Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Conformational changes in BAX are associated with the activation of its pro-apoptotic potential. Previously, small molecule BAX antagonists have been shown to bring about apoptosis by inducing conformational changes in BAX by direct binding to the serine 184 site of BAX.

Methods

In this article, we have proposed that syringic acid analog SA14 can incur apoptosis by directly binding to and inducing conformational changes in BAX. The pro-apoptotic potential of SA14 has been investigated using an structure-based approach, ., docking and molecular dynamics computations are employed to study the binding of SA14 to the residues of the active site of BAX.

Results

Based on docking results, four BAX-SA14 complexes, each representative of a cluster of conformations, have been selected for molecular dynamics simulations. The root mean square deviation has indicated the formation of stable conformations for two of the complexes. Other parameters, such as root mean square fluctuation, radius of gyration, and solvent accessible surface area, have been used to confirm the results, which have indicated favorable binding between BAX and SA14.

Conclusion

Overall, the results have indicated that SA14 can bring about stable conformational changes in BAX and shows merit as a potential BAX-activating pro-apoptotic agent worthy of further experimental studies.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808275830231221192129
2024-01-05
2024-12-28
Loading full text...

Full text loading...

References

  1. KerrJ.F.R. WyllieA.H. CurrieA.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br. J. Cancer197226423925710.1038/bjc.1972.33 4561027
    [Google Scholar]
  2. TsujimotoY. FingerL.R. YunisJ. NowellP.C. CroceC.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation.Science198422646781097109910.1126/science.6093263 6093263
    [Google Scholar]
  3. FuldaS. DebatinK-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.Oncogene200625344798481110.1038/sj.onc.1209608 16892092
    [Google Scholar]
  4. VauxD.L. CoryS. AdamsJ.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells.Nature1988335618944044210.1038/335440a0 3262202
    [Google Scholar]
  5. CoryS. AdamsJ.M. The Bcl2 family: regulators of the cellular life-or-death switch.Nat. Rev. Cancer20022964765610.1038/nrc883 12209154
    [Google Scholar]
  6. OltvalZ.N. MillimanC.L. KorsmeyerS.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death.Cell199374460961910.1016/0092‑8674(93)90509‑O 8358790
    [Google Scholar]
  7. YinC. KnudsonC.M. KorsmeyerS.J. DykeT.V. Bax suppresses tumorigenesis and stimulates apoptosis in vivo.Nature1997385661763764010.1038/385637a0 9024662
    [Google Scholar]
  8. SuzukiM. YouleR.J. TjandraN. Structure of Bax: Coregulation of dimer formation and intracellular localization.Cell2000103464565410.1016/S0092‑8674(00)00167‑7 11106734
    [Google Scholar]
  9. LalierL. CartronP.F. JuinP. NedelkinaS. ManonS. BechingerB. ValletteF.M. Bax activation and mitochondrial insertion during apoptosis.Apoptosis200712588789610.1007/s10495‑007‑0749‑1 17453158
    [Google Scholar]
  10. XinM. DengX. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation.J. Biol. Chem.200528011107811078910.1074/jbc.M500084200 15642728
    [Google Scholar]
  11. PepperC. HoyT. BentleyD.P. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance.Br. J. Cancer199776793593810.1038/bjc.1997.487 9328155
    [Google Scholar]
  12. WeiM.C. ZongW.X. ChengE.H.Y. LindstenT. PanoutsakopoulouV. RossA.J. RothK.A. MacGregorG.R. ThompsonC.B. KorsmeyerS.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.Science2001292551772773010.1126/science.1059108 11326099
    [Google Scholar]
  13. XinM. LiR. XieM. ParkD. OwonikokoT.K. SicaG.L. CorsinoP.E. ZhouJ. DingC. WhiteM.A. MagisA.T. RamalingamS.S. CurranW.J. KhuriF.R. DengX. Small-molecule Bax agonists for cancer therapy.Nat. Commun.201451493510.1038/ncomms5935 25230299
    [Google Scholar]
  14. MeijerinkJ.P.P. MensinkE.J.B.M. WangK. SedlakT.W. SlöetjesA.W. de WitteT. WaksmanG. KorsmeyerS.J. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX.Blood19989182991299710.1182/blood.V91.8.2991.2991_2991_2997 9531611
    [Google Scholar]
  15. PeyerlF.W. DaiS. MurphyG.A. CrawfordF. WhiteJ. MarrackP. KapplerJ.W. Elucidation of some Bax conformational changes through crystallization of an antibody–peptide complex.Cell Death Differ.200714344745210.1038/sj.cdd.4402025 16946732
    [Google Scholar]
  16. BleickenS. ZethK. Conformational changes and protein stability of the pro-apoptotic protein Bax.J. Bioenerg. Biomembr.2009411294010.1007/s10863‑009‑9202‑1 19255832
    [Google Scholar]
  17. GavathiotisE. ReynaD.E. DavisM.L. BirdG.H. WalenskyL.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX.Mol. Cell201040348149210.1016/j.molcel.2010.10.019 21070973
    [Google Scholar]
  18. ZhangZ. ZhuW. LapollaS.M. MiaoY. ShaoY. FalconeM. BorehamD. McFarlaneN. DingJ. JohnsonA.E. ZhangX.C. AndrewsD.W. LinJ. Bax forms an oligomer via separate, yet interdependent, surfaces.J. Biol. Chem.201028523176141762710.1074/jbc.M110.113456 20382739
    [Google Scholar]
  19. ZhouH. HouQ. HansenJ.L. HsuY-T. Complete activation of Bax by a single site mutation.Oncogene200726507092710210.1038/sj.onc.1210517 17486058
    [Google Scholar]
  20. DewsonG. KratinaT. SimH.W. PuthalakathH. AdamsJ.M. ColmanP.M. KluckR.M. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions.Mol. Cell200830336938010.1016/j.molcel.2008.04.005 18471982
    [Google Scholar]
  21. GeorgeN.M. EvansJ.J.D. LuoX. A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax.Genes Dev.200721151937194810.1101/gad.1553607 17671092
    [Google Scholar]
  22. D’AlessioM. De NicolaM. CoppolaS. GualandiG. PuglieseL. CerellaC. CristofanonS. CivitarealeP. CirioloM.R. BergamaschiA. MagriniA. GhibelliL. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis.FASEB J.200519111504150610.1096/fj.04‑3329fje 15972297
    [Google Scholar]
  23. WangK. GrossA. WaksmanG. KorsmeyerS.J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing.Mol. Cell. Biol.199818106083608910.1128/MCB.18.10.6083 9742125
    [Google Scholar]
  24. GavathiotisE. SuzukiM. DavisM.L. PitterK. BirdG.H. KatzS.G. TuH.C. KimH. ChengE.H.Y. TjandraN. WalenskyL.D. BAX activation is initiated at a novel interaction site.Nature200845572161076108110.1038/nature07396 18948948
    [Google Scholar]
  25. VoglerM. DinsdaleD. DyerM.J.S. CohenG.M. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy.Cell Death Differ.200916336036710.1038/cdd.2008.137 18806758
    [Google Scholar]
  26. NguyenM. MarcellusR.C. RoulstonA. WatsonM. SerfassL. Murthy MadirajuS.R. GouletD. VialletJ. BélecL. BillotX. AcocaS. PurisimaE. WiegmansA. CluseL. JohnstoneR.W. BeauparlantP. ShoreG.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis.Proc. Natl. Acad. Sci. USA200710449195121951710.1073/pnas.0709443104 18040043
    [Google Scholar]
  27. WangG. Nikolovska-ColeskaZ. YangC.Y. WangR. TangG. GuoJ. ShangaryS. QiuS. GaoW. YangD. MeagherJ. StuckeyJ. KrajewskiK. JiangS. RollerP.P. AbaanH.O. TomitaY. WangS. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins.J. Med. Chem.200649216139614210.1021/jm060460o 17034116
    [Google Scholar]
  28. Villalobos-OrtizM. RyanJ. MashakaT.N. OpfermanJ.T. LetaiA. BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics.Cell Death Differ.2020273999100710.1038/s41418‑019‑0391‑9 31332296
    [Google Scholar]
  29. RamachandranV. RajaB. Protective effects of syringic acid against acetaminophen-induced hepatic damage in albino rats.J. Basic Clin. Physiol. Pharmacol.201021436938610.1515/JBCPP.2010.21.4.369 21305852
    [Google Scholar]
  30. MihanfarA. DarbandS.G. SadighparvarS. KavianiM. Mirza-Aghazadeh-AttariM. YousefiB. MajidiniaM. in vitro and in vivo anticancer effects of syringic acid on colorectal cancer: Possible mechanistic view.Chem. Biol. Interact.202133710933710.1016/j.cbi.2020.109337 33548266
    [Google Scholar]
  31. PeiJ. VeluP. ZareianM. FengZ. VijayalakshmiA. Effects of Syringic Acid on Apoptosis, Inflammation, and AKT/mTOR Signaling Pathway in Gastric Cancer Cells.Front. Nutr.2021878892910.3389/fnut.2021.788929 34970579
    [Google Scholar]
  32. AbazaM.S. Al-AttiyahR. BhardwajR. AbbadiG. KoyippallyM. AfzalM. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells.Pharm. Biol.20135191110112410.3109/13880209.2013.781194 23745612
    [Google Scholar]
  33. CheemanapalliS. C MA. PakalaS.B. ChittaS.K. Design and screening of syringic acid analogues as BAX activators-An in silico approach to discover “BH3 mimetics”.Comput. Biol. Chem.201874496210.1016/j.compbiolchem.2018.03.003 29529398
    [Google Scholar]
  34. EwingT.J.A. MakinoS. SkillmanA.G. KuntzI.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases.J. Comput. Aided Mol. Des.200115541142810.1023/A:1011115820450 11394736
    [Google Scholar]
  35. BeraI. PayghanP.V. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery.Curr. Pharm. Des.201925313339334910.2174/1381612825666190903153043 31480998
    [Google Scholar]
  36. De VivoM. MasettiM. BottegoniG. CavalliA. Role of Molecular Dynamics and Related Methods in Drug Discovery.J. Med. Chem.20165994035406110.1021/acs.jmedchem.5b01684 26807648
    [Google Scholar]
  37. 1F16.Available from:https://www.rcsb.org/structure/1f16 2000
  38. GAMESS source code distribution.Available from: https://www.msg.chem.iastate.edu/gamess/download.html
  39. GasteigerJ. MarsiliM. A new model for calculating atomic charges in molecules.Tetrahedron Lett.197819343181318410.1016/S0040‑4039(01)94977‑9
    [Google Scholar]
  40. SinghU.C. KollmanP.A. An approach to computing electrostatic charges for molecules.J. Comput. Chem.19845212914510.1002/jcc.540050204
    [Google Scholar]
  41. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  42. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  43. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.2408420 17212484
    [Google Scholar]
  44. AndersenH.C. Molecular dynamics simulations at constant pressure and/or temperature.J. Chem. Phys.19807242384239310.1063/1.439486
    [Google Scholar]
  45. ParrinelloM. RahmanA. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study.Phys. Rev. Lett.198045141196119910.1103/PhysRevLett.45.1196
    [Google Scholar]
  46. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  47. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  48. DhankharP. DalalV. SinghV. TomarS. KumarP. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2.J. Biomol. Struct. Dyn.20224094084409910.1080/07391102.2020.1852968 33251943
    [Google Scholar]
  49. DalalV. KumariR. Screening and Identification of Natural Product-Like Compounds as Potential Antibacterial Agents Targeting FemC of Staphylococcus aureus: An in-Silico Approach.Chemistry20227e202201728
    [Google Scholar]
  50. OrabiK.Y. AbazaM.S. El SayedK.A. ElnagarA.Y. Al-AttiyahR. GuleriR.P. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors.Cancer Cell Int.20131318210.1186/1475‑2867‑13‑82 23958424
    [Google Scholar]
  51. SabahiZ. RashediniaM. NasrollahiA. ShafaghatM. MomeniS. IranpakF. SaberzadehJ. ArabsolgharR. Syringic acid induces cancer cell death in the presence of Cu (II) ions via pro-oxidant activity.Asian Pac. J. Trop. Biomed.202212627027810.4103/2221‑1691.345519
    [Google Scholar]
  52. GheenaS. EzhilarasanD. Syringic acid triggers reactive oxygen species–mediated cytotoxicity in HepG2 cells.Hum. Exp. Toxicol.201938669470210.1177/0960327119839173 30924378
    [Google Scholar]
  53. YangN. QiuF. ZhuF. QiL. Therapeutic Potential of Zinc Oxide-Loaded Syringic Acid Against in vitro and in vivo Model of Lung Cancer.Int. J. Nanomedicine2020158249826010.2147/IJN.S272997 33149573
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808275830231221192129
Loading
/content/journals/lddd/10.2174/0115701808275830231221192129
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Apoptosis; BAX; docking; molecular dynamics; syringic acid; syringic acid analog
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test