Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

In recent years, as the biological activity of the quinoxaline skeleton has been revealed in numerous studies, interest in synthesizing new prototype molecules for the treatment of many chronic diseases, especially cancer, has increased.

Methods

The desired alkoxy substituted aminoquinoxalines () were synthesized by the reaction of and alkoxy substituted aryl amines such as 2-methoxyaniline, 4-methoxyaniline, 2-ethoxyaniline, 3-ethoxyaniline, 4-ethoxyaniline, 4-butoxyaniline, 2,4-dimethoxyaniline, 3,4-dimethoxyaniline, and 3,5-dimethoxyaniline according to the previously published procedure. was aminated in DMSO at 130°C. We synthesized various alkoxy substituted aminoquinoxaline compounds () and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. In particular, two aminoquinoxaline ( and ) compounds, coded as NSC D-835971/1 and NSC D-835972/1 by the National Cancer Institute in the USA, were screened for anticancer screening at a dose of 10-5 M on a full panel of 60 human cell lines obtained from nine human cancer cell types (leukemia, melanoma, non-small cell lung, colon, central nervous system, ovarian, kidney, prostate, and breast cancer).

Results

Further studies were also conducted for the compound (NSC D-835971/1), which was found to be the most active antiproliferative agent, especially against leukemia cell lines. Molecular docking studies showed that interacted with Glu286 and Lys271 through hydrogen bonding and π-stacking interaction in the ATP binding region of Abl kinase, which is indicated as a potential target of leukemia. Besides, occupied the minor groove of the double helix of DNA π-stacking interaction with DG-6.

Conclusion

According to pharmacokinetic determination, was endowed with drug-like properties as a potential anticancer drug candidate for future experiments. In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808281517231215113741
2024-01-09
2025-06-22
Loading full text...

Full text loading...

References

  1. NeriJ.M. CavalcantiL.N. AraújoR.M. MenezesF.G. 2,3-Dichloroquinoxaline as a versatile building block for heteroaromatic nucleophilic substitution: A review of the last decade.Arab. J. Chem.202013172173910.1016/j.arabjc.2017.07.012
    [Google Scholar]
  2. KaushalT. SrivastavaG. SharmaA. Singh NegiA. An insight into medicinal chemistry of anticancer quinoxalines.Bioorg. Med. Chem.2019271163510.1016/j.bmc.2018.11.021 30502116
    [Google Scholar]
  3. GonzálezM. CerecettoH. Quinoxaline derivatives: A patent review (2006 – present).Expert Opin. Ther. Pat.201222111289130210.1517/13543776.2012.724677 22971178
    [Google Scholar]
  4. ParhiA.K. ZhangY. SaionzK.W. PradhanP. KaulM. TrivediK. PilchD.S. LaVoieE.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines.Bioorg. Med. Chem. Lett.201323174968497410.1016/j.bmcl.2013.06.048 23891185
    [Google Scholar]
  5. LeeS.H. KimN. KimS.J. SongJ. GongY.D. KimS.Y. Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor.J. Cancer Res. Clin. Oncol.201313981279129410.1007/s00432‑013‑1433‑1 23604466
    [Google Scholar]
  6. ZhangM. DaiZ.C. QianS.S. LiuJ.Y. XiaoY. LuA.M. ZhuH.L. WangJ.X. YeY.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives.J. Agric. Food Chem.201462409637964310.1021/jf504359p 25229541
    [Google Scholar]
  7. Chandra ShekharA. Shanthan RaoP. NarsaiahB. AllankiA.D. SijwaliP.S. Emergence of pyrido quinoxalines as new family of antimalarial agents.Eur. J. Med. Chem.20147728028710.1016/j.ejmech.2014.03.010 24650715
    [Google Scholar]
  8. ElhelbyA. AyyadR. ZayedM. Synthesis and biological evaluation of some novel quinoxaline derivatives as anticonvulsant agents.Arzneimittelforschung201161737938110.1055/s‑0031‑1296214 21899204
    [Google Scholar]
  9. RamalingamP. GanapatyS. RaoC.B. In vitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2,3(1H,4H)-diones.Bioorg. Med. Chem. Lett.201020140640810.1016/j.bmcl.2009.10.026 19962890
    [Google Scholar]
  10. BurgueteA. PontikiE. Hadjipavlou-LitinaD. AncizuS. VillarR. SolanoB. MorenoE. TorresE. PérezS. AldanaI. MongeA. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents.Chem. Biol. Drug Des.201177255267
    [Google Scholar]
  11. VarricaM.G. ZagniC. MineoP.G. FlorestaG. MonciinoG. PistaràV. AbbadessaA. NicosiaA. CastilhoR.M. AmataE. RescifinaA. DNA intercalators based on (1,10-phenanthrolin-2-yl)isoxazolidin-5-yl core with better growth inhibition and selectivity than cisplatin upon head and neck squamous cells carcinoma.Eur. J. Med. Chem.201814358359010.1016/j.ejmech.2017.11.067 29207341
    [Google Scholar]
  12. AjaniO.O. Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine.Eur. J. Med. Chem.20148568871510.1016/j.ejmech.2014.08.034 25128670
    [Google Scholar]
  13. PereiraJ.A. PessoaA.M. CordeiroM.N.D.S. FernandesR. PrudêncioC. NoronhaJ.P. VieiraM. Quinoxaline, its derivatives and applications: A State of the Art review.Eur. J. Med. Chem.20159766467210.1016/j.ejmech.2014.06.058 25011559
    [Google Scholar]
  14. EissaI.H. MetwalyA.M. BelalA. MehanyA.B.M. AyyadR.R. El-AdlK. MahdyH.A. TaghourM.S. El-GamalK.M.A. El-SawahM.E. ElmetwallyS.A. ElhendawyM.A. RadwanM.M. ElSohlyM.A. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors.Arch. Pharm.201935211190012310.1002/ardp.201900123 31463953
    [Google Scholar]
  15. TariqS. SomakalaK. AmirM. Quinoxaline: An insight into the recent pharmacological advances.Eur. J. Med. Chem.201814354255710.1016/j.ejmech.2017.11.064 29207337
    [Google Scholar]
  16. AparicioD. AttanasiO.A. FilipponeP. IgnacioR. LilliniS. MantelliniF. PalaciosF. de los SantosJ.M. Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions.J. Org. Chem.200671165897590510.1021/jo060450v 16872170
    [Google Scholar]
  17. BrownD.J. Chemistry of heterocyclic compounds.Wiley-Interscience1950
    [Google Scholar]
  18. AntoniottiS. DuñachE. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines.Tetrahedron Lett.200243223971397310.1016/S0040‑4039(02)00715‑3
    [Google Scholar]
  19. ShiD.Q. DouG.L. NiS.N. ShiJ.W. LiX.Y. An efficient synthesis of quinoxaline derivatives mediated by stannous chloride.J. Heterocycl. Chem.20084561797180110.1002/jhet.5570450637
    [Google Scholar]
  20. ThakuriaH. DasG. One-pot efficient green synthesis of 1,4-dihydro-quinoxaline-2,3-dione derivatives.J. Chem. Sci.2006118542542810.1007/BF02711453
    [Google Scholar]
  21. GrisJ. GlisoniR. FabianL. FernándezB. MoglioniA.G. Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction.Tetrahedron Lett.20084961053105610.1016/j.tetlet.2007.11.204
    [Google Scholar]
  22. CaiJ.J. ZouJ.P. PanX.Q. ZhangW. Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives.Tetrahedron Lett.200849527386739010.1016/j.tetlet.2008.10.058
    [Google Scholar]
  23. NageswarY.V.D. ReddyK.H.V. RameshK. MurthyS.N. Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches.Org. Prep. Proced. Int.201345112710.1080/00304948.2013.743419
    [Google Scholar]
  24. KherS.S. PenzoM. FulleS. EbejerJ.P. FinnP.W. BlackmanM.J. JirgensonsA. Quinoxaline-based inhibitors of malarial protease PfSUB1.Chem. Heterocycl. Compd.201550101457146310.1007/s10593‑014‑1610‑4
    [Google Scholar]
  25. El-AtawyM.A. HamedE.A. AlhadiM. OmarA.Z. Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines Molecules2019244198
    [Google Scholar]
  26. BeckertR. WaisserK. KapplingerC. LindauerD. WaltherR. A novel, efficient synthesis of 2,3-diamino-substituted quinoxalines.Pharmazie199752638639
    [Google Scholar]
  27. Clinical and laboratory standards institute (CLSI), Performance standards for antimicrobial susceptibility testing Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500WaynePennsylvania 19087, USA2020
    [Google Scholar]
  28. Clinical and laboratory standards institute (CLSI), Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard–second editionWayne, PA, USA1997
    [Google Scholar]
  29. MonksA. ScudieroD. SkehanP. ShoemakerR. PaullK. VisticaD. HoseC. LangleyJ. CroniseP. Vaigro-WolffA. Gray-GoodrichM. CampbellH. MayoJ. BoydM. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.J. Natl. Cancer Inst.1991831175776610.1093/jnci/83.11.757 2041050
    [Google Scholar]
  30. BoydM.R. PaullK.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen.Drug Dev. Res.19953429110910.1002/ddr.430340203
    [Google Scholar]
  31. GreverM.R. SchepartzS.A. ChabnerB.A. The national cancer institute: Cancer drug discovery and development program.Semin. Oncol.1992196622638 1462164
    [Google Scholar]
  32. NagarB. BornmannW.G. PellicenaP. SchindlerT. VeachD.R. MillerW.T. ClarksonB. KuriyanJ. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571).Cancer Res.2002621542364243 12154025
    [Google Scholar]
  33. HopcroftN.H. BrogdenA.L. SearceyM. CardinC.J. X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative.Nucleic Acids Res.200634226663667210.1093/nar/gkl930 17145714
    [Google Scholar]
  34. Schrödinger Release 2016-2.New York, NY, USASchrödinger, LLC2016
    [Google Scholar]
  35. BayrakN. CiftciH.I. YıldızM. YıldırımH. SeverB. TateishiH. OtsukaM. FujitaM. TuyunA.F. Structure based design, synthesis, and evaluation of anti-CML activity of the quinolinequinones as LY83583 analogs.Chem. Biol. Interact.202134510955510.1016/j.cbi.2021.109555 34146539
    [Google Scholar]
  36. CiftciH.I. RadwanM.O. SeverB. HamdyA.K. EmirdağS. UlusoyN.G. SozerE. CanM. YayliN. ArakiN. TateishiH. OtsukaM. FujitaM. AltintopM.D. EGFR-targeted pentacyclic triterpene analogues for glioma therapy.Int. J. Mol. Sci.202122201094510.3390/ijms222010945 34681605
    [Google Scholar]
  37. CiftciH. SeverB. AyanE. CanM. DeMirciH. OtsukaM. TuYuNA.F. TateishiH. FujitaM. Identification of new Lheptanoylphosphatidyl inositol pentakisphosphate derivatives targeting the interaction with HIV-1 gag by molecular modelling studies Pharmaceuticals-Base,202215
    [Google Scholar]
  38. AliT.F.S. CiftciH.I. RadwanM.O. RoshdyE. ShawkyA.M. AbourehabM.A.S. TateishiH. OtsukaM. FujitaM. Discovery of Azaindolin-2-One as a dual inhibitor of GSK3β and tau aggregation with potential neuroprotective activity.Pharmaceuticals202215442610.3390/ph15040426 35455423
    [Google Scholar]
  39. CiftciH. SeverB. BayrakN. TateishiH. OtsukaM. FujitaM. TuYuNA.F. YildizM. YddirimH. In vitro cytotoxicity evaluation of plastoquinone analogues against colorectal and breast cancers along with in silico insights Pharmaceuticals-Base,202215
    [Google Scholar]
  40. CiftciH. SeverB. KayaN. BayrakN. YildizM. YildirimH. TateishiH. OtsukaM. FujitaM. TuYuNA.F. Studies on 1,4-Quinone derivatives exhibiting anti-leukemic activity along with anti-colorectal and anti-breast cancer effects.Molecules202328
    [Google Scholar]
  41. CiftciH.I. BayrakN. YıldızM. YıldırımH. SeverB. TateishiH. OtsukaM. FujitaM. TuyunA.F. Design, synthesis and investigation of the mechanism of action underlying anti-leukemic effects of the quinolinequinones as LY83583 analogs.Bioorg. Chem.202111410516010.1016/j.bioorg.2021.105160 34328861
    [Google Scholar]
  42. ReleaseS. 2016-2: QikProp.New York, NY, USASchrödinger, LLC2016
    [Google Scholar]
  43. SwissADME,Available online: http://www.swissadme.ch (30 August 2023).2023
  44. DíazF.R. del ValleM.A. NúñezC. GodoyA. MondacaJ.L. Toro-LabbéA. BernèdeJ.C. Synthesis, characterization, electropolymerization, and theoretical study of 2,3-di-(2-thienyl)quinoxaline.Polym. Bull.2006562-315516210.1007/s00289‑005‑0484‑0
    [Google Scholar]
  45. TaylorE.C. MaryanoffC.A. SkotnickiJ.S. Heterocyclization with cyano and sulfonyl epoxides. Preparation of quinoxalines and tetrahydroquinoxalines.J. Org. Chem.198045122512251510.1021/jo01300a053
    [Google Scholar]
  46. RawS.A. WilfredC.D. TaylorR.J.K. Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes.Chem. Commun.20033182286228710.1039/b307177b 14518877
    [Google Scholar]
  47. WangW. ShenY. MengX. ZhaoM. ChenY. ChenB. Copper-catalyzed synthesis of quinoxalines with o-phenylenediamine and terminal alkyne in the presence of bases.Org. Lett.201113174514451710.1021/ol201664x 21805970
    [Google Scholar]
  48. ChenY. LiK. ZhaoM. LiY. ChenB. Cu(II)-catalyzed synthesis of quinoxalines from o-phenylenediamines and nitroolefins.Tetrahedron Lett.201354131627163010.1016/j.tetlet.2012.11.127
    [Google Scholar]
  49. ZanforlinE. ZagottoG. RibaudoG. A chemical approach to overcome tyrosine kinase inhibitors resistance: Learning from chronic myeloid leukemia.Curr. Med. Chem.201926336033605210.2174/0929867325666180607092451 29874990
    [Google Scholar]
  50. LiS. Src kinase signaling in leukaemia.Int. J. Biochem. Cell Biol.2007397-81483148810.1016/j.biocel.2007.01.027 17350876
    [Google Scholar]
  51. LoscoccoF. VisaniG. GalimbertiS. CurtiA. IsidoriA. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia.Front. Oncol.2019993910.3389/fonc.2019.00939 31612105
    [Google Scholar]
  52. UlusoyN.G. EmirdağS. SözerE. RadwanM.O. ÇiftçiH. AkselM. BölükbaşıS.Ş. ÖzmenA. YaylıN. KarayıldırımT. AlankuşÖ. TateishiH. OtsukaM. FujitaM. SeverB. Design, semi-synthesis and examination of new gypsogenin derivatives against leukemia via Abl tyrosine kinase inhibition and apoptosis induction.Int. J. Biol. Macromol.2022222Pt A1487149910.1016/j.ijbiomac.2022.09.25736195231
    [Google Scholar]
  53. MahataT. KanungoA. GangulyS. ModugulaE.K. ChoudhuryS. PalS.K. BasuG. DuttaS. The benzyl moiety in a quinoxaline-based scaffold acts as a DNA intercalation switch.Angew. Chem. Int. Ed. Engl.20165577337736
    [Google Scholar]
  54. GadeP. ErlandsonA. UllahA. ChenX. MathewsI.I. MeraP.E. KimC.Y. Structural and functional analyses of the echinomycin resistance conferring protein Ecm16 from Streptomyces lasalocidi.Sci. Rep.2023131798010.1038/s41598‑023‑34437‑9 37198233
    [Google Scholar]
  55. EkinsS. RoseJ. In silico ADME/Tox: The state of the art.J. Mol. Graph. Model.200220430530910.1016/S1093‑3263(01)00127‑9 11858639
    [Google Scholar]
  56. YamashitaF. HashidaM. In silico approaches for predicting ADME properties of drugs.Drug Metab. Pharmacokinet.200419532733810.2133/dmpk.19.327 15548844
    [Google Scholar]
  57. Durán-IturbideN.A. Díaz-EufracioB.I. Medina-FrancoJ.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM.ACS Omega2020526160761608410.1021/acsomega.0c01581 32656429
    [Google Scholar]
  58. HanY. ZhangJ. HuC.Q. ZhangX. MaB. ZhangP. In silico ADME and toxicity prediction of ceftazidime and its impurities.Front. Pharmacol.20191043410.3389/fphar.2019.00434 31068821
    [Google Scholar]
  59. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808281517231215113741
Loading
/content/journals/lddd/10.2174/0115701808281517231215113741
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADME; Anticancer activity; antimicrobial activity; leukemia; molecular docking; quinoxalines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test