Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

A series of 2-arylbenzimidazole derivatives were designed and developed as antidiabetic drugs using 2D and 3D QSAR, molecular docking and ADME studies.

Methods

All molecular modeling studies were performed using Molecular Design Suite V-Life MDS software. New chemical entities (NCEs) were designed based on the results of 2D and 3D QSAR studies. Docking studies were performed with the designed NCEs in PDB: 5E0F and the results were compared with the receptor ligand. According to the ADME results, all the proposed compounds have good oral absorption, correct molecular weight, QPlogPo/w. All units show oral absorption above 80%, it is considered well absorbed. All the proposed units show satisfactory results in the area. This indicated that these NCEs have little or no chance of failure in the final stages of the drug development process.

Results

The 2D QSAR results showed that the descriptor k2alpha, T_T_N_5, IodinesCount and BrominesCount play the most important role in determining the inhibitory activity of α-amylase. Although 3D QSAR showed that, the q2 and Pred_r2 values of the model (SA kNN MFA model) were 0.7476 and 0.6932. The G score of the proposed compound numbers mol-1, mol-2, mol-3, mol-4, mol-5, mol-6, mol-7 and mol-8 are better compared to the standards, indicating that the proposed compounds have good binding properties affinity to bind to α-amylase.

Conclusion

These investigations have produced statistically significant and exceptionally reliable 2D and 3D Quantitative Structure-Activity Relationship (QSAR) models for antidiabetic medications, particularly α-amylase inhibitors. Furthermore, docking experiments involving the α-amylase enzyme have revealed that the binding energies of most Novel Chemical Entities (NCEs) are comparable to those of the established standards. Docking studies with α-amylase enzyme showed that most NCEs have binding energies comparable to the standard.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808279839240206123454
2024-02-21
2025-01-24
Loading full text...

Full text loading...

References

  1. WhitcombD.C. LoweM.E. Human pancreatic digestive enzymes.Dig. Dis. Sci.200752111710.1007/s10620‑006‑9589‑z17205399
    [Google Scholar]
  2. SalesP.M. SouzaP.M. SimeoniL.A. MagalhãesP.O. SilveiraD. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source.J. Pharm. Pharm. Sci.201215114118310.18433/J35S3K22365095
    [Google Scholar]
  3. SundarramA. MurthyT.P.K. α-Amylase production and applications: A review.J. Appl. Environ. Microbiol.20142166175
    [Google Scholar]
  4. TahaM. Tariq JavidM. ImranS. SelvarajM. ChigurupatiS. UllahH. RahimF. KhanF. Islam MohammadJ. Mohammed KhanK. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives.Bioorg. Chem.20177417918610.1016/j.bioorg.2017.08.00328826047
    [Google Scholar]
  5. AdegboyeA.A. KhanK.M. SalarU. AboabaS.A. Kanwal; Chigurupati, S.; Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H.; Perveen, S. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study.Eur. J. Med. Chem.201815024826010.1016/j.ejmech.2018.03.01129533872
    [Google Scholar]
  6. SalarU. KhanK.M. ChigurupatiS. TahaM. WadoodA. VijayabalanS. GhufranM. PerveenS. New hybrid hydrazinyl thiazole substituted chromones: as potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers.Sci. Rep.2017711698010.1038/s41598‑017‑17261‑w29209017
    [Google Scholar]
  7. RanillaL.G. KwonY.I. ApostolidisE. ShettyK. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America.Bioresour. Technol.2010101124676468910.1016/j.biortech.2010.01.09320185303
    [Google Scholar]
  8. MitraA. TamilI.G. DineshkumarB. NandhakumarM. SenthilkumarM. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus.Indian J. Pharmacol.201042528028210.4103/0253‑7613.7010721206618
    [Google Scholar]
  9. BhosleM.R. WahulD.B. BondleG.M. SarkateA. TiwariS.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2,5-diones.Synth. Commun.201848162046206010.1080/00397911.2018.1480042
    [Google Scholar]
  10. BhosleM. AndilP. WahulD. BondleG. SarkateA. TiwariS. Straightforward multicomponent synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones in β-cyclodextrin cavity and evaluation of their anticancer activity.J. Indian Chem. Soc.20191615531561
    [Google Scholar]
  11. ShahidpourS. PanahiF. YousefiR. NourisefatM. NabipoorM. Khalafi-NezhadA. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles.Med. Chem. Res.20152473086309610.1007/s00044‑015‑1356‑2
    [Google Scholar]
  12. AlagesanK. RaghupathiP. SankarnarayananS. Amylase inhibitors: Potential source of anti-diabetic drug discovery from medicinal plants.Int. J. of Pharm. & Life Sci.2012314071412
    [Google Scholar]
  13. TahaM. ImranS. IsmailN.H. SelvarajM. RahimF. ChigurupatiS. UllahH. KhanF. SalarU. JavidM.T. VijayabalanS. ZamanK. KhanK.M. Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies.Bioorg. Chem.2017741910.1016/j.bioorg.2017.07.00128719801
    [Google Scholar]
  14. ArshadT. KhanK.M. RasoolN. SalarU. HussainS. TahirT. AshrafM. WadoodA. RiazM. PerveenS. TahaM. IsmailN.H. Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors.Med. Chem. Res.20162592058206910.1007/s00044‑016‑1614‑y
    [Google Scholar]
  15. ReyesA.A. GomezG.O. TorresJ.J. Synthesis of azolines and imidazoles and their use in drug design.Med. Chem.20166561570
    [Google Scholar]
  16. RambabuR. SubbaraoJ. KumarP.P. Synthesis, characterization and biological activities of some new substituted imidazoles.IJPSR2015617611765
    [Google Scholar]
  17. Aboul-EneinH.Y. El-RashedyA.A. Benzimidazole derivatives as antidiabetic agents.Med. Chem.2015318325
    [Google Scholar]
  18. GanZ. TianQ. ShangS. LuoW. DaiZ. WangH. LiD. WangX. YuanJ. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives.Tetrahedron201874527450745610.1016/j.tet.2018.11.014
    [Google Scholar]
  19. ShindeD. SarkateA. BahekarS. WadhaiV. GhandgeG. WakteP. Microwave-assisted synthesis of nonsymmetrical aryl ethers using nitroarenes.Synlett201324121513151610.1055/s‑0033‑1338869
    [Google Scholar]
  20. MoraisG.R. PalmaE. MarquesF. GanoL. OliveiraM.C. AbrunhosaA. MirandaH.V. OuteiroT.F. SantosI. PauloA. Synthesis and biological evaluation of novel 2‐aryl benzimidazoles as chemotherapeutic agents.J. Heterocycl. Chem.201754125526710.1002/jhet.2575
    [Google Scholar]
  21. OzilM. ParlakC. BaltaşN. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity.Bioorg. Chem.201710.1016/j.bioorg.2017.12.01929287256
    [Google Scholar]
  22. Mohammed KhanK. KhanM. AmbreenN. RahimF. NaureenS. PerveenS. Iqbal ChoudharyM. VoelterW. Synthesis and β-glucuronidase inhibitory potential of benzimidazole derivatives.Med. Chem.20128342142710.2174/157340641120803042122530898
    [Google Scholar]
  23. V-Life MDS Molecular Design Suite, Available from: www.vlifesciences.com
  24. VeerasamyR. SubramaniamD.K. CheanO.C. YingN.M. Designing hypothesis of substituted benzoxazinones as HIV-1 reverse transcriptase inhibitors: QSAR approach.J. Enzyme Inhib. Med. Chem.201227569370710.3109/14756366.2011.60866421961709
    [Google Scholar]
  25. HanschC. LeoA. ExploringQ.S.A.R. Exploring QSAR.Fundamentals and Applications in Chemistry and Biology.WashingtonAmerican Chemical Society1995
    [Google Scholar]
  26. BaumannK. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features.J. Chem. Inf. Comput. Sci.2002421263510.1021/ci990070t11855963
    [Google Scholar]
  27. HalgrenT.A. Molecular geometries and vibrational frequencies for MMFF94.J. Comput. Chem.199617553586
    [Google Scholar]
  28. RautV.V. BhandariS.V. PatilS.M. SarkateA.P. A rational approach to anticancer drug design: 2D and 3D- QSAR, molecular docking and prediction of ADME properties using silico studies of thymidine phosphorylase inhibitors.Lett. Drug Des. Discov.202320215316610.2174/1570180819666220215115633
    [Google Scholar]
  29. PradhanJ. GoyalA. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines.Med. Chem. Res.20162581639165610.1007/s00044‑016‑1597‑8
    [Google Scholar]
  30. CherkasovA. MuratovE.N. FourchesD. VarnekA. BaskinI.I. CroninM. DeardenJ. GramaticaP. MartinY.C. TodeschiniR. ConsonniV. Kuz’minV.E. CramerR. BenigniR. YangC. RathmanJ. TerflothL. GasteigerJ. RichardA. TropshaA. QSAR modeling: Where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm400428524351051
    [Google Scholar]
  31. SharmaM.C. KohliD.V. Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as Angiotensin II AT1 receptor antagonist: 2D and 3D QSAR approach.J. Saudi Chem. Soc.2014181354510.1016/j.jscs.2011.05.011
    [Google Scholar]
  32. ShaikhA. GonsalvesS. NikamA. KshirsagarS. ThombareY. Predicting pyrazinecarboxamides derivatives as an herbicidal agent: 3d Qsar by kNN-MFA and Multiple linear regression approach.World Appl. Sci. J.201533980989
    [Google Scholar]
  33. LokwaniD. BhandariS. PujariR. ShastriP. shelke, G.; Pawar, V. Use of quantitative structure–activity relationship (QSAR) and ADMET prediction studies as screening methods for design of benzyl urea derivatives for anti-cancer activity.J. Enzyme Inhib. Med. Chem.201126331933110.3109/14756366.2010.50643720846089
    [Google Scholar]
  34. ChitreT.S. AsgaonkarK.D. PatilS.M. KumarS. KhedkarV.M. GarudD.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity.Comput. Biol. Chem.20176821121810.1016/j.compbiolchem.2017.03.01528411471
    [Google Scholar]
  35. UmeshH.R. RameshK.V. DevarajuK.S. Molecular docking studies of phytochemicals against trehalose–6–phosphate phosphatases of pathogenic microbes.Beni. Suef Univ. J. Basic Appl. Sci.202091510.1186/s43088‑019‑0028‑6
    [Google Scholar]
  36. AsgaonkarK.D. MoteG.D. ChitreT.S. QSAR and molecular docking studies of oxadiazole-ligated pyrrole derivatives as enoyl-ACP (CoA) reductase inhibitors.Sci. Pharm.2014821718510.3797/scipharm.1310‑0524634843
    [Google Scholar]
  37. RCSB Protein Data BankAvailable from: https://www.rcsb.org
  38. ZamanK. RahimF. TahaM. UllahH. WadoodA. NawazM. KhanF. WahabZ. ShahS.A.A. RehmanA.U. KawdeA.N. GollapalliM. Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues.Bioorg. Chem.20198910302410.1016/j.bioorg.2019.10302431176853
    [Google Scholar]
  39. DohertyW. AdlerN. KnoxA. NolanD. McGouranJ. NikaljeA.P. LokwaniD. SarkateA. EvansP. Synthesis and evaluation of 1,2,3‐triazole‐containing vinyl and allyl sulfones as anti‐trypanosomal agents.Eur. J. Org. Chem.20172017117518510.1002/ejoc.201601221
    [Google Scholar]
  40. AbchirO. DaouiO. BelaidiS. OuassafM. QaisF.A. ElKhattabiS. BelaaouadS. ChtitaS. Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies.J. Mol. Model.202228410610.1007/s00894‑022‑05097‑935352175
    [Google Scholar]
  41. PawarV. LokwaniD. BhandariS. MitraD. SabdeS. BotharaK. MadgulkarA. Design of potential reverse transcriptase inhibitor containing Isatin nucleus using molecular modeling studies.Bioorg. Med. Chem.20101893198321110.1016/j.bmc.2010.03.03020381364
    [Google Scholar]
  42. KarnikK.S. SarkateA.P. TiwariS.V. AzadR. BurraP.V.L.S. WakteP.S. Computational and synthetic approach with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC).Bioorg. Chem.202110710461210.1016/j.bioorg.2020.10461233476869
    [Google Scholar]
  43. DurgunM. TürkeşC. IşıkM. DemirY. SaklıA. KuruA. GüzelA. BeydemirŞ. AkocakS. OsmanS.M. AlOthmanZ. SupuranC.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases.J. Enzyme Inhib. Med. Chem.202035195096210.1080/14756366.2020.174678432249705
    [Google Scholar]
  44. VyasV.K. GhateM. 2D and 3D QSAR study on amino nicotinic acid and isonicotinic acid derivatives as potential inhibitors of dihydroorotate dehydrogenase (DHODH).Med. Chem. Res.201221103021303410.1007/s00044‑011‑9837‑4
    [Google Scholar]
  45. InamdarP. BhandariS. SonawaneB. HoleA. JadhavC. Structure optimization of neuraminidase inhibitors as potential anti-influenza (H1N1Inhibitors) agents using QSAR and molecular docking studies.Iran. J. Pharm. Res.2014131496524734056
    [Google Scholar]
  46. Araujo da SilvaR. Screening of P-glycoprotein inducers and activators as effective antidotes against its toxic substrates in Caco-2 cells. The Example of Paraquat. Med. Chem. Res.2013Available from: https://repositorio-aberto.up.pt/handle/10216/71855
    [Google Scholar]
  47. SharmaM.C. Structural insights into mode of actions of novel substituted 4- and 6-azaindole-3-carboxamides analogs as renin inhibitors: Molecular modeling studies.Med. Chem. Res.20152431038105910.1007/s00044‑014‑1163‑1
    [Google Scholar]
  48. AsatiV. BajajS. MahapatraD.K. BhartiS.K. Molecular modeling studies of some thiazolidine-2,4-dione derivatives as 15-PGDH inhibitors.Med. Chem. Res.20162519410810.1007/s00044‑015‑1442‑5
    [Google Scholar]
  49. XiaoZ. VarmaS. XiaoY.D. TropshaA. Modeling of p38 mitogen-activated protein kinase inhibitors using the Catalyst™ HypoGen and k-nearest neighbor QSAR methods.J. Mol. Graph. Model.200423212913810.1016/j.jmgm.2004.05.00115363455
    [Google Scholar]
  50. de MolfettaF.A. de FreitasR.F. da SilvaA.B.F. MontanariC.A. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.J. Mol. Model.200915101175118410.1007/s00894‑009‑0468‑319263098
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808279839240206123454
Loading
/content/journals/lddd/10.2174/0115701808279839240206123454
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADME; Antidiabetic; docking; NCE's; QSAR; α-Amylase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test