Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

PDE5 inhibitors have had a surge in popularity over the last decade owing to their efficacy in the treatment of erectile dysfunction, coronary vasculopathy, and pulmonary arterial hypertension. These inhibitors exhibit competitive binding with phosphodiesterase type 5 and inhibit the hydrolysis of cyclic guanosine monophosphate, hence elevating the levels of cGMP in smooth muscle cells and prolonging the duration of an erection. However, due to production costs and side effects, further research is needed to discover new PDE5 inhibitors.

Objectives

The study aimed to identify potent PDE5 inhibitors by employing the extensive application of computer-aided drug design.

Methods

Three different databases, named Million Molecules Database, Natural Product Database, and NCI Database, have been screened, which has been followed by filtering based on various drug-likeness rules, docking, ADME, toxicity, consensus molecular docking, and 100 ns molecular dynamics simulation.

Results

Three compounds (ZINC05351336, ZINC12030898, and ZINC17949426) have exhibited stable-binding characteristics at the active site of PDE5, demonstrating a robust binding affinity. These molecules have been found to possess drug-like capabilities, effective ADME features, low toxicity, and high stability.

Conclusion

The study has delved into the realm of PDE5 inhibitors, which have been found to be effective in treating erectile dysfunction, but high production costs and side effects necessitate new ones. Through computer-aided drug design and screening, three compounds have been identified with promising binding characteristics, drug-appropriate properties, effective ADME profiles, minimal toxicity, and stability, making them potential candidates for future PDE5 inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808279586231221043744
2024-04-03
2024-12-23
Loading full text...

Full text loading...

References

  1. HaningH. NiewöhnerU. BischoffE. Phosphodiesterase type 5 (PDE5) inhibitors.Prog. Med. Chem.200341249306
    [Google Scholar]
  2. ZhangK.Y.J. CardG.L. SuzukiY. ArtisD.R. FongD. GilletteS. HsiehD. NeimanJ. WestB.L. ZhangC. MilburnM.V. KimS.H. SchlessingerJ. BollagG. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.Mol. Cell200415227928610.1016/j.molcel.2004.07.00515260978
    [Google Scholar]
  3. GiovannoniM.P. VergelliC. GrazianoA. Dal PiazV. PDE5 inhibitors and their applications.Curr. Med. Chem.201017242564258710.2174/09298671079185936020491634
    [Google Scholar]
  4. NoelS. DhoogheB. LealT. PDE5 inhibitors as potential tools in the treatment of cystic fibrosis.Front. Pharmacol.20123September16710.3389/fphar.2012.0016723024633
    [Google Scholar]
  5. AhmedW.S. GeethakumariA.M. BiswasK.H. Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors.Biomed. Pharmacother.202113411112810.1016/j.biopha.2020.11112833348311
    [Google Scholar]
  6. CesariniV. PisanoC. RossiG. BalistreriC.R. BottiF. AntonelliG. RuvoloG. JanniniE.A. DolciS. Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms.Sci. Rep.2019911220610.1038/s41598‑019‑48432‑631434939
    [Google Scholar]
  7. HuangS.A. LieJ.D. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction.P&T2013387407419
    [Google Scholar]
  8. SandnerP. HütterJ. TinelH. ZiegelbauerK. BischoffE. PDE5 inhibitors beyond erectile dysfunction.Int. J. Impot. Res.200719653354310.1038/sj.ijir.390157717625575
    [Google Scholar]
  9. CorbinJ.D. Mechanisms of action of PDE5 inhibition in erectile dysfunction.Int. J. Impot. Res.200416S1S4S710.1038/sj.ijir.390120515224127
    [Google Scholar]
  10. KlonerR. Erectile dysfunction and hypertension.Int. J. Impot. Res.200719329630210.1038/sj.ijir.390152717151696
    [Google Scholar]
  11. AnderssonK-E. PDE5 inhibitors – pharmacology and clinical applications 20 years after sildenafil discovery.Br. J. Pharmacol.2018175132554256510.1111/bph.1420529667180
    [Google Scholar]
  12. ScherzerN.D. LeT.V. HellstromW.J.G. Sildenafil’s impact on male infertility: What has changed in 20 years?Int. J. Impot. Res.2019312717310.1038/s41443‑018‑0067‑x30837720
    [Google Scholar]
  13. DasA. DurrantD. SalloumF.N. XiL. KukrejaR.C. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.Pharmacol. Ther.2015147122110.1016/j.pharmthera.2014.10.00325444755
    [Google Scholar]
  14. KumarP. FrancisG.S. Wilson TangW.H. Phosphodiesterase 5 inhibition in heart failure: Mechanisms and clinical implications.Nat. Rev. Cardiol.20096534935510.1038/nrcardio.2009.3219377497
    [Google Scholar]
  15. PeakT.C. RichmanA. GurS. YafiF.A. HellstromW.J.G. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer.Sex. Med. Rev.201641748410.1016/j.sxmr.2015.10.00427872007
    [Google Scholar]
  16. KlutznyS. AnurinA. NickeB. ReganJ.L. LangeM. SchulzeL. ParczykK. SteigemannP. PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling.Cell Death Dis.20189219210.1038/s41419‑017‑0202‑529416006
    [Google Scholar]
  17. CorbinJ. PDE5 inhibition and fibrosis.Int. J. Impot. Res.200517654654610.1038/sj.ijir.390136216258527
    [Google Scholar]
  18. ArmaniA. MarzollaV. RosanoG.M.C. FabbriA. CaprioM. Phosphodiesterase type 5 (PDE5) in the adipocyte: A novel player in fat metabolism?Trends Endocrinol. Metab.2011221040441110.1016/j.tem.2011.05.00421741267
    [Google Scholar]
  19. PaickJ.S. AhnT.Y. ChoiH.K. ChungW.S. KimJ.J. KimS.C. KimS.W. LeeS.W. MinK.S. MoonK.H. ParkJ.K. ParkK. ParkN.C. SuhJ.K. YangD.Y. JungH.G. Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction.J. Sex. Med.20085112672268010.1111/j.1743‑6109.2008.00945.x18638004
    [Google Scholar]
  20. Mirodenafil : A new PDE5 inhibitor for the treatment of erectile dysfunction Holmium laser enucleation of the prostate : A new gold standard for BPH? Intracorporeal laparoscopic bladder augmentation.Nat. Clin. Pract. Urol.2009622009
    [Google Scholar]
  21. WrightP.J. Comparison of phosphodiesterase type 5 (PDE5) inhibitors.Int. J. Clin. Pract.200660896797510.1111/j.1742‑1241.2006.01049.x16780568
    [Google Scholar]
  22. RashidA. The efficacy and safety of PDE5 inhibitors.Clin. Cornerstone200571475510.1016/S1098‑3597(05)80048‑116156423
    [Google Scholar]
  23. MukherjeeG. JayaramB. A rapid identification of hit molecules for target proteins via physico-chemical descriptors.Phys. Chem. Chem. Phys.201315239107911610.1039/c3cp44697b23646352
    [Google Scholar]
  24. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+15667143
    [Google Scholar]
  25. ZehnackerM.T. BrennanR.H. MilneG.W.A. MillerJ.A. HammelM.J. The NCI drug information system. 6. System maintenance.J. Chem. Inf. Comput. Sci.198626419319710.1021/ci00052a0073580042
    [Google Scholar]
  26. DunkelM. FullbeckM. NeumannS. PreissnerR. SuperNatural: A searchable database of available natural compounds.Nucleic Acids Res.20063490001D678D68310.1093/nar/gkj13216381957
    [Google Scholar]
  27. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. FengZ. GillilandG.L. IypeL. JainS. FaganP. MarvinJ. PadillaD. RavichandranV. SchneiderB. ThankiN. WeissigH. WestbrookJ.D. ZardeckiC. The protein data bank.Acta Crystallogr. D Biol. Crystallogr.200258689990710.1107/S090744490200345112037327
    [Google Scholar]
  28. LandrumG. RDKit: Open-Source Cheminformatics Software.2016Available from https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
  29. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-3326
    [Google Scholar]
  30. GhoseA.K. ViswanadhanV.N. WendoloskiJ.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A Qualitative and quantitative characterization of known drug databases.J. Comb. Chem.1999115568
    [Google Scholar]
  31. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  32. MueggeI. HealdS.L. BrittelliD. Simple selection criteria for drug-like chemical matter.J. Med. Chem.200144121841184610.1021/jm015507e11384230
    [Google Scholar]
  33. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  34. SinghT. BiswasD. JayaramB. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors.J. Chem. Inf. Model.201151102515252710.1021/ci200193z21877713
    [Google Scholar]
  35. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  36. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.Biol. Direct20201511210.1186/s13062‑020‑00267‑232938494
    [Google Scholar]
  37. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  38. LeeS.K. LeeI.H. KimH.J. ChangG.S. The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties.Euroqsar 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions.Massachusetts, USABlackwell Publishing2003
    [Google Scholar]
  39. SchymanP. LiuR. DesaiV. WallqvistA. vNN Web Server for ADMET Predictions.Front. Pharmacol.20178December88910.3389/fphar.2017.0088929255418
    [Google Scholar]
  40. MaunzA. GütleinM. RautenbergM. VorgrimmlerD. GebeleD. HelmaC. lazar: A modular predictive toxicology framework.Front. Pharmacol.20134April3823761761
    [Google Scholar]
  41. Palacio-RodríguezK. LansI. CavasottoC.N. CossioP. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking.Sci. Rep.201991514210.1038/s41598‑019‑41594‑330914702
    [Google Scholar]
  42. Blanes-MiraC. Fernández-AguadoP. de Andrés-LópezJ. Fernández-CarvajalA. Ferrer-MontielA. Fernández-BallesterG. Comprehensive survey of consensus docking for high-throughput virtual screening.Molecules202228117510.3390/molecules2801017536615367
    [Google Scholar]
  43. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  44. AlhossaryA. HandokoS.D. MuY. KwohC.K. Fast, accurate, and reliable molecular docking with QuickVina 2.Bioinformatics201531132214221610.1093/bioinformatics/btv08225717194
    [Google Scholar]
  45. GrosdidierA. ZoeteV. MichielinO. SwissDock, a protein-small molecule docking web service based on EADock DSS.Nucleic Acids Res.201139Web Server issueW270W27710.1093/nar/gkr36621624888
    [Google Scholar]
  46. LiH. LeungK.S. WongM.H. Idock: A multithreaded virtual screening tool for flexible ligand docking.IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)San Diego, CA, USA 09-12 May2012778410.1109/CIBCB.2012.6217214
    [Google Scholar]
  47. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2009
    [Google Scholar]
  48. DebnathA. MazumderR. MazumderA. SinghR. SrivastavaS. In silico Identification of HDAC inhibitors for multiple myeloma: a structure-based virtual screening, drug likeness, admet profiling, molecular docking, and molecular dynamics simulation study.Lett. Drug Des. Discov.202320110.2174/1570180820666230125102954
    [Google Scholar]
  49. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  50. BrooksB.R. BrooksC. MackerellA.D. NilssonL. PetrellaR.J. RouxB. CHARMM: Molecular dynamics simulation package.J. Comput. Chem.200930101545161410.1002/jcc.2128719444816
    [Google Scholar]
  51. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  52. PillaiG.G. Jupyter Notebook for MD using Gromacs.2020Available from: https://zenodo.org/records/3832358
  53. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.20093219575467
    [Google Scholar]
  54. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  55. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  56. WaalsD. WaalsD. WaalsD. Van der waals volumes and radii.J. Phys. Chem.1964683441451
    [Google Scholar]
  57. BerendsenH.J.C. PostmaJ.P.M. van GunsterenW.F. DiNolaA. HaakJ.R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.19848183684369010.1063/1.448118
    [Google Scholar]
  58. PoliG. TuccinardiT. Consensus docking in drug discovery.Curr. Bioact. Compd.202016318219010.2174/1573407214666181023114820
    [Google Scholar]
  59. HoustonD.R. WalkinshawM.D. Consensus docking: Improving the reliability of docking in a virtual screening context.J. Chem. Inf. Model.201353238439010.1021/ci300399w23351099
    [Google Scholar]
  60. XuL. SunL. SuP. MaT. YuY. LiuH. Identification of potential inhibitors of pde5 based on structure-based virtual screening approaches. Curr. Comput. Aided.Drug Des.202319323424210.2174/1573409919666221208143327
    [Google Scholar]
  61. AminK.M. El-BadryO.M. Abdel RahmanD.E. AbdellattifM.H. AbourehabM.A.S. El-MaghrabeyM.H. ElsaidF.G. El HamdM.A. ElkamhawyA. AmmarU.M. Scaffold repurposing reveals new nanomolar phosphodiesterase type 5 (pde5) inhibitors based on pyridopyrazinone scaffold: Investigation of in vitro and in silico properties.Pharmaceutics2022149195410.3390/pharmaceutics1409195436145702
    [Google Scholar]
  62. PalanichamyC. PavadaiP. PanneerselvamT. ArunachalamS. BabkiewiczE. Ram Kumar PandianS. Shanmugampillai JeyarajaguruK. Nayak AmmunjeD. KannanS. ChandrasekaranJ. SundarK. MaszczykP. KunjiappanS. Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: in silico Molecular Docking and Dynamics Simulation Approach.Molecules20222712379910.3390/molecules2712379935744923
    [Google Scholar]
  63. HusseinA.H.M. KhamesA.A. El-AdasyA.B.A. AtallaA.A. Abdel-RadyM. HassanM.I.A. Abou-SalimM.A. ElshaierY.A.M.M. BarakatA. Multifunctional isosteric pyridine analogs-based 2-aminothiazole: Design, synthesis, and potential phosphodiesterase-5 inhibitory activity.Molecules202126490210.3390/molecules2604090233572094
    [Google Scholar]
  64. EhigiatorB.E. AdesidaA.S. OmotuyiI.O. Chicoric acid, a phytochemical compound of solenostemon monostachyus: Possible drug candidate for the relief of erectile dysfunction.Int. J. Eng. Appl. Sci. Technol.202041150951810.33564/IJEAST.2020.v04i11.091
    [Google Scholar]
  65. HusseinA.H.M. KhamesA.A. El-AdasyA.B.A. AtallaA.A. Abdel-RadyM. HassanM.I.A. NemrM.T.M. ElshaierY.A.A.M. Design, synthesis and biological evaluation of new 2-aminothiazole scaffolds as phosphodiesterase type 5 regulators and COX-1/COX-2 inhibitors.RSC Advances20201050297232973610.1039/D0RA05561A35518254
    [Google Scholar]
  66. RastijaV. BrahmbhattH. MolnarM. LončarićM. StrelecI. KomarM. PavićV. Synthesis, tyrosinase inhibiting activity and molecular docking of fluorinated pyrazole aldehydes as phosphodiesterase inhibitors.Appl. Sci.201998170410.3390/app9081704
    [Google Scholar]
  67. ShaikA. AgarwalH.K. BhakuniR. KirubakaranS. Novel Pyrazolo[4, 3-c]Quinolin-3-One Derivatives as PDE5A Inhibitors.Curr. Top. Med. Chem.201919430531510.2174/156802661966619020816440230747070
    [Google Scholar]
  68. HuangX. XuP. CaoY. LiuL. SongG. XuL. Exploring the binding mechanisms of PDE5 with chromeno[2,3- c]pyrrol-9(2 H)-one by theoretical approaches.RSC Advances2018853304813049010.1039/C8RA06405A35546827
    [Google Scholar]
  69. MittalA. PaliwalS. SharmaM. SinghA. SharmaS. YadavD. Pharmacophore based virtual screening, molecular docking and biological evaluation to identify novel PDE5 inhibitors with vasodilatory activity.Bioorg. Med. Chem. Lett.201424143137314110.1016/j.bmcl.2014.05.00424856068
    [Google Scholar]
  70. MazumderR. KaushikK.K. DebnathA. PatelM. A brief study on drug repurposing: New way of boosting drug discovery.Lett. Drug Des. Discov.2023203264278[Internet].10.2174/1570180819666220901170016
    [Google Scholar]
  71. TremaineL. BrianW. DelMonteT. FranckeS. GroenenP. JohnsonK. LiL. PearsonK. MarshallJ.C. The role of ADME pharmacogenomics in early clinical trials: Perspective of the Industry Pharmacogenomics Working Group (I-PWG).Pharmacogenomics201516182055206710.2217/pgs.15.14126616152
    [Google Scholar]
  72. Van NormanG.A. Limitations of animal studies for predicting toxicity in clinical trials.JACC Basic Transl. Sci.20194784585410.1016/j.jacbts.2019.10.00831998852
    [Google Scholar]
  73. StenslandK.D. DePortoK. RyanJ. KaffenbergerS. ReinstatlerL.S. GalskyM. Estimating the rate and reasons of clinical trial failure in urologic oncology.Urol. Oncol. Semin. Orig. Investig202139315416010.1016/j.urolonc.2020.10.070
    [Google Scholar]
  74. KukolA. Consensus virtual screening approaches to predict protein ligands.Eur. J. Med. Chem.20114694661466410.1016/j.ejmech.2011.05.02621640444
    [Google Scholar]
  75. DebnathA. ChaudharyH. KumarR. ShokeenA. KhuranaR. Discovery of novel cathepsin D inhibitors by high- throughput virtual screening.Biointerface Res. Appl. Chem.2023135483
    [Google Scholar]
  76. OchoaR. Palacio-RodriguezK. ClementeC.M. AdlerN.S. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules.J. Mol. Graph. Model.2021109August10802310.1016/j.jmgm.2021.10802334555725
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808279586231221043744
Loading
/content/journals/lddd/10.2174/0115701808279586231221043744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test