
Full text loading...
Mcl-1 is a kind of antiapoptotic protein and its overexpression is closely related to the occurrence of cancer. Aryl sulfonamide derivatives are expected to become new anticancer agents due to their high inhibitory activity on the Mcl-1 protein.
The study aimed to establish the QSAR model with good prediction ability and elaborate the influence of structure and chirality on the inhibitory activity.
Multiple QSAR models were built with different types of descriptors and modeling methods. The molecular docking was performed on compounds 45, 25, 26, 24R, and 24S. The MCCV method was used to perform rigorous validations with up to 216 = 65,536 samplings for MLR, SVM, LSSVM, RF, and GP methods based on the model of 2D and 3D combined descriptors.
The models based on 2D and 3D combined descriptors demonstrated non-linear LSSVM and GP methods to provide better results (R2>0.94, > 0.86). The predictive performances of MCCV tests have been basically coincident with the single test set’s results. The hydrogen bond acceptor at the appropriate position of the substituent on the chiral center could form the hydrogen bond interaction with residue ASN260, resulting in stronger interaction and higher inhibitory activity. The interaction differences between R and S configurations could be mainly attributed to two residues, HIS224 and ASN260. Furthermore, the steric effect of the substituent on chiral carbon atoms was crucial. A high steric effect could prevent the binding of the substituent and protein, resulting in low inhibitory activity.
The study may provide theoretical guidance on the design and synthesis of novel aryl sulfonamide derivatives with high inhibitory activity.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements