Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The increasing incidence of hyperlipidemia (HLP) is attributed to the imbalance in redox homeostasis, aberrant lipid metabolism, and the excessive intake of empty calories. Dajihan Pill (DJHP) is a Traditional Chinese Medicine (TCM) formula composed of Zingiberis Rhizoma (ZR), Piperis Longi Fructus (PLF), Alpiniae Officinarum Rhizome (AOR), and Cinnamomi Cortex (CC) in a ratio of 3:2:3:2. It exhibits a significant preventive effect on HLP. Certainly, the active components and the precise mechanism of action are not fully understood. Therefore, this study aims to elucidate the preventive and ameliorative mechanisms of DJHP against HLP by integrating network pharmacology, molecular docking, and experimental validation.

Methods

Based on the pharmacological method, active ingredients in DJHP and targets were extracted from Traditional Chinese Medicine System Pharmacology (TCMSP) and UniProt. Then core compounds and targets were obtained by constructing “compounds-targets-disease” and protein-protein interaction (PPI) network. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to elucidate further the associated action mechanism. The molecular binding mechanisms between the core ingredients and targets were elucidated through molecular docking. Additionally, the antioxidant capacities of DJHP extracts were investigated by assessing their DPPH, hydroxyl, and ABTS radical scavenging activities.

Results

A total of 45 active compounds and 258 targets were identified in DJHP. Network analysis indicated that quercetin, beta-sitosterol, kaempferol, and oleic acid might serve as core bioactive compounds. Seven core targets, including AKT1, INS, and TNF, were identified as potential preventive targets. GO analysis suggested the improvement of HLP by DJHP may be related to the lipid metabolic process, high-density lipoprotein particle, triglyceride binding, and inflammatory response. The KEGG analysis indicated TNF, HIF-1, and AMPK signaling pathways were involved. The observations of active compounds binding with core targets indicated an excellent combination. Additionally, antioxidant results showed that DJHP exhibited significant DPPH, hydroxyl, and ABTS radical scavenging activities.

Conclusion

Theoretical and experimental investigations indicate that DJHP can effectively modulate various signaling pathways and enhance the redox system, thus mitigating HLP. Our work provided a basis for the pharmacological study of DJHP in preventing HLP and further research.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808277988240105083347
2024-01-11
2024-12-27
Loading full text...

Full text loading...

References

  1. VinciP. PanizonE. TosoniL.M. CerratoC. PellicoriF. MearelliF. BiasinuttoC. FiottiN. Di GirolamoF.G. BioloG. Statin-associated myopathy: Emphasis on mechanisms and targeted therapy.Int. J. Mol. Sci.202122211168710.3390/ijms222111687 34769118
    [Google Scholar]
  2. SuX. PengH. ChenX. WuX. WangB. Hyperlipidemia and hypothyroidism.Clin. Chim. Acta2022527617010.1016/j.cca.2022.01.006 35038435
    [Google Scholar]
  3. KingR.J. SinghP.K. MehlaK. The cholesterol pathway: Impact on immunity and cancer.Trends Immunol.2022431789210.1016/j.it.2021.11.007 34942082
    [Google Scholar]
  4. OliveiraT.W.S. LeandroC.G. de Jesus DeiróT.C.B. dos Santos PerezG. da França SilvaD. DruzianJ.I. CoutoR.D. Barreto-MedeirosJ.M. A perinatal palatable high-fat diet increases food intake and promotes hypercholesterolemia in adult rats.Lipids201146111071107410.1007/s11745‑011‑3604‑7 21847693
    [Google Scholar]
  5. TaghizadehE. MardaniR. RostamiD. TaghizadehH. BazirehH. HayatS.M.G. Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: A review.J. Cell. Biochem.201912068891889810.1002/jcb.28311 30556165
    [Google Scholar]
  6. KaviarasanK. KalaiarasiP. PugalendiV. Antioxidant efficacy of flavonoid-rich fraction from Spermacoce hispida in hyperlipidemic rats.J. Appl. Biomed.20086416517610.32725/jab.2008.020
    [Google Scholar]
  7. HuangM.Z. LiJ.Y. Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties.Acta Physiol.20202281e1335110.1111/apha.13351 31344326
    [Google Scholar]
  8. TaN. AL. eE. QiR. MuX. FengL. BaG. LiY. ZhangJ. BaiL. FuM. Metabolomics analysis reveals amelioration effects of yellowhorn tea extract on hyperlipidemia, inflammation, and oxidative stress in high-fat diet-fed mice.Front. Nutr.202310108725610.3389/fnut.2023.1087256 36742424
    [Google Scholar]
  9. FischerS. SchatzU. JuliusU. Practical recommendations for the management of hyperlipidemia.Atheroscler. Suppl.20151819419810.1016/j.atherosclerosissup.2015.02.029 25936326
    [Google Scholar]
  10. MurrayC.J.L. LopezA.D. Mortality by cause for eight regions of the world: Global Burden of Disease Study.Lancet199734990611269127610.1016/S0140‑6736(96)07493‑4 9142060
    [Google Scholar]
  11. GoA.S. MozaffarianD. RogerV.L. BenjaminE.J. BerryJ.D. BordenW.B. BravataD.M. DaiS. FordE.S. FoxC.S. FrancoS. FullertonH.J. GillespieC. HailpernS.M. HeitJ.A. HowardV.J. HuffmanM.D. KisselaB.M. KittnerS.J. LacklandD.T. LichtmanJ.H. LisabethL.D. MagidD. MarcusG.M. MarelliA. MatcharD.B. McGuireD.K. MohlerE.R. MoyC.S. MussolinoM.E. NicholG. PaynterN.P. SchreinerP.J. SorlieP.D. SteinJ. TuranT.N. ViraniS.S. WongN.D. WooD. TurnerM.B. Heart disease and stroke statistics--2013 update: A report from the American Heart Association.Circulation20131271e6e24510.1161/CIR.0b013e31828124ad 23239837
    [Google Scholar]
  12. TothP.P. Drug treatment of hyperlipidaemia: A guide to the rational use of lipid-lowering drugs.Drugs201070111363137910.2165/10898610‑000000000‑00000 20614945
    [Google Scholar]
  13. JunM. FooteC. LvJ. NealB. PatelA. NichollsS.J. GrobbeeD.E. CassA. ChalmersJ. PerkovicV. Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis.Lancet201037597291875188410.1016/S0140‑6736(10)60656‑3 20462635
    [Google Scholar]
  14. LiuZ.L. LiuJ.P. ZhangA.L. WuQ. RuanY. LewithG. VisconteD. Chinese herbal medicines for hypercholesterolemia.Cochrane Database Syst. Rev.201167CD00830510.1002/14651858.CD008305.pub2
    [Google Scholar]
  15. LiS.P. ZhaoJ. YangB. Strategies for quality control of Chinese medicines.J. Pharm. Biomed. Anal.201155480280910.1016/j.jpba.2010.12.011 21215546
    [Google Scholar]
  16. DouX. WoX. FanC. Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine.Chin. J. Integr. Med.2008141717510.1007/s11655‑008‑0071‑y 18568331
    [Google Scholar]
  17. LiX. AoM. ZhangC. FanS. ChenZ. YuL. Zingiberis Rhizoma Recens: A review of its traditional uses, phytochemistry, pharmacology, and toxicology.Evid. Based Complement. Alternat. Med.202120216668990
    [Google Scholar]
  18. YoungS.C. WangC.J. LinJ.J. PengP.L. HsuJ.L. ChouF.P. Protection effect of piper betel leaf extract against carbon tetrachloride-induced liver fibrosis in rats.Arch. Toxicol.2007811455510.1007/s00204‑006‑0106‑0 16676162
    [Google Scholar]
  19. ChristinaA.J.M. SaraswathyG.R. Heison RobertS.J. KothaiR. ChidambaranathanN. NaliniG. TherasalR.L. Inhibition of CCl4-induced liver fibrosis by Piper longum Linn.?Phytomedicine200613319619810.1016/j.phymed.2004.01.009 16428029
    [Google Scholar]
  20. LiangX. WangP. YangC. HuangF. WuH. ShiH. WuX. Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production.Front. Pharmacol.20211264662810.3389/fphar.2021.646628 33981228
    [Google Scholar]
  21. ZhangJ.Q. WangY. LiH.L. WenQ. YinH. ZengN.K. LaiW-Y. WeiN. ChengS-Q. KangS-L. ChenF. LiY-B. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS.Anal. Methods20157124919492610.1039/C5AY00647C
    [Google Scholar]
  22. EramS. MujahidM. BaggaP. AhsanF. RahmanM.A. Hepatoprotective evaluation of Galanga (Alpinia Officinarum) rhizome extract against antitubercular drugs induced hepatotoxicity in rats.J. Herbs Spices Med. Plants202026211312510.1080/10496475.2019.1679692
    [Google Scholar]
  23. LeeJ. KimK.A. JeongS. LeeS. ParkH.J. KimN.J. LimS. Anti-inflammatory, anti-nociceptive, and anti-psychiatric effects by the rhizomes of Alpinia officinarum on complete Freund’s adjuvant-induced arthritis in rats.J. Ethnopharmacol.2009126225826410.1016/j.jep.2009.08.033 19715749
    [Google Scholar]
  24. KimS-J. ChungJ-W. KimJ.J. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II.Pharmacogn. Mag.201172831431910.4103/0973‑1296.90412 22262934
    [Google Scholar]
  25. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional Chinese medicine: review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  26. GuanT.Z. BianC.F. LiN. GaoY. RenC-X. ZhengX.F. HangS-J. LiQ. YangZ.Q. MinE-H. Molecular mechanism of Guihuang traditional drink in prevention of thrombotic diseases explored through network pharmacology, quantum chemical calculation, and molecular docking-based strategy.Chin. J. Anal. Chem.202351210021610.1016/j.cjac.2022.100216
    [Google Scholar]
  27. ShaoY. ZhangY. WuR. DouL. CaoF. YanY. TangY. HuangC. ZhaoY. ZhangJ. Network pharmacology approach to investigate the multitarget mechanisms of Zhishi Rhubarb Soup on acute cerebral infarction.Pharm. Biol.20226011394140610.1080/13880209.2022.2103718 35938510
    [Google Scholar]
  28. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  29. LiX. LinH. WangQ. CuiL. LuoH. LuoL. Chemical composition and pharmacological mechanism of shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19).Drug Dev. Ind. Pharm.202046121947195910.1080/03639045.2020.1826510 33054436
    [Google Scholar]
  30. UniProt Consortium. UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky1049 30395287
    [Google Scholar]
  31. StelzerG. DalahI. SteinT. SatanowerY. RosenN. NativN. Oz-LeviD. OlenderT. BelinkyF. BahirI. KrugH. PercoP. MayerB. KolkerE. SafranM. LancetD. In-silico human genomics with GeneCards.Hum. Genomics20115670971710.1186/1479‑7364‑5‑6‑709 22155609
    [Google Scholar]
  32. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  33. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative toxicogenomics database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa891 33068428
    [Google Scholar]
  34. PiñeroJ. SaüchJ. SanzF. FurlongL.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data.Comput. Struct. Biotechnol. J.2021192960296710.1016/j.csbj.2021.05.015 34136095
    [Google Scholar]
  35. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  36. BrandesU. BorgattiS.P. FreemanL.C. Maintaining the duality of closeness and betweenness centrality.Soc. Networks20164415315910.1016/j.socnet.2015.08.003
    [Google Scholar]
  37. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  38. YuanF. PanX. ChenL. ZhangY.H. HuangT. CaiY.D. Analysis of protein-protein functional associations by using gene ontology and KEGG pathway.Biomed Res. Int.20192019496328910.1155/2019/4963289
    [Google Scholar]
  39. ChenL. ZhangY.H. WangS. ZhangY. HuangT. CaiY.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.PLoS One2017129e018412910.1371/journal.pone.0184129 28873455
    [Google Scholar]
  40. GuedesI.A. de MagalhãesC.S. DardenneL.E. Receptor–ligand molecular docking.Biophys. Rev.201461758710.1007/s12551‑013‑0130‑2 28509958
    [Google Scholar]
  41. TanchukV.Y. TaninV.O. VovkA.I. PodaG. A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina.Chem. Biol. Drug Des.201687461862510.1111/cbdd.12697 26643167
    [Google Scholar]
  42. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  43. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv951 26400175
    [Google Scholar]
  44. SussmanJ.L. LinD. JiangJ. ManningN.O. PriluskyJ. RitterO. AbolaE.E. Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules.Acta Crystallogr. D Biol. Crystallogr.19985461078108410.1107/S0907444998009378 10089483
    [Google Scholar]
  45. RuddickK.R. ParrillA.L. PetersenR.L. Introductory molecular orbital theory: An honors general chemistry computational lab as implemented using three-dimensional modeling software.J. Chem. Educ.201289111358136310.1021/ed2003719
    [Google Scholar]
  46. PawarS.S. RohaneS.H. Review on discovery studio: An important tool for molecular docking.AJRC20211418688
    [Google Scholar]
  47. VulićJ. TumbasV. SavatovićS. DjilasS. ĆetkovićG. Čanadanović-BrunetJ. Polyphenolic content and antioxidant activity of the four berry fruits pomace extracts.Acta Period. Technol.20114227127910.2298/APT1142271V
    [Google Scholar]
  48. JangM.H. KimH.Y. KangK.S. YokozawaT. ParkJ.H. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis.Arch. Pharm. Res.200932334134510.1007/s12272‑009‑1305‑z 19387576
    [Google Scholar]
  49. WojdyłoA. FigielA. OszmiańskiJ. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.J. Agric. Food Chem.20095741337134310.1021/jf802507j 19170638
    [Google Scholar]
  50. PatraR. DasN.C. MukherjeeS. Exploring the differential expression and prognostic significance of the COL11A1 gene in human colorectal carcinoma: An integrated bioinformatics approach.Front. Genet.20211260831310.3389/fgene.2021.608313 33597969
    [Google Scholar]
  51. GaoS. SunJ. WangX. HuY. FengQ. GouX. Research on the mechanism of qushi huayu decoction in the intervention of nonalcoholic fatty liver disease based on network pharmacology and molecular docking Technology.BioMed Res. Int.2020202011210.1155/2020/1704960 33204683
    [Google Scholar]
  52. RayanA. New tips for structure prediction by comparative modeling.Bioinformation20093626326710.6026/97320630003263 19255646
    [Google Scholar]
  53. WangS. LiY. WangJ. ChenL. ZhangL. YuH. HouT. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage.Mol. Pharm.201294996101010.1021/mp300023x 22380484
    [Google Scholar]
  54. LiuJ. LiuJ. TongX. PengW. WeiS. SunT. WangY. ZhangB. LiW. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis.Drug Des. Devel. Ther.2021153255327610.2147/DDDT.S319786 34349502
    [Google Scholar]
  55. WangY. GuW. KuiF. GaoF. NiuY. LiW. ZhangY. GuoZ. DuG. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking.Food Nutr. Res.2021656510.29219/fnr.v65.5623 34908920
    [Google Scholar]
  56. WangL. XiongF. ZhaoS. YangY. ZhouG. Network pharmacology combined with molecular docking to explore the potential mechanisms for the antioxidant activity of Rheum tanguticum seeds.BMC. Complement. Med. Ther.2022221115
    [Google Scholar]
  57. FischerF.R. SchweizerW.B. DiederichF. Substituent effects on the aromatic edge-to-face interaction.Chem. Commun.2008344031403310.1039/b809058k 18758616
    [Google Scholar]
  58. ConnollyM.L. Solvent-accessible surfaces of proteins and nucleic acids.Science1983221461270971310.1126/science.6879170 6879170
    [Google Scholar]
  59. WangL. ZhengW. YangJ. AliA. QinH. Mechanism of astragalus membranaceus alleviating acquired hyperlipidemia induced by high-fat diet through regulating lipid metabolism.Nutrients202214595410.3390/nu14050954 35267929
    [Google Scholar]
  60. RaufA. AkramM. AnwarH. DaniyalM. MunirN. BawazeerS. BawazeerS. RebezovM. BouyahyaA. ShariatiM.A. ThiruvengadamM. SarsembenovaO. MabkhotY.N. IslamM.N. EmranT.B. HodakS. ZenginG. KhanH. Therapeutic potential of herbal medicine for the management of hyperlipidemia: Latest updates.Environ. Sci. Pollut. Res. Int.20222927402814030110.1007/s11356‑022‑19733‑7 35320475
    [Google Scholar]
  61. FengY. GaoS. ZhuT. SunG. ZhangP. HuangY. QuS. DuX. MouD. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats.Front. Nutr.2022993622910.3389/fnut.2022.936229 35990322
    [Google Scholar]
  62. ZhuL. LuoX. JinZ. Effect of resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats.Asian-Australas. J. Anim. Sci.200821689089510.5713/ajas.2008.70638
    [Google Scholar]
  63. LiuC.M. MaJ.Q. SunY.Z. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats.Food Chem. Toxicol.201149123119312710.1016/j.fct.2011.09.007 22001170
    [Google Scholar]
  64. SchaichK.M. TianX. XieJ. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays.J. Funct. Foods20151411112510.1016/j.jff.2015.01.043
    [Google Scholar]
  65. ZittingK.M. VetrivelanR. YuanR.K. VujovicN. WangW. BandaruS.S. QuanS.F. KlermanE.B. ScheerF.A.J.L. BuxtonO.M. WilliamsJ.S. DuffyJ.F. SaperC.B. CzeislerC.A. Chronic circadian disruption on a high-fat diet impairs glucose tolerance.Metabolism202213015515810.1016/j.metabol.2022.155158 35150732
    [Google Scholar]
  66. WangL. LinQ. YangT. LiangY. NieY. LuoY. ShenJ. FuX. TangY. LuoF. Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice.J. Agric. Food Chem.201765388374838510.1021/acs.jafc.7b03230 28853872
    [Google Scholar]
  67. LiuG. LiuF. XiaoL. KuangQ. HeX. WangY. WangY. Narrative review of the mechanisms of action of dachengqi decoction in the treatment of hyperlipidemic pancreatitis on six-hollow-organs to be unblocked theory.Ann. Palliat. Med.2020942323232910.21037/apm‑20‑1332 32692237
    [Google Scholar]
  68. KandaswamiC. MiddletonE.Jr Free radical scavenging and antioxidant activity of plant flavonoids. Free Radicals in Diagnostic Medicine.Springer199435137610.1007/978‑1‑4615‑1833‑4_25
    [Google Scholar]
  69. WalleT. EatonE.A. WalleU.K. Quercetin, a potent and specific inhibitor of the human P-form phenolsulfotransferase.Biochem. Pharmacol.199550573173410.1016/0006‑2952(95)00190‑B 7669078
    [Google Scholar]
  70. HosseiniA. RazaviB.M. BanachM. HosseinzadehH. Quercetin and metabolic syndrome: A review.Phytother. Res.202135105352536410.1002/ptr.7144 34101925
    [Google Scholar]
  71. Sannappa GowdaN.G. ShiragannavarV.D. PuttahanumantharayappaL.D. ShivakumarA.T. DallavalasaS. BasavarajuC.G. BhatS.S. PrasadS.K. VamadevaiahR.M. MadhunapantulaS.V. SanthekadurP.K. Quercetin activates vitamin D receptor and ameliorates breast cancer induced hepatic inflammation and fibrosis.Front. Nutr.202310115863310.3389/fnut.2023.1158633 37153919
    [Google Scholar]
  72. AmbavadeS.D. MisarA.V. AmbavadeP.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: A review.Orient. Pharm. Exp. Med.201414319321110.1007/s13596‑014‑0151‑9
    [Google Scholar]
  73. SuganoM. MoriokaH. IkedaI. A comparison of hypocholesterolemic activity of β-sitosterol and β-sitostanol in rats.J. Nutr.1977107112011201910.1093/jn/107.11.2011 908959
    [Google Scholar]
  74. ChangC. TzengT.F. LiouS.S. ChangY.S. LiuI.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels.Planta Med.201177171876188210.1055/s‑0031‑1279992 21728151
    [Google Scholar]
  75. AlexanderR.W. Theodore cooper memorial lecture. hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: A new perspective.Hypertension199525215516110.1161/01.HYP.25.2.155 7843763
    [Google Scholar]
  76. QianY. LiM. WangW. WangH. ZhangY. HuQ. ZhaoX. SuoH. Effects of lactobacillus casei YBJ02 on lipid metabolism in hyperlipidemic mice.J. Food Sci.201984123793380310.1111/1750‑3841.14787 31762034
    [Google Scholar]
  77. SigalG.A. Medeiros-NetoG. VinagreJ.C. DiamentJ. MaranhãoR.C. Lipid metabolism in subclinical hypothyroidism: Plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment.Thyroid201121434735310.1089/thy.2010.0313 21385074
    [Google Scholar]
  78. SabioG. DavisR.J. TNF and MAP kinase signalling pathways.Semin. Immunol.201426323724510.1016/j.smim.2014.02.009 24647229
    [Google Scholar]
  79. SimionV. ZhouH. PierceJ.B. YangD. HaemmigS. TesmenitskyY. SukhovaG. StoneP.H. LibbyP. FeinbergM.W. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling.JCI Insight2020521e14062710.1172/jci.insight.140627 33021969
    [Google Scholar]
  80. DasN.C. Sen GuptaP.S. BiswalS. PatraR. RanaM.K. MukherjeeS. In-silico evidences on filarial cystatin as a putative ligand of human TLR4.J. Biomol. Struct. Dyn.202240198808882410.1080/07391102.2021.1918252 33955317
    [Google Scholar]
  81. ChoudhuryA. DasN.C. PatraR. BhattacharyaM. GhoshP. PatraB.C. MukherjeeS. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: An in silico approach.Future Virol.202116427729110.2217/fvl‑2020‑0342
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808277988240105083347
Loading
/content/journals/lddd/10.2174/0115701808277988240105083347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test