Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Mcl-1 is a kind of antiapoptotic protein and its overexpression is closely related to the occurrence of cancer. Aryl sulfonamide derivatives are expected to become new anticancer agents due to their high inhibitory activity on the Mcl-1 protein.

Objective

The study aimed to establish the QSAR model with good prediction ability and elaborate the influence of structure and chirality on the inhibitory activity.

Methods

Multiple QSAR models were built with different types of descriptors and modeling methods. The molecular docking was performed on compounds , , , , and . The MCCV method was used to perform rigorous validations with up to 216 = 65,536 samplings for MLR, SVM, LSSVM, RF, and GP methods based on the model of 2D and 3D combined descriptors.

Results

The models based on 2D and 3D combined descriptors demonstrated non-linear LSSVM and GP methods to provide better results (2>0.94, > 0.86). The predictive performances of MCCV tests have been basically coincident with the single test set’s results. The hydrogen bond acceptor at the appropriate position of the substituent on the chiral center could form the hydrogen bond interaction with residue ASN260, resulting in stronger interaction and higher inhibitory activity. The interaction differences between and configurations could be mainly attributed to two residues, HIS224 and ASN260. Furthermore, the steric effect of the substituent on chiral carbon atoms was crucial. A high steric effect could prevent the binding of the substituent and protein, resulting in low inhibitory activity.

Conclusion

The study may provide theoretical guidance on the design and synthesis of novel aryl sulfonamide derivatives with high inhibitory activity.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808278918240109053316
2024-01-30
2025-01-24
Loading full text...

Full text loading...

References

  1. AdamsS.J. StoneE. BaldwinD.R. VliegenthartR. LeeP. FintelmannF.J. Lung cancer screening.Lancet20234011037439040810.1016/S0140‑6736(22)01694‑436563698
    [Google Scholar]
  2. HalbrookC.J. LyssiotisC.A. Pasca di MaglianoM. MaitraA. Pancreatic cancer: Advances and challenges.Cell202318681729175410.1016/j.cell.2023.02.01437059070
    [Google Scholar]
  3. SedlakJ.C. YilmazÖ.H. RoperJ. Metabolism and colorectal cancer.Annu. Rev. Pathol.202318146749210.1146/annurev‑pathmechdis‑031521‑04111336323004
    [Google Scholar]
  4. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  5. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.2177236856579
    [Google Scholar]
  6. SpeiserD.E. ChijiokeO. SchaeubleK. MünzC. CD4+ T cells in cancer.Nat. Can.20234331732910.1038/s43018‑023‑00521‑236894637
    [Google Scholar]
  7. SulkshaneP. TeniT. Myeloid cell leukemia-1: A formidable barrier to anticancer therapeutics and the quest of targeting it. Explor. Target Antitumor.Ther.202233278296
    [Google Scholar]
  8. ChoiS.J. SwarupN. ShinJ.A. HongS.D. ChoS.D. Myeloid cell leukemia-1 expression in cancers of the oral cavity: A scoping review.Cancer Cell Int.202222118210.1186/s12935‑022‑02603‑035524332
    [Google Scholar]
  9. CaiJ. ZhaoJ. GaoP. XiaY. Patchouli alcohol suppresses castration-resistant prostate cancer progression by inhibiting NF-κB signal pathways.Transl. Androl. Urol.202211452854210.21037/tau‑22‑22035558260
    [Google Scholar]
  10. YangH. ChenT. FanM. XuW. WuX. USP13 promotes proliferation and angiogenesis of diffuse large B-cell lymphoma cells by promoting MCL-1 expression.Mol. Cell. Toxicol.202310.1007/s13273‑023‑00367‑w
    [Google Scholar]
  11. LeeT. ChristovP.P. ShawS. TarrJ.C. ZhaoB. VeerasamyN. JeonK.O. MillsJ.J. BianZ. SensintaffarJ.L. ArnoldA.L. FogartyS.A. PerryE. RamseyH.E. CookR.S. HollingsheadM. Davis MillinM. LeeK. KossB. BudhrajaA. OpfermanJ.T. KimK. ArteagaC.L. MooreW.J. OlejniczakE.T. SavonaM.R. FesikS.W. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer.J. Med. Chem.20196283971398810.1021/acs.jmedchem.8b0199130929420
    [Google Scholar]
  12. WangJ. HeY. YangC. LuoQ. WangB. Myeloid cell leukemia-1 as a candidate prognostic biomarker in cancers: A systematic review and meta-analysis.Expert Rev. Anticancer Ther.20232391017102710.1080/14737140.2023.223890037467344
    [Google Scholar]
  13. WuK. WooS.M. KwonT.K. The histone lysine-specific demethylase 1 inhibitor, SP2509 exerts cytotoxic effects against renal cancer cells through downregulation of Bcl-2 and Mcl-1.J. Cancer Prev.2020252798610.15430/JCP.2020.25.2.7932647649
    [Google Scholar]
  14. LiuL. LiuR. YangX. HouX. FangH. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors.Eur. J. Med. Chem.202019111214210.1016/j.ejmech.2020.11214232088497
    [Google Scholar]
  15. Anonymous, ; Lee, T.; Tarr, J.C.; Jeon, K.; Salovich, J.M.; Shaw, S.; Veerasamy, N.; Kim, K.; Christov, P.P.; Olejniczak, E.T.; Zhao, B.; Fesik, S.W.; Bian, Z. Substituted indole Mcl-1 inhibitors.US11596639
  16. DengH. HuangM. LiuH. ZhangH. LiuL. GaoB. LiX. LiJ. NiuQ. ZhangZ. LuanS. ZhangJ. JingY. LiuD. ZhaoL. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety.Bioorg. Chem.202212710601810.1016/j.bioorg.2022.10601835901526
    [Google Scholar]
  17. BarthB.M. Ceramide: Improving Bcl-2 inhibitor therapy.Blood2022139263676367810.1182/blood.202201660835771560
    [Google Scholar]
  18. DeminS. PeschiulliA. VelterA.I. VosA. De BoeckB. MillerB. RomboutsF.J.R. ReuillonT. LentoW. BlancoM.D. JouffroyM. SteyversH. BekkersM. AltrocchiC. PietrakB. KooS.J. SzewczukL. AttarR. PhilipparU. Macrocyclic carbon-linked pyrazoles as novel inhibitors of MCL-1.ACS Med. Chem. Lett.202314795596110.1021/acsmedchemlett.3c0014137465311
    [Google Scholar]
  19. YuH.J. ShinJ.A. ChoiS.J. ChoS.D. Podophyllotoxin reduces the aggressiveness of human oral squamous cell carcinoma through myeloid cell leukemia 1.Int. J. Mol. Med.202352510310.3892/ijmm.2023.530637711052
    [Google Scholar]
  20. LiangX. LiX. ZhaoZ. NieY. YaoZ. RenW. YangX. HouX. FangH. Design, synthesis and biological evaluation of hydantoin derivatives as Mcl-1 selective inhibitors.Bioorg. Chem.202212110564310.1016/j.bioorg.2022.10564335150958
    [Google Scholar]
  21. LuX. WuM.F. WuJ.L. ZhangH.Q. LiangH. ChenZ.F. Platinum-based Mcl-1 inhibitor targeting mitochondria achieves enhanced antitumor activity as a single agent or in combination with ABT-199.J. Med. Chem.202366138705871610.1021/acs.jmedchem.3c0035537358241
    [Google Scholar]
  22. PetrosA.M. SwannS.L. SongD. SwingerK. ParkC. ZhangH. WendtM.D. KunzerA.R. SouersA.J. SunC. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.Bioorg. Med. Chem. Lett.20142461484148810.1016/j.bmcl.2014.02.01024582986
    [Google Scholar]
  23. RichardD.J. LenaR. BannisterT. BlakeN. PierceallW.E. CarlsonN.E. KellerC.E. KoenigM. HeY. MinondD. MishraJ. CameronM. SpicerT. HodderP. CardoneM.H. Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker.Bioorg. Med. Chem.201321216642664910.1016/j.bmc.2013.08.01723993674
    [Google Scholar]
  24. XiJ. YaoL. ZhangR. ChenK. LiM. ZhangD. CuiM. NieH. WangP. LiX. JiangR. 2-Oxy-3-phenylacrylic acid derivatives as potent Mcl-1 inhibitors for treatment of cancer. Results.Chem2022410030810.1016/j.rechem.2022.100308
    [Google Scholar]
  25. RescourioG. GonzalezA.Z. JabriS. BelmontesB. MoodyG. WhittingtonD. HuangX. CaenepeelS. CardozoM. ChengA.C. ChowD. DouH. JonesA. KellyR.C. LiY. LizarzaburuM. LoM.C. MallariR. MelezaC. RewY. SimonovichS. SunD. TurcotteS. YanX. WongS.G. YanezE. ZancanellaM. HouzeJ. MedinaJ.C. HughesP.E. BrownS.P. Discovery and in vivo evaluation of macrocyclic Mcl-1 inhibitors featuring an α-hydroxy phenylacetic acid pharmacophore or bioisostere.J. Med. Chem.20196222102581027110.1021/acs.jmedchem.9b0131031736296
    [Google Scholar]
  26. ActonA. PlaczekW.J. Myeloid cell leukemia 1 small molecule inhibitor S63845 synergizes with cisplatin in triple-negative breast cancer.Cancers20231518448110.3390/cancers1518448137760451
    [Google Scholar]
  27. AmetR. PrevitaliV. MihigoH.B. SheridanE. BrophyS. HanteN.K. Santos-MartinezM.J. HaydenP.J. BrowneP.V. RozasI. McElligottA.M. ZistererD.M. A novel aryl-guanidinium derivative, VP79s, targets the signal transducer and activator of transcription 3 signaling pathway, downregulates myeloid cell leukaemia-1 and exhibits preclinical activity against multiple myeloma.Life Sci.202229012023610.1016/j.lfs.2021.12023634953891
    [Google Scholar]
  28. LiuW. KhalidM. WahabS. Faizan SiddiquiM. Hasan KhanS. SadiqM. KhatoonZ. A multitier virtual screening study of phytoconstituents as Myeloid Cell Leukemias 1 inhibitors.J. Biomol. Struct. Dyn.202311010.1080/07391102.2023.222673937418235
    [Google Scholar]
  29. TabtiK. BaammiS. SbaiA. MaghatH. LakhlifiT. BouachrineM. Molecular modeling study of pyrrolidine derivatives as novel myeloid cell leukemia-1 inhibitors through combined 3D-QSAR, molecular docking, ADME/Tox and MD simulation techniques.J. Biomol. Struct. Dyn.20234123137981381410.1080/07391102.2023.218303236841617
    [Google Scholar]
  30. AlbaneseV. MissiroliS. PerroneM. FabbriM. BoncompagniC. PacificoS. De VenturaT. CiancettaA. DondioG. KricekF. PintonP. GuerriniR. PretiD. GiorgiC. Novel aryl sulfonamide derivatives as NLRP3 inflammasome inhibitors for the potential treatment of cancer.J. Med. Chem.20236675223524110.1021/acs.jmedchem.3c0017536972104
    [Google Scholar]
  31. JadhavR.I. KedarN.A. ChavanK.H. Synthesis and antimicrobial activity of novel 1H-benzo[d]imidazole-aryl sulfonamide/amide derivatives.Indian J. Chem.202261184191
    [Google Scholar]
  32. LinJ. ZhouS. XuJ.X. YaoW.Q. HaoG.F. LiY.T. Design, synthesis, and structure-activity relationship of economical triazole sulfonamide aryl derivatives with high fungicidal activity.J. Agric. Food Chem.202068256792680110.1021/acs.jafc.9b0788732442369
    [Google Scholar]
  33. AbdullahiM. ShallangwaG.A. UzairuA. In silico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of H5N1 influenza A virus subtype.Beni. Suef Univ. J. Basic Appl. Sci.202091210.1186/s43088‑019‑0023‑y
    [Google Scholar]
  34. HargunaniP. TadgeN. CerusoM. LeitansJ. KazaksA. TarsK. GratteriP. SupuranC.T. NocentiniA. ToraskarM.P. Aryl-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives bearing a sulfonamide moiety show single-digit nanomolar-to-subnanomolar inhibition constants against the tumor-associated human carbonic anhydrases IX and XII.Int. J. Mol. Sci.2020217262110.3390/ijms2107262132283813
    [Google Scholar]
  35. FollowsB. FesslerS. BaumeisterT. CampbellA.M. ZablockiM.M. LiH. GoturD. WangZ. ZhengX. MolzL. NguyenC. HerbertzT. WangL. BairK. Discovery of novel biaryl sulfonamide based Mcl-1 inhibitors.Bioorg. Med. Chem. Lett.201929162375238210.1016/j.bmcl.2019.06.00831235261
    [Google Scholar]
  36. MuratovE.N. BajorathJ. SheridanR.P. TetkoI.V. FilimonovD. PoroikovV. OpreaT.I. BaskinI.I. VarnekA. RoitbergA. IsayevO. CurtaloloS. FourchesD. CohenY. Aspuru-GuzikA. WinklerD.A. AgrafiotisD. CherkasovA. TropshaA. QSAR without borders.Chem. Soc. Rev.202049113525356410.1039/D0CS00098A32356548
    [Google Scholar]
  37. AhmadiS. GhanbariH. LotfiS. AzimiN. Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method.Mol. Divers.2021251879710.1007/s11030‑019‑10026‑931933105
    [Google Scholar]
  38. ŽivadinovićB. StamenovićJ. ŽivadinovićJ. ŽivadinovićL. SokolovićM. FilipovićS.S. SokolovićD. VeselinovićA.M. QSAR modelling, molecular docking studies and ADMET predictions of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK.J. Mol. Struct.2022126513350410.1016/j.molstruc.2022.133504
    [Google Scholar]
  39. AkhtarS. SharmaN. SharmaM. FaisalM. AlatarA.A. KumarR. AhmadS. Ligand-based pharmacophore modeling, molecular docking and simulation studies for the exploration of natural potent antiangiogenic inhibitors targeting heat shock protein 90.Lett. Drug Des. Discov.20232019510910.2174/1570180819666220921165802
    [Google Scholar]
  40. TurkanF. CetinA. TaslimiP. KaramanM. Gulçinİ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors.Bioorg. Chem.20198642042710.1016/j.bioorg.2019.02.01330769267
    [Google Scholar]
  41. BiancolilloA. D’ArchivioA.A. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.J. Chromatogr. A2022166346275810.1016/j.chroma.2021.46275834954535
    [Google Scholar]
  42. TakaoK. TakemuraY. NagaiJ. KamauchiH. HoshiK. MabashiR. UesawaY. SugitaY. Synthesis and biological evaluation of 3-styrylchromone derivatives as selective monoamine oxidase B inhibitors.Bioorg. Med. Chem.20214211625510.1016/j.bmc.2021.11625534119696
    [Google Scholar]
  43. LiuS. LiY. WangJ. RuiX. TianH. LiC. GuoC. In silico studies of piperidine derivatives as protein kinase B inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulation.Lett. Drug Des. Discov.202219759160510.2174/1570180818666211207105516
    [Google Scholar]
  44. GajjarK.A. GajjarA.K. CoMFA, CoMSIA and HQSAR analysis of 3-aryl-3-ethoxypropanoic acid derivatives as GPR40 modulators.Curr. Drug Discov. Technol.202017110011810.2174/157016381566618082914443130160214
    [Google Scholar]
  45. FuL. ChenY. XuC. WuT. GuoH. LinZ. WangR. ShuM. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1,3,6-trisubstituted 1,4-diazepan-7-ones as human KLK7 inhibitors.Med. Chem. Res.20202961012102910.1007/s00044‑020‑02542‑3
    [Google Scholar]
  46. LópezA.F.F. MartínezO.M.M. HernándezH.F.C. Evaluation of Amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking.J. Mol. Struct.2021122512914210.1016/j.molstruc.2020.129142
    [Google Scholar]
  47. StorchiL. CrucianiG. CrossS. DeepGRID: Deep learning using GRID descriptors for BBB prediction.J. Chem. Inf. Model.202363175496551210.1021/acs.jcim.3c0076837639536
    [Google Scholar]
  48. MathewB. Herrera-AcevedoC. DevS. RangarajanT.M. KuruniyanM.S. NaseefP.P. ScottiL. ScottiM.T. Development of 2D, 3D-QSAR and pharmacophore modeling of chalcones for the inhibition of monoamine oxidase B.Comb. Chem. High T. Scr.202225101731174434397324
    [Google Scholar]
  49. JafariM. IsfahaniT.M. ShafieiF. SenejaniM.A. AlimoradiM. Comparative QSAR modeling for predicting anticancer potency of imidazo[4,5-b]pyridine derivatives using GA-MLR and BP-ANN techniques.Lett. Drug Des. Discov.202320122034204410.2174/1570180820666221207121031
    [Google Scholar]
  50. MoosaviS.A. MohammadinasabE. IsfahaniT.M. Prediction of partition coefficient of carbamates using GA-MLR and GA-ANN methods, and comparison with experimental data.Lett. Org. Chem.202320548149310.2174/1570178620666221205095036
    [Google Scholar]
  51. JayakumarJ. EbanesarA. GautamS. Predictive analysis, diagnosis of COVID-19 through computational screening and validation with spectro photometrical approach.Toxicol. Environ. Health Sci.202315210911710.1007/s13530‑023‑00172‑x
    [Google Scholar]
  52. KaboudiN. AlizadehA.A. ShayanfarA. In silico models to predict tubular secretion or reabsorption clearance pathway using physicochemical properties and structural characteristics.Xenobiotica202252434635210.1080/00498254.2022.207663235543185
    [Google Scholar]
  53. CrucianiG. CrivoriP. CarruptP.A. TestaB. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach.J. Mol. Struct. Theochem20005031-2173010.1016/S0166‑1280(99)00360‑7
    [Google Scholar]
  54. ValkenborgD. RousseauA.J. GeubbelmansM. BurzykowskiT. Support vector machines.Am. J. Orthod. Dentofacial Orthop.2023164575475710.1016/j.ajodo.2023.08.00337914440
    [Google Scholar]
  55. ZhangR. WangJ. JiangN. WangZ. Quantum support vector machine without iteration.Inf. Sci.2023635254110.1016/j.ins.2023.03.106
    [Google Scholar]
  56. ChenY. ChangZ. Intelligent forecasting method of distributed energy load based on least squares support vector machine.Int. J. Glob. Energy Issues2023454/538339410.1504/IJGEI.2023.132013
    [Google Scholar]
  57. MadhaviM.V. BobbyT.C. Exploration of fibro-glandular region and breast density classification of digitised mammograms using least square support vector machine.Int. J. Biomed. Eng. Technol.202343213115110.1504/IJBET.2023.133797
    [Google Scholar]
  58. HuJ. SzymczakS. A review on longitudinal data analysis with random forest.Brief. Bioinform.2023242bbad00210.1093/bib/bbad00236653905
    [Google Scholar]
  59. MahdaviaraM. RostamiA. KeivanimehrF. ShahbaziK. Accurate determination of permeability in carbonate reservoirs using Gaussian Process Regression.J. Petrol. Sci. Eng.202119610780710.1016/j.petrol.2020.107807
    [Google Scholar]
  60. LiuH. OngY.S. ShenX. CaiJ. When Gaussian process meets big data: A review of scalable GPs.IEEE Trans. Neural Netw. Learn. Syst.202031114405442310.1109/TNNLS.2019.295710931944966
    [Google Scholar]
  61. DongW. SunS. Multi-view deep gaussian processes for supervised learning.IEEE Trans. Pattern Anal. Mach. Intell.20234512151371515310.1109/TPAMI.2023.331667137725728
    [Google Scholar]
  62. Mehdizadeh EsfanjaniR. NajarzadehD. Jabbari KhamneiH. HormozinejadF. TalebiM. A Monte Carlo study on the ridge parameter of the seemingly unrelated ridge regression models.J. Stat. Comput. Simul.202393132176219510.1080/00949655.2023.2174984
    [Google Scholar]
  63. ChangJ.X. ZouJ.W. LouC.Y. YeJ.X. FengR. LiZ.Y. HuG.X. Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation.Mol. Inform.2023426220022310.1002/minf.20220022337040091
    [Google Scholar]
  64. NakatsuR.T. Validation of machine learning ridge regression models using Monte Carlo, bootstrap, and variations in cross-validation.J. Intell. Syst.20233212022022410.1515/jisys‑2022‑0224
    [Google Scholar]
  65. ZhangD. ZhaoZ. OuyangH. WuZ. HanX. An efficient reliability analysis method based on the improved radial basis function neural network.J. Mech. Des.2023145808170510.1115/1.4062584
    [Google Scholar]
  66. ZhangC. LiZ. YangZ. HuangB. HouY. ChenZ. A dynamic prediction model supporting individual life expectancy prediction based on longitudinal time-dependent covariates.IEEE J. Biomed. Health Inform.20232794623463210.1109/JBHI.2023.329247537471185
    [Google Scholar]
  67. TouraineC. WinterA. CastanF. AzriaD. GourgouS. Time-dependent ROC curve analysis for assessing the capability of radiation-induced CD8 T-lymphocyte apoptosis to predict late toxicities after adjuvant radiotherapy of breast cancer patients.Cancers20231519467610.3390/cancers1519467637835370
    [Google Scholar]
  68. KhalifaI. SobhyR. MorsyO.M. ZouX. A low-power sono-copigmentation of cyanidin 3-glucoside with geranin type-A: An underlying mechanism study with spectroscopic and Surflex docking insights.J. Mol. Liq.202338412224810.1016/j.molliq.2023.122248
    [Google Scholar]
  69. ReddyK.K. RathoreR.S. SrujanaP. BurriR.R. ReddyC.R. SumakanthM. ReddannaP. ReddyM.R. Performance evaluation of docking programs- Glide, GOLD, AutoDock & SurflexDock, using free energy perturbation reference data: A case study of fructose-1, 6-bisphosphatase-AMP analogs.Mini Rev. Med. Chem.202020121179118710.2174/138955752066620052618335332459606
    [Google Scholar]
  70. RaikarP. GurupadayyaB. MandalS.P. NarhariR. SubramanyamS. SrinivasuG. RajanS. SaikumarM. KogantiS. Bioanalytical chiral chromatographic technique and docking studies for enantioselective separation of meclizine hydrochloride: Application to pharmacokinetic study in rabbits.Chirality20203281091110610.1002/chir.2324132567097
    [Google Scholar]
  71. JiangD. ZhaoH. DuH. DengY. WuZ. WangJ. ZengY. ZhangH. WangX. WuJ. HsiehC.Y. HouT. How good are current docking programs at nucleic acid-ligand docking? A comprehensive evaluation.J. Chem. Theory Comput.202319165633564710.1021/acs.jctc.3c0050737480347
    [Google Scholar]
  72. BouzekriO. ElgamouzS. El KhatabiK. AmechrouqA. AjanaM.A. BouachrineM. LakhlifiT. El IdrissiM. ChoukradM. Chemical composition and in silico acetylcholinesterase inhibitory activity of essential oils of six apiaceae species from south-east Morocco.Biointerface Res. Appl. Chem.20221313610.33263/BRIAC131.036
    [Google Scholar]
  73. BenaliT. LemhadriA. HarboulK. ChtibiH. KhabbachA. JadoualiS.M. Quesada-RomeroL. LouahliaS. HammaniK. GhalebA. LeeL.H. BouyahyaA. RusuM.E. AkhazzaneM. Chemical profiling and biological properties of essential oils of lavandula stoechas L. collected from three Moroccan sites: In vitro and in silico investigations.Plants2023126141310.3390/plants1206141336987101
    [Google Scholar]
  74. ZhangK. HashimotoK. An update on ketamine and its two enantiomers as rapid-acting antidepressants.Expert Rev. Neurother.2019191839210.1080/14737175.2019.155443430513009
    [Google Scholar]
  75. BlaszczykA. MatysiakS. KulaJ. SzostakiewiczK. KarkusiewiczZ. Cytotoxic and genotoxic effects of (R)‐ and (S)‐ricinoleic acid derivatives.Chirality2020327998100710.1002/chir.2322632250002
    [Google Scholar]
  76. FengY. ParkJ. LiS.G. BoutinR. ViereckP. SchillingM.A. BerghuisA.M. TsantrizosY.S. Chirality-driven mode of binding of α-aminophosphonic acidbased allosteric inhibitors of the human farnesyl pyrophosphate synthase (hFPPS).J. Med. Chem.201962219691970210.1021/acs.jmedchem.9b0110431577901
    [Google Scholar]
  77. FoskolouI.P. CunhaP.P. Sánchez-LópezE. MinogueE.A. NicoletB.P. GuislainA. JorgensenC. KostidisS. ZandhuisN.D. BarbieriL. BargielaD. NathanaelD. TyrakisP.A. PalazonA. GieraM. WolkersM.C. JohnsonR.S. The two enantiomers of 2-hydroxyglutarate differentially regulate cytotoxic T cell function.Cell Rep.202342911301310.1016/j.celrep.2023.11301337632752
    [Google Scholar]
  78. JiaQ. YangP.Y. LiY.L. YaoG.D. SongS.J. HuangX.X. Two new enantiomers of phenylethanoid and their anti-inflammatory activities.Chem. Biodivers.2023204e20230006710.1002/cbdv.20230006736810976
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808278918240109053316
Loading
/content/journals/lddd/10.2174/0115701808278918240109053316
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test