Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Parkinson’s Disease is one of the leading neurodegenerative disorders in the world. Currently, there is still no treatment that could completely cure the disease. Traditional Chinese Medicine has been a source for drug candidates, and many studies have elucidated its pharmacokinetic capabilities. Previous studies showed that has anti-inflammatory, antioxidant, and bioenergy generation activities. Furthermore, the electron-shuttling and bioenergy-stimulating capabilities of herbal and brain disorder medicines have been linked to their effectiveness as a remedy.

Objective

This preliminary study aims to evaluate the electron-shuttling compounds of (., acteoside, isoquercitrin, magnatriol B, obovatol, quercitrin, randaiol, and rutin) as potential drug candidates for Parkinson’s Disease.

Methods

The seven electron-shuttling compounds were individually docked to the five Parkinson’s Disease-related proteins, namely aromatic L-amino acid decarboxylase, α-synuclein, monoamine oxidase B, catechol-o-methyltransferase, and A adenosine receptor, using LibDock. ADMET predictions were also made to screen the compounds further.

Results

Molecular docking results showed that all compounds have relatively high LibDock scores against the proteins, with acteoside, isoquercitrin, and rutin having the highest scores. However, considering the ADMET results, only magnatriol B, obovatol, and randaiol had optimal properties as candidates for neurodegenerative drugs.

Conclusion

The electron-shuttling compounds of magnatriol B, obovatol, and randaiol, have the potential to be a remedy for Parkinson’s Disease due to their high probability of binding to the proteins.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808268549230919172444
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. MathurS. GawasC. AhmadI.Z. WaniM. TabassumH. Neurodegenerative disorders: Assessing the impact of natural vs drug‐induced treatment options.Aging Med.202361829710.1002/agm2.12243 36911087
    [Google Scholar]
  2. GoyalV. RadhakrishnanD.M. Parkinson’s disease: A review.Neurol. India201866S72610.4103/0028‑3886.226451 29503325
    [Google Scholar]
  3. HayesM.T. Parkinson’s Disease and parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.001 30890425
    [Google Scholar]
  4. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  5. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  6. ElsworthJ.D. Parkinson’s disease treatment: Past, present, and future.J. Neural Transm.2020127578579110.1007/s00702‑020‑02167‑1 32172471
    [Google Scholar]
  7. NagatsuT. NakashimaA. WatanabeH. ItoS. WakamatsuK. Neuromelanin in Parkinson’s Disease: Tyrosine hydroxylase and tyrosinase.Int. J. Mol. Sci.2022238417610.3390/ijms23084176 35456994
    [Google Scholar]
  8. NuttJ.G. CurtzeC. HillerA. AndersonS. LarsonP.S. Van LaarA.D. RichardsonR.M. ThompsonM.E. SedkovA. LeinonenM. RavinaB. BankiewiczK.S. ChristineC.W. Aromatic l‐amino acid decarboxylase gene therapy enhances levodopa response in parkinson’s disease.Mov. Disord.202035585185810.1002/mds.27993 32149427
    [Google Scholar]
  9. EdmondsonD.E. BindaC. Monoamine oxidases.Membrane Protein Complexes: Structure and Function.Springer201811713910.1007/978‑981‑10‑7757‑9_5
    [Google Scholar]
  10. RamsayR.R. AlbrehtA. Kinetics, mechanism, and inhibition of monoamine oxidase.J. Neural Transm.2018125111659168310.1007/s00702‑018‑1861‑9 29516165
    [Google Scholar]
  11. LinC.H. FanJ.Y. LinH.I. ChangC.W. WuY.R. Catechol-O-methyltransferase (COMT) genetic variants are associated with cognitive decline in patients with Parkinson’s disease.Parkinsonism Relat. Disord.201850485310.1016/j.parkreldis.2018.02.015 29439855
    [Google Scholar]
  12. TaiC-H. WuR.M. Catechol-O-methyltransferase and Parkinson’s disease.Acta Med. Okayama200256116 11873938
    [Google Scholar]
  13. SalamonA. ZádoriD. SzpisjakL. KlivényiP. VécseiL. What is the impact of catechol-O-methyltransferase (COMT) on Parkinson’s disease treatment?Expert Opin. Pharmacother.202223101123112810.1080/14656566.2022.2060738 35373688
    [Google Scholar]
  14. JennerP. KandaT. MoriA. How and why the adenosine A2A receptor became a target for Parkinson’s disease therapy.Int. Rev. Neurobiol.202310.1016/bs.irn.2023.04.005
    [Google Scholar]
  15. MoriA. ChenJ.F. UchidaS. DurlachC. KingS.M. JennerP. The pharmacological potential of adenosine A2A receptor antagonists for treating Parkinson’s Disease.Molecules2022277236610.3390/molecules27072366 35408767
    [Google Scholar]
  16. TsaiP.W. HsiehC.Y. TingJ.U. CiouY.R. LeeC.J. HsiehC.L. LienT.K. HsuehC.C. ChenB.Y. Synergistic deciphering of bioenergy production and electron transport characteristics to screen traditional Chinese medicine (TCM) for COVID-19 drug development.J. Taiwan Inst. Chem. Eng.202213510436510.1016/j.jtice.2022.104365 35578714
    [Google Scholar]
  17. ChenB.Y. LinY.H. WuY.C. HsuehC.C. Deciphering electron-shuttling characteristics of neurotransmitters to stimulate bioelectricity-generating capabilities in microbial fuel cells.Appl. Biochem. Biotechnol.20201911597310.1007/s12010‑020‑03242‑9 31989437
    [Google Scholar]
  18. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  19. TsaiP.W. MailemR.C. TayoL.L. HsuehC.C. TsengC.C. ChenB.Y. Interactive network pharmacology and electrochemical analysis reveals electron transport-mediating characteristics of Chinese medicine formula Jing Guan Fang.J. Taiwan Inst. Chem. Eng.202314710489810.1016/j.jtice.2023.104898 37193294
    [Google Scholar]
  20. PoivreM. DuezP. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents.J. Zhejiang Univ. Sci. B201718319421410.1631/jzus.B1600299 28271656
    [Google Scholar]
  21. NiuL. HouY. JiangM. BaiG. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions.J. Ethnopharmacol.202128111452410.1016/j.jep.2021.114524 34400262
    [Google Scholar]
  22. BoulaamaneY. IbrahimM.A.A. BritelM.R. MauradyA. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2A R antagonists for the treatment of Parkinson’s disease.J. Integr. Bioinform.20221942021002710.1515/jib‑2021‑0027 36112816
    [Google Scholar]
  23. BoyinaH.K. GeethakhrishnanS.L. PanugantiS. GangarapuK. DevarakondaK.P. BakshiV. In silico and in vivo studies on quercetin as potential anti-parkinson agent.Adv. Exp. Med. Biol.2020119511110.1007/978‑3‑030‑32633‑3_1
    [Google Scholar]
  24. GnanarajC. SekarM. FuloriaS. SwainS.S. GanS.H. ChidambaramK. RaniN.N.I.M. BalanT. StephenieS. LumP.T. JeyabalanS. BegumM.Y. ChandramohanV. ThangaveluL. SubramaniyanV. FuloriaN.K. In silico molecular docking analysis of karanjin against alzheimer’s and parkinson’s diseases as a potential natural lead molecule for new drug design, development and therapy.Molecules2022279283410.3390/molecules27092834 35566187
    [Google Scholar]
  25. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  26. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  27. ChenB.Y. WuY.C. LinY.H. TayoL.L. TacasA.C. HsuehC.C. Deciphering electron-shuttling characteristics of parkinson’s disease medicines via bioenergy extraction in microbial fuel cells.Ind. Eng. Chem. Res.20205939171241713610.1021/acs.iecr.0c01062
    [Google Scholar]
  28. AbhishekK. SakshamR. DeeptiK. RaoN.G.R. R.; Surya, P.; Vinay, K.; Vidhu, S.; Priya, B. Medicinal plants and herbal formulations ameliorating neurodegeneration: Remedies combating parkinson’s and alzheimer’s disease.J. Young Pharm.202315219420010.5530/jyp.2023.15.28
    [Google Scholar]
  29. ChuangD.Y. ChanM.H. ZongY. ShengW. HeY. JiangJ.H. SimonyiA. GuZ. FritscheK.L. CuiJ. LeeJ.C. FolkW.R. LubahnD.B. SunA.Y. SunG.Y. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells.J. Neuroinflammation201310178610.1186/1742‑2094‑10‑15 23356518
    [Google Scholar]
  30. BoralN. GhoshP. GoswamiA. BhattacharyyaM. Accountable Prediction of Drug ADMET Properties with Molecular Descriptors.bioRxiv202210.1101/2022.06.29.115436
    [Google Scholar]
  31. MandlikV. BejugamP.R. SinghS. Application of artificial neural networks in modern drug discovery.Application of Artificial Neural Networks in Modern Drug Discovery201612313910.1016/B978‑0‑12‑801559‑9.00006‑5
    [Google Scholar]
  32. SteinmetzK.L. SpackE.G. The basics of preclinical drug development for neurodegenerative disease indications.BMC Neurol.20099S1S210.1186/1471‑2377‑9‑S1‑S2 19534731
    [Google Scholar]
  33. DulsatJ. López-NietoB. Estrada-TejedorR. BorrellJ.I. Evaluation of free online ADMET tools for academic or small biotech environments.Molecules202328277610.3390/molecules28020776 36677832
    [Google Scholar]
  34. DillerD.J. MerzK.M.Jr High throughput docking for library design and library prioritization.Proteins200143211312410.1002/1097‑0134(20010501)43:2<113:AID‑PROT1023>3.0.CO;2‑T 11276081
    [Google Scholar]
  35. AlamS. KhanF. Virtual screening, docking, ADMET and system pharmacology studies on garcinia caged xanthone derivatives for anticancer activity.Sci. Rep.201881552410.1038/s41598‑018‑23768‑7 29615704
    [Google Scholar]
  36. ShenC.C. NiC.L. ShenY.C. HuangY.L. KuoC.H. WuT.S. ChenC.C. Phenolic constituents from the stem bark of Magnolia officinalis.J. Nat. Prod.200972116817110.1021/np800494e 19086868
    [Google Scholar]
  37. ChoiD.Y. LeeJ.W. PengJ. LeeY.J. HanJ.Y. LeeY.H. ChoiI.S. HanS.B. JungJ.K. LeeW.S. LeeS.H. KwonB.M. OhK.W. HongJ.T. Obovatol improves cognitive functions in animal models for Alzheimer’s disease.J. Neurochem.2012120610.1111/j.1471‑4159.2011.07642.x 22212065
    [Google Scholar]
  38. BaiJ. Effects of a potent antioxidant randaiol and its derivatives on ROS-induced cellular damage.Thesis Dissertations: Kyushu University,2018
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808268549230919172444
Loading
/content/journals/lddd/10.2174/0115701808268549230919172444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test