Skip to content
2000
Volume 21, Issue 16
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

This study aimed to design and synthesize a series of novel C8-Formononetin derivatives and evaluate their anti-tumor activity. The experimental results showed that these derivatives exhibited varying degrees of anti-tumor effects on HeLa, A549, and HepG2 cells, and compound 8, in particular, showed excellent inhibitory activity against HepG2 cell growth, which surpassed that of 5-FU.

Methods

Importantly, the cytotoxicity of FMN was significantly enhanced after conjugation with amino acid ethyl ester. To further investigate the mechanisms underlying the anti-tumor effects of these derivatives, various experimental approaches were employed. They include colony formation assay, EdU cell proliferation assay, Transwell migration assay, cell apoptosis assay, cell cycle distribution assay, and ELISA.

Results

The results revealed that compound 8 effectively induced cell apoptosis by downregulating the expression of anti-apoptotic proteins P53, Bcl-2, and Mcl-1 while upregulating the expression of pro-apoptotic proteins Bax, Fas, Caspase-3, Caspase-9, and Fas, which leads to apoptosis of tumor cells. Furthermore, compound 8 disrupted the mitochondrial membrane potential, perturbed cellular energy metabolism, and reduced intracellular ATP levels, thereby inhibiting tumor cell growth.

Conclusion

The newly synthesized FMN derivatives in this study hold great potential in the field of anti-tumor research. Compound 8 inhibits tumor cell growth through multiple pathways, which provides new hope for cancer treatment.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808278216231228045423
2024-03-04
2025-01-24
Loading full text...

Full text loading...

References

  1. NdongweT. WitikaB.A. MncwangiN.P. PokaM.S. SkosanaP.P. DemanaP.H. SummersB. Siwe-NoundouX. Iridoid derivatives as anticancer agents: An updated review from 1970-2022.Cancers202315377010.3390/cancers1503077036765728
    [Google Scholar]
  2. HanY. KimH.I. ParkJ. The role of natural products in the improvement of cancer-associated cachexia.Int. J. Mol. Sci.20232410877210.3390/ijms2410877237240117
    [Google Scholar]
  3. CaoJ. ChenC. WangY. ChenX. ChenZ. LuoX. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro.Oncol. Lett.20161232033203710.3892/ol.2016.483927602134
    [Google Scholar]
  4. BaoM.H. LiJ.M. ZhouQ.L. LiG.Y. ZengJ. ZhaoJ. ZhangY.W. Effects of miR-590 on oxLDL-induced endothelial cell apoptosis: Roles of p53 and NF-κB.Mol. Med. Rep.201613186787310.3892/mmr.2015.460626648441
    [Google Scholar]
  5. LiL. WangS. ZhouW. Balance cell apoptosis and pyroptosis of caspase-3-activating chemotherapy for better antitumor therapy.Cancers20221512610.3390/cancers1501002636612023
    [Google Scholar]
  6. AhmedH. AbdelraheemA. SalemM. SabryM. FekryN. MohamedF. SaberA. PiattiD. SabryM. SabryO. CaprioliG. Suppression of breast cancer: Modulation of estrogen receptor and downregulation of gene expression using natural products.Nat. Prod. Res.20231011010.1080/14786419.2023.223292637427947
    [Google Scholar]
  7. LiY. ZhaoR. XiuZ. YangX. ZhuY. HanJ. LiS. LiY. SunL. LiX. JinN. LiY. Neobavaisoflavone induces pyroptosis of liver cancer cells via Tom20 sensing the activated ROS signal.Phytomedicine202311615486910.1016/j.phymed.2023.15486937196512
    [Google Scholar]
  8. YuX. YanJ. LiY. ChengJ. ZhengL. FuT. ZhuY. Inhibition of castration-resistant prostate cancer growth by genistein through suppression of AKR1C3.Food Nutr. Res.2023676710.29219/fnr.v67.902436794010
    [Google Scholar]
  9. AgarwalA. WahajuddinM. ChaturvediS. SinghS.K. RashidM. GargR. ChauhanD. SultanaN.R. GayenJ. Formulation and characterization of phytosomes as drug delivery system of formononetin: an effective anti-osteoporotic agent.Curr. Drug Deliv.20232436734892
    [Google Scholar]
  10. ZhouZ.W. ZhuX.Y. LiS.Y. LinS.E. ZhuY.H. JiK. ChenJ.J. Formononetin inhibits mast cell degranulation to ameliorate compound 48/80-induced pseudoallergic reactions.Molecules20232813527110.3390/molecules2813527137446928
    [Google Scholar]
  11. HanN.R. ParkH.J. KoS.G. MoonP.D. The mixture of natural products SH003 exerts anti-melanoma effects through the modulation of PD-L1 in B16F10 Cells.Nutrients20231512279010.3390/nu1512279037375695
    [Google Scholar]
  12. YangJ. ShaX. WuD. WuB. PanX. PanL.L. GuY. DongX. Formononetin alleviates acute pancreatitis by reducing oxidative stress and modulating intestinal barrier.Chin. Med.20231817810.1186/s13020‑023‑00773‑137370098
    [Google Scholar]
  13. Al-ShamiA.S. EssawyA.E. ElkaderH.T.A.E.A. Molecular mechanisms underlying the potential neuroprotective effects of Trifolium pratense and its phytoestrogen‐isoflavones in neurodegenerative disorders.Phytother. Res.20233762693273710.1002/ptr.787037195042
    [Google Scholar]
  14. AliyaS. AlhammadiM. ParkU. TiwariJ.N. LeeJ.H. HanY.K. HuhY.S. The potential role of formononetin in cancer treatment: An updated review.Biomed. Pharmacother.202316811581110.1016/j.biopha.2023.11581137922652
    [Google Scholar]
  15. BhardwajV.K. PurohitR. A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations.Carbohydr. Polym.202331012072910.1016/j.carbpol.2023.12072936925262
    [Google Scholar]
  16. JiaW.D. BaiX. MaQ.Q. BianM. BaiC.M. LiD. LiL.F. WeiC. YuL.J. Synthesis, molecular docking studies of formononetin derivatives as potent Bax agonists for anticancer activity.Nat. Prod. Res.2023311510.1080/14786419.2023.226959237921074
    [Google Scholar]
  17. ZhaoL. HanJ. LiuJ. FanK. YuanT. HanJ. ChenL. ZhangS. ZhaoM. DuanJ. A novel formononetin derivative promotes anti-ischemic effects on acute ischemic injury in mice.Front. Microbiol.20211278646410.3389/fmicb.2021.78646434970243
    [Google Scholar]
  18. LinH.Y. SunW.X. ZhengC.S. HanH.W. WangX. ZhangY.H. QiuH.Y. TangC.Y. QiJ.L. LuG.H. YangR.W. WangX-M. YangY.H. Synthesis, characterization and biological evaluation of formononetin derivatives as novel EGFR inhibitors via inhibiting growth, migration and inducing apoptosis in breast cancer cell line.RSC Advances2017776484044841910.1039/C7RA09825A
    [Google Scholar]
  19. FuD.J. ZhangL. SongJ. MaoR.W. ZhaoR.H. LiuY.C. HouY.H. LiJ.H. YangJ.J. JinC.Y. LiP. ZiX.L. LiuH.M. ZhangS.Y. ZhangY.B. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways.Eur. J. Med. Chem.2017127879910.1016/j.ejmech.2016.12.02728038329
    [Google Scholar]
  20. ZhuH. ZouL. TianJ. LinF. HeJ. HouJ. Protective effects of sulphonated formononetin in a rat model of cerebral ischemia and reperfusion injury.Planta Med.201480426226810.1055/s‑0033‑136034024549929
    [Google Scholar]
  21. RenJ. XuH.J. ChengH. XinW.Q. ChenX. HuK. Synthesis and antitumor activity of formononetin nitrogen mustard derivatives.Eur. J. Med. Chem.20125417518710.1016/j.ejmech.2012.04.03922633834
    [Google Scholar]
  22. MalekiF. FarahaniA.M. RezazedehF. SadeghzadehN. Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging.Bioorg. Chem.20209910380210.1016/j.bioorg.2020.10380232330735
    [Google Scholar]
  23. XuQ. DengH. LiX. QuanZ.S. Application of amino acids in the structural modification of natural products: A review.Front Chem.2021965056910.3389/fchem.2021.65056933996749
    [Google Scholar]
  24. ChenY. TanS. LiuM. LiJ. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis.Scand. Cardiovasc. J.201852633533910.1080/14017431.2018.154689630453794
    [Google Scholar]
  25. YangK. JinM.J. QuanZ.S. PiaoH.R. Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis pathway and migration.Molecules201924588410.3390/molecules2405088430832378
    [Google Scholar]
  26. WangX. ZhongL. DanW. ChuX. LuoX. LiuC. WanP. LuY. LiuZ. ZhangZ. LiuB. MiR-454-3p promotes apoptosis and autophagy of AML cells by targeting ZEB2 and regulating AKT/mTOR pathway.Hematology2023281222387410.1080/16078454.2023.222387437313984
    [Google Scholar]
  27. ChenK. NingX. YanX. SongL. Circ_0104700 contributes to acute myeloid leukemia progression by enhancing MCM2 expression through targeting miR-665.Hematology2023281222748910.1080/16078454.2023.222748937358551
    [Google Scholar]
  28. WangX. ZhangC. BaoN. Molecular mechanism of palmitic acid and its derivatives in tumor progression.Front. Oncol.202313122412510.3389/fonc.2023.122412537637038
    [Google Scholar]
  29. XuT. ZhuY. GeS. LiuS.B. The roles of TPL in hematological malignancies.Hematology2023281223176510.1080/16078454.2023.223176537403451
    [Google Scholar]
  30. BuckS.A.J. Van HemelrykA. de RidderC. StuurmanD. Erkens-SchulzeS. Van ’t GeloofS. TeubelW.J. KoolenS.L.W. Martens-UzunovaE.S. van RoyenM.E. de WitR. MathijssenR.H.J. van WeerdenW.M. Darolutamide added to docetaxel augments anti-tumor effect in models of prostate cancer through cell cycle arrest at the G1-S transition.Mol. Cancer Ther.20233011010.1158/1535‑7163.MCT‑23‑042038030379
    [Google Scholar]
  31. ZhangB. YeH. YangA. Mathematical modelling of interacting mechanisms for hypoxia mediated cell cycle commitment for mesen-chymal stromal cells.BMC Syst. Biol.20181213510.1186/s12918‑018‑0560‑329606139
    [Google Scholar]
  32. HuangJ. ZhuY. XiaoH. LiuJ. LiS. ZhengQ. TangJ. MengX. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: A promising treatment.Chin. Med.20231816610.1186/s13020‑023‑00764‑237280646
    [Google Scholar]
  33. YangC. LiD. KoC.N. WangK. WangH. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy.Front. Immunol.202314113305010.3389/fimmu.2023.113305036969211
    [Google Scholar]
  34. ZhengH. WangG. LiuM. ChengH. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: A literature review.Front. Oncol.202313116822610.3389/fonc.2023.116822637397393
    [Google Scholar]
  35. BanerjeeA. SriramuluS. CatanzaroR. HeF. ChabriaY. BalakrishnanB. HariS. AyalaA. MuñozM. PathakS. MarottaF. Natural compounds as integrative therapy for liver protection against inflammatory and carcinogenic mechanisms: from induction to molecular biology advancement.Curr. Mol. Med.202323321623110.2174/156652402266622031610231035297348
    [Google Scholar]
  36. ChenJ. ZhengX. XuG. WangB. HuL. MaoJ. LuX. CaiY. ChaiK. ChenW. Sini decoction inhibits tumor progression and enhances the anti-tumor immune response in a murine model of colon cancer.Comb. Chem. High Throughput Screen.202326142517252610.2174/138620732666623032010343736959128
    [Google Scholar]
  37. ZhaoN. WangW. JiangH. QiaoZ. SunS. WeiY. XieX. LiH. BiX. YangZ. Natural products and gastric cancer: Cellular mechanisms and effects to change cancer progression.Anticancer. Agents Med. Chem.202323131506151810.2174/187152062366623040708295537026490
    [Google Scholar]
  38. ChanW.J.J. AdiwidjajaJ. McLachlanA.J. BoddyA.V. HarnettJ.E. Interactions between natural products and cancer treatments: Underlying mechanisms and clinical importance.Cancer Chemother. Pharmacol.202391210311910.1007/s00280‑023‑04504‑z36707434
    [Google Scholar]
  39. LiT. HanL. MaS. LinW. BaX. YanJ. HuangY. TuS. QinK. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer.Front. Mol. Biosci.202310114032510.3389/fmolb.2023.114032536950522
    [Google Scholar]
  40. LiJ. JiaJ. ZhuW. ChenJ. ZhengQ. LiD. Therapeutic effects on cancer of the active ingredients in rhizoma paridis.Front. Pharmacol.202314109578610.3389/fphar.2023.109578636895945
    [Google Scholar]
  41. LiJ. LiF. JinD. Ginsenosides are promising medicine for tumor and inflammation: A Review.Am. J. Chin. Med.202351488390810.1142/S0192415X2350041637060192
    [Google Scholar]
  42. ZhengZ. YanG. XiN. XuX. ZengQ. WuY. ZhengY. ZhangG. WangX. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR pathway.Anticancer. Agents Med. Chem.202323131596160410.2174/187152062366623041313041737056067
    [Google Scholar]
  43. ZhouH. WangP. QinX. ZhangX. LaiK.P. ChenJ. Comparative transcriptomic analysis and mechanistic characterization revealed the use of formononetin for bladder cancer treatment.Food Funct.202314125787580410.1039/D2FO03962A37288590
    [Google Scholar]
  44. HuY. ZhaiW. TanD. ChenH. ZhangG. TanX. ZhengY. GaoW. WeiY. WuJ. YangX. Uncovering the effects and molecular mechanism of Astragalus membranaceus (Fisch.) Bunge and its bioactive ingredients formononetin and calycosin against colon cancer: An integrated approach based on network pharmacology analysis coupled with experimental validation and molecular docking.Front. Pharmacol.202314111191210.3389/fphar.2023.111191236755950
    [Google Scholar]
  45. ChenL. XingD. GuoL. JinJ. LiS. Formononetin, an active component of astragalus membranaceus, inhibits the pathogenesis and progression of esophageal cancer through the COX-2/Cyclin D1 Axis.Clin. Lab.20236903/20236910.7754/Clin.Lab.2022.22040336912303
    [Google Scholar]
  46. HanN.R. ParkH.J. KoS.G. MoonP.D. The mixture of natural products SH003 exerts anti-melanoma effects through the modulation of PD-L1 in B16F10 Cells.Nutrients2023152790
    [Google Scholar]
  47. CaoX. LiQ. LiX. LiuQ. LiuK. DengT. WengX. YuQ. DengW. YuJ. WangQ. XiaoG. XuX. Enhancing anticancer efficacy of formononetin microspheres via microfluidic fabrication.AAPS PharmSciTech202324824110.1208/s12249‑023‑02691‑938017231
    [Google Scholar]
  48. YangB. WuX. ZengJ. SongJ. QiT. YangY. LiuD. MoY. HeM. FengL. JiaX. A multi-component nano-co-delivery system utilizing astragalus polysaccharides as carriers for improving biopharmaceutical properties of astragalus flavonoids.Int. J. Nanomedicine2023186705672410.2147/IJN.S43419638026532
    [Google Scholar]
  49. GuoB. XuD. LiuX. LiaoC. LiS. HuangZ. LiX. YiJ. Characterization and cytotoxicity of PLGA nanoparticles loaded with formononetin cyclodextrin complex.J. Drug Deliv. Sci. Technol.20174137538310.1016/j.jddst.2017.08.010
    [Google Scholar]
  50. ZhengL. XuH. ZhangH. ShiC. ZhouW. ZhangX. Nanostructured lipid carrier as a strategy for encapsulation of formononetin and perilla seed oil: In vitro characterization and stability studies.Food Biosci.20235310270710.1016/j.fbio.2023.102707
    [Google Scholar]
  51. Al-SaeediF.J. Asiaticoside increases caspase-9 activity in MCF-7 cells and inhibits TNF-α and IL-6 Expression in nude mouse xeno-grafts via the NF-κB pathway.Molecules2023285210110.3390/molecules2805210136903346
    [Google Scholar]
  52. BazsefidparP. EftekharE. JahromiM.Z. NikpoorA.R. MoghadamM.E. ZolghadriS. In-vitro cytotoxicity and in-vivo antitumor activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand against breast cancer.J. Inorg. Biochem.202324111214410.1016/j.jinorgbio.2023.11214436706492
    [Google Scholar]
  53. ZhouQ. XiaoS. LinR. LiC. ChenZ. ChenY. LuoC. MoZ. LinY. Polysaccharide of alocasia cucullata exerts antitumor effect by regulating Bcl-2, caspase-3 and ERK1/2 expressions during long-time administration.Chin. J. Integr. Med.2023301526110.1007/s11655‑023‑3700‑637340203
    [Google Scholar]
  54. XuH. ShenX. LiX. YangX. ChenC. LuoD. The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3.Apoptosis2023283-452553810.1007/s10495‑023‑01811‑x36652130
    [Google Scholar]
  55. YangY. ZhangM. ZhangY. LiuK. LuC. 5-Fluorouracil suppresses colon tumor through activating the p53-Fas pathway to sensitize myeloid-derived suppressor cells to FasL+ cytotoxic T lymphocyte cytotoxicity.Cancers2023155156310.3390/cancers1505156336900354
    [Google Scholar]
  56. VieiraB.M. de São JoséV.S. Niemeyer FilhoP.S. Moura-NetoV. Eosinophils induces glioblastoma cell suppression and apoptosis – Roles of GM-CSF and cysteinyl-leukotrienes.Int. Immunopharmacol.202312311072910.1016/j.intimp.2023.11072937536182
    [Google Scholar]
  57. HatamiZ. HashemiZ.S. EftekharyM. AmiriA. KarpishehV. NasrollahiK. JafariR. Natural killer cell-derived exosomes for cancer immunotherapy: Innovative therapeutics art.Cancer Cell Int.202323115710.1186/s12935‑023‑02996‑637543612
    [Google Scholar]
  58. ZhaoL. RaoX. ZhengR. HuangC. KongR. YuX. ChengH. LiS. Targeting glutamine metabolism with photodynamic immuno-therapy for metastatic tumor eradication.J. Control. Release202335746047110.1016/j.jconrel.2023.04.02737068523
    [Google Scholar]
  59. ChenY. YangP. WangJ. GaoS. XiaoS. ZhangW. ZhuM. WangY. KeX. JingH. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma.Exp. Hematol. Oncol.20231212810.1186/s40164‑023‑00381‑736882855
    [Google Scholar]
  60. GuanL. YangY. LuY. ChenY. LuoX. XinD. MengX. ShanZ. JiangG. WangF. Reactivation of mutant p53 in esophageal squamous cell carcinoma by isothiocyanate inhibits tumor growth.Front. Pharmacol.202314114142010.3389/fphar.2023.114142037168998
    [Google Scholar]
  61. WeiC. DuJ. ShenY. WangZ. LinQ. ChenJ. ZhangF. LinW. WangZ. YangZ. MaW. Anticancer effect of involucrasin A on colorectal cancer cells by modulating the Akt/MDM2/p53 pathway.Oncol. Lett.202325621810.3892/ol.2023.1380437153032
    [Google Scholar]
  62. PengB.Y. SinghA.K. ChanC.H. DengY.H. LiP.Y. SuC.W. WuC.Y. DengW.P. AGA induces sub-G1 cell cycle arrest and apoptosis in human colon cancer cells through p53-independent/p53-dependent pathway.BMC Cancer2023231110.1186/s12885‑022‑10466‑x36597025
    [Google Scholar]
  63. GonzaloÓ. BenediA. VelaL. AnelA. NavalJ. MarzoI. Study of the Bcl-2 interactome by BiFC reveals differences in the activation mechanism of Bax and Bak.Cells202312580010.3390/cells1205080036899936
    [Google Scholar]
  64. ValkoZ. MegyesfalviZ. SchwendenweinA. LangC. PakuS. BaranyN. FerenczB. Horvath-RozsasA. KovacsI. SchleglE. PozonecV. BoettigerK. RezeliM. Marko-VargaG. Renyi-VamosF. HodaM.A. KlikovitsT. HoetzeneckerK. GruschM. LaszloV. DomeB. SchelchK. Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer.Br. J. Cancer2023128101850186110.1038/s41416‑023‑02219‑936918717
    [Google Scholar]
  65. LeiL. QiaoX. SiqiY. KeY. Effects of propofol combined with sufentanil target-controlled intravenous anesthesia on expression of Bax, Bcl-2, and caspase-3 genes in spontaneous hypertensive rats with cerebral hemorrhage: A prospective case-controlled study.Appl. Biochem. Biotechnol.2023195106068608010.1007/s12010‑023‑04378‑036807871
    [Google Scholar]
  66. EscobarE. Gómez-ValenzuelaF. PeñafielC. Hormazábal-HeviaA. Herrera-FuentesC. Mori-AliagaD. Immunohistochemical expression of COX-2, Ki-67, Bcl-2, Bax, VEGF and CD105 according to histological grading in oral squamous cell carcinoma.Rev. Esp. Patol.202356314715710.1016/j.patol.2023.02.00537419553
    [Google Scholar]
  67. CzabotarP.E. Garcia-SaezA.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis.Nat. Rev. Mol. Cell Biol.2023241073274810.1038/s41580‑023‑00629‑437438560
    [Google Scholar]
  68. CaiE.W. ZhaoC. WangW.J. XuZ.P. LinF. Investigating the role of Zibai ointment on apoptosis‐related factors Bcl‐2 and Bax in wound healing after anal fistula surgery.Immun. Inflamm. Dis.2023116e91210.1002/iid3.91237382254
    [Google Scholar]
  69. YangL. WangX. ZhaoY. XueK. LiangJ. WangX. DengJ. QiZ. An AIE luminogen targeting the endoplasmic reticulum inhibits cancer cell growth via multicellular organelle oxidative stress.Bioorg. Chem.202313210636110.1016/j.bioorg.2023.10636136720178
    [Google Scholar]
  70. KangM.S. KimS. KimD.S. YuH.S. LeeJ.E. The amoebicidal effect of Torreya nucifera extract on Acanthamoeba lugdunensis.PLoS One2023182e028114110.1371/journal.pone.028114136745609
    [Google Scholar]
  71. JannuzziA.T. KorkmazN.S. Gunaydin AkyildizA. Arslan EseryelS. Karademir YilmazB. AlpertungaB. Molecular cardiotoxic effects of proteasome inhibitors carfilzomib and ixazomib and their combination with dexamethasone involve mitochondrial dysregulation.Cardiovasc. Toxicol.2023233-412113110.1007/s12012‑023‑09785‑736809482
    [Google Scholar]
  72. YangX. ZhangS. HeJ. ZhaoL. ChenL. YangY. WangJ. YanL. ZhangT. Brazilin inhibits bladder cancer by promoting cell necroptosis.Clin. Exp. Pharmacol. Physiol.202350973874810.1111/1440‑1681.1380037321597
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808278216231228045423
Loading
/content/journals/lddd/10.2174/0115701808278216231228045423
Loading

Data & Media loading...

Supplements

The supporting information contains the NMR and HRESIMS spectra for compounds 1-8 (Figs. -). Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-H. pylori; anti-proliferative; cancer; clinical applications; derivatives; Formononetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test