of hypertension with metabolic syndrome.Zhongguo Zhong Yao Za Zhi201641214051405928929695
    [Google Scholar]
  25. HouG. JiangY. ZhengY. Mechanism of Radix Astragali and Radix SalviaeMiltiorrhizae ameliorates hypertensive renal damage.BioMed Res. Int.20212021559835110.1155/2021/5598351
    [Google Scholar]
  26. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑111017921993
    [Google Scholar]
  27. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for Traditional Chinese Medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.0012330846939
    [Google Scholar]
  28. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  29. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.11630636858276
    [Google Scholar]
  30. YuanZ. PanY. LengT. ChuY. ZhangH. MaJ. MaX. Progress and prospects of research ideas and methods in the network pharmacology of Traditional Chinese Medicine.J. Pharm. Pharm. Sci.20222521822610.18433/jpps3291135760072
    [Google Scholar]
  31. LiX. WeiS. NiuS. MaX. LiH. JingM. ZhaoY. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis.Comput. Biol. Med.202214410538910.1016/j.compbiomed.2022.10538935303581
    [Google Scholar]
  32. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review.J. Tradit. Chin. Med.202242347948635610020
    [Google Scholar]
  33. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  34. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms1306696422837674
    [Google Scholar]
  35. StelzerG. RosenN. PlaschkesI. The genecards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics.2016541.30.11.30.33
    [Google Scholar]
  36. PiñeroJ. Queralt-RosinachN. BravoA. Deu-PonsJ. Bauer-MehrenA. BaronM. SanzF. FurlongL.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes.Database20152015bav02810.1093/database/bav02825877637
    [Google Scholar]
  37. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  38. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  39. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  40. BaiG. PanY. ZhangY. LiY. WangJ. WangY. TengW. JinG. GengF. CaoJ. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives.Food Chem.202342913683610.1016/j.foodchem.2023.13683637453331
    [Google Scholar]
  41. CramponK. GiorkallosA. DeldossiM. BaudS. SteffenelL.A. Machine-learning methods for ligand–protein molecular docking.Drug Discov. Today202227115116410.1016/j.drudis.2021.09.00734560276
    [Google Scholar]
  42. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  43. WangQ. LinJ. LiC. LinM. ZhangQ. ZhangX. YaoK. Traditional Chinese medicine method of tonifying kidney for hypertension: Clinical evidence and molecular mechanisms.Front. Cardiovasc. Med.20229103848010.3389/fcvm.2022.103848036465462
    [Google Scholar]
  44. XuZ. QianL. NiuR. YangY. LiuC. LinX. Efficacy of huangqi injection in the treatment of hypertensive nephropathy: A systematic review and meta-analysis.Front. Med.2022983825610.3389/fmed.2022.83825635547210
    [Google Scholar]
  45. WuJ.S. LiJ.M. LoH.Y. HsiangC.Y. HoT.Y. Anti-hypertensive and angiotensin-converting enzyme inhibitory effects of Radix Astragali and its bioactive peptide AM-1.J. Ethnopharmacol.202025411272410.1016/j.jep.2020.11272432119952
    [Google Scholar]
  46. LiN.Y. YuH. LiX.L. WangQ.Y. ZhangX.W. MaR.X. ZhaoY. XuH. LiangW. BaiF. YuJ. Astragalus membranaceus improving asymptomatic left ventricular diastolic dysfunction in postmenopausal hypertensive women with metabolic syndrome.Chin. Med. J.2018131551652610.4103/0366‑6999.22607729483384
    [Google Scholar]
  47. HuJ.Y. HanJ. ChuZ.G. SongH.P. ZhangD.X. ZhangQ. HuangY.S. Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels.Clin. Exp. Pharmacol. Physiol.200936435135710.1111/j.1440‑1681.2008.05059.x18986331
    [Google Scholar]
  48. TanY.Q. ChenH.W. LiJ. AstragalosideI.V. AstragalosideI.V. An effective drug for the treatment of cardiovascular diseases.Drug Des. Devel. Ther.2020143731374610.2147/DDDT.S27235532982178
    [Google Scholar]
  49. WegielB. PerssonJ.L. Effect of a novel botanical agent drynol cibotin on human osteoblast cells and implications for osteoporosis: Promotion of cell growth, calcium uptake and collagen production.Phytother. Res.201024S2S139S14710.1002/ptr.302619953582
    [Google Scholar]
  50. LiS. NongY. GaoQ. LiuJ. LiY. CuiX. WanJ. LuJ. SunM. WuQ. ShiX. CuiH. LiuW. ZhouM. LiL. LinQ. Astragalus granule prevents Ca 2+ current remodeling in heart failure by the downregulation of CaMKII.Evid. Based Complement. Alternat. Med.2017201711010.1155/2017/751735828855948
    [Google Scholar]
  51. JinG.Z. NaY. HuaH. GuangH.W. DongS.G. XiaoL.W. XueZ.W. GuangY.S. Effect of Astragalus injection on plasma levels of apoptosis-related factors in aged patients with chronic heart failure.Chin. J. Integr. Med.200511318719010.1007/BF0283650216181532
    [Google Scholar]
  52. MaJ. PengA. LinS. Mechanisms of the therapeutic effect of Astragalus membranaceus on sodium and water retention in experimental heart failure.Chin. Med. J.19981111172310322646
    [Google Scholar]
  53. MontenegroM.F. Neto-NevesE.M. Dias-JuniorC.A. CeronC.S. CastroM.M. GomesV.A. KanashiroA. Tanus-SantosJ.E. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension.Naunyn Schmiedebergs Arch. Pharmacol.2010382429330110.1007/s00210‑010‑0546‑120694791
    [Google Scholar]
  54. GuanY. QuanD. ChenK. KangL. YangD. WuH. YanM. WuS. LvL. ZhangG. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway.Phytomedicine202310815424610.1016/j.phymed.2022.15424636274411
    [Google Scholar]
  55. García-SauraM.F. GalisteoM. VillarI.C. BermejoA. ZarzueloA. VargasF. DuarteJ. Effects of chronic quercetin treatment in experimental renovascular hypertension.Mol. Cell. Biochem.20052701-214715510.1007/s11010‑005‑4503‑015792364
    [Google Scholar]
  56. Machado DutraJ. EspitiaP.J.P. Andrade BatistaR. Formononetin: Biological effects and uses – A review.Food Chem.202135912997510.1016/j.foodchem.2021.12997533962193
    [Google Scholar]
  57. OzaM.J. KulkarniY.A. Formononetin attenuates kidney damage in type 2 diabetic rats.Life Sci.201921910912110.1016/j.lfs.2019.01.01330641085
    [Google Scholar]
  58. GuoM.F. DaiY.J. GaoJ.R. ChenP.J. Uncovering the mechanism of astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology.J. Diabetes Res.2020202011310.1155/2020/594730432215271
    [Google Scholar]
  59. CamardaN. TraversR. YangV.K. LondonC. JaffeI.Z. VEGF receptor inhibitor-induced hypertension: Emerging mechanisms and clinical implications.Curr. Oncol. Rep.202224446347410.1007/s11912‑022‑01224‑035179707
    [Google Scholar]
  60. FengY. YeD. WangZ. PanH. LuX. WangM. XuY. YuJ. ZhangJ. ZhaoM. XuS. PanW. YinZ. YeJ. WanJ. The role of interleukin-6 family members in cardiovascular diseases.Front. Cardiovasc. Med.2022981889010.3389/fcvm.2022.81889035402550
    [Google Scholar]
  61. YinL. BaiJ. YuW.J. LiuY. LiH.H. LinQ.Y. Blocking VCAM-1 prevents angiotensin II-induced hypertension and vascular remodeling in mice.Front. Pharmacol.20221382545910.3389/fphar.2022.82545935222039
    [Google Scholar]
  62. FengW. GuanZ. YingW.Z. XingD. YingK.E. SandersP.W. Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease.Kidney Int.2023104474075310.1016/j.kint.2023.06.03137423509
    [Google Scholar]
  63. ManA.W.C. ZhouY. ReifenbergG. CampA. MünzelT. DaiberA. XiaN. LiH. Deletion of adipocyte NOS3 potentiates high-fat diet-induced hypertension and vascular remodelling via chemerin.Cardiovasc. Res.2023119172755276910.1093/cvr/cvad16437897505
    [Google Scholar]
  64. LiR. ZhaoA. DiaoX. SongJ. WangC. LiY. QiX. GuanZ. ZhangT. HeY. Polymorphism of NOS3 gene and its association with essential hypertension in Guizhou populations of China.PLoS One2023182e027868010.1371/journal.pone.027868036758021
    [Google Scholar]
  65. YuJ. WangS. ShiW. ZhouW. NiuY. HuangS. ZhangY. ZhangA. JiaZ. Roxadustat prevents Ang II hypertension by targeting angiotensin receptors and eNOS.JCI Insight2021618e13369010.1172/jci.insight.13369034403364
    [Google Scholar]
  66. SzychowskiK.A. SkóraB. WójtowiczA.K. Triclosan affects the expression of nitric oxide synthases (NOSs), peroxisome proliferator-activated receptor gamma (PPARγ), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in mouse neocortical neurons in vitro.Toxicol. In Vitro20217310514310.1016/j.tiv.2021.10514333722737
    [Google Scholar]
  67. SandesE.O. LodillinskyC. LangleY. BelgoroskyD. MarinoL. GimenezL. CasabéA.R. EijánA.M. Inducible nitric oxide synthase and PPARγ are involved in bladder cancer progression.J. Urol.2012188396797310.1016/j.juro.2012.04.09922819108
    [Google Scholar]
  68. YuenC.Y. WongW.T. TianX.Y. WongS.L. LauC.W. YuJ. TomlinsonB. YaoX. HuangY. Telmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase.Cardiovasc. Res.201190112212910.1093/cvr/cvq39221156825
    [Google Scholar]
  69. ValléeA. LévyB.L. BlacherJ. Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension.Curr. Hypertens. Rep.20182076210.1007/s11906‑018‑0860‑429884931
    [Google Scholar]
  70. SigmundC.D. A clinical link between peroxisome proliferator-activated receptor γ and the renin-angiotensin system.Arterioscler. Thromb. Vasc. Biol.201333467667810.1161/ATVBAHA.112.30112523486770
    [Google Scholar]
  71. FangS. LivergoodM.C. NakagawaP. WuJ. SigmundC.D. Role of the peroxisome proliferator activated receptors in hypertension.Circ. Res.202112871021103910.1161/CIRCRESAHA.120.31806233793338
    [Google Scholar]
  72. KökényG. CalvierL. HansmannG. PPARγ and TGFβ—major regulators of metabolism, inflammation, and fibrosis in the lungs and kidneys.Int. J. Mol. Sci.202122191043110.3390/ijms22191043134638771
    [Google Scholar]
  73. SonneveldR. HoenderopJ.G. IsidoriA.M. HeniqueC. DijkmanH.B. BerdenJ.H. TharauxP.L. van der VlagJ. NijenhuisT. Sildenafil prevents podocyte injury via PPAR-γ–mediated TRPC6 inhibition.J. Am. Soc. Nephrol.20172851491150510.1681/ASN.201508088527895156
    [Google Scholar]
  74. MaY. ShiM. WangY. LiuJ. PPAR γ and its agonists in chronic kidney disease.Int. J. Nephrol.2020202011010.1155/2020/291747432158560
    [Google Scholar]
  75. AnwarM.A. ShalhoubJ. LimC.S. GohelM.S. DaviesA.H. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression.J. Vasc. Res.201249646347810.1159/00033915122796658
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808285471240216040105
Loading
/content/journals/lddd/10.2174/0115701808285471240216040105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test