Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Epidermal growth factor tyrosine kinase receptor (EGFR) is expressed in a variety of tumors and has become a new target for anti-cancer drugs. In recent years, small molecule inhibitors targeting EGFR have been reported extensively.

Objective

To investigate the quantitative structure-activity relationship (QSAR) of a set of EGFR inhibitors and design several new EGFR inhibitors with better efficiency and selectivity.

Methods

The structure–activity relationship of 119 pyrimidine EGFR inhibitors were studied based on comparative field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMISA).

Results

In this study, performance models with high prediction ability were constructed (CoMFA model: q2= 0.574, = 0.970, SEE= 0.163, F= 407.252; CoMSIA model: q2= 0.575, = 0.968, SEE= 0.171, F= 286.102), according to which 9 new EGFR inhibitors were designed. MD simulation (100 ns) on the docked complex of compound N7 (the most active compound) shows that the small molecule bindswith the protein stably.

Conclusion

The newly designed compound N7 was considered to be a promising EGFR inhibitor with better activity than the best active compound 80, according to the results of molecular docking, molecular dynamics, and ADMET prediction. These results will provide valuable guidance for the design of novel EGFR inhibitors.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808267565231012095231
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.103811 32278207
    [Google Scholar]
  3. BlackhallF. RansonM. ThatcherN. Where next for gefitinib in patients with lung cancer?Lancet Oncol.20067649950710.1016/S1470‑2045(06)70725‑2 16750500
    [Google Scholar]
  4. MokT.S. WuY.L. ThongprasertS. YangC.H. ChuD.T. SaijoN. SunpaweravongP. HanB. MargonoB. IchinoseY. NishiwakiY. OheY. YangJ.J. ChewaskulyongB. JiangH. DuffieldE.L. WatkinsC.L. ArmourA.A. FukuokaM. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.N. Engl. J. Med.20093611094795710.1056/NEJMoa0810699 19692680
    [Google Scholar]
  5. TaoG. ChityalaP.K. Epidermal growth factor receptor inhibitor-induced diarrhea: Clinical incidence, toxicological mechanism, and management.Toxicol. Res.202110347648610.1093/toxres/tfab026 34141161
    [Google Scholar]
  6. WestoverD. ZugazagoitiaJ. ChoB.C. LovlyC.M. Paz-AresL. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors.Ann. Oncol.201829Suppl. 1i10i1910.1093/annonc/mdx703 29462254
    [Google Scholar]
  7. WangS. SongY. YanF. LiuD. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors.Front. Med.201610438338810.1007/s11684‑016‑0488‑1 27770386
    [Google Scholar]
  8. ChenL. FuW. FengC. QuR. TongL. ZhengL. FangB. QiuY. HuJ. CaiY. FengJ. XieH. DingJ. LiuZ. LiangG. Structure-based design and synthesis of 2,4-diaminopyrimidines as EGFR L858R/T790M selective inhibitors for NSCLC.Eur. J. Med. Chem.201714051052710.1016/j.ejmech.2017.08.061 28987609
    [Google Scholar]
  9. ChenL. ZhangY. TianL. WangC. DengT. ZhengX. WangT. LiZ. TangZ. MengQ. SunH. LiL. MaX. XuY. Noncovalent EGFR T790M/L858R inhibitors based on diphenylpyrimidine scaffold: Design, synthesis, and bioactivity evaluation for the treatment of NSCLC.Eur. J. Med. Chem.202122311362610.1016/j.ejmech.2021.113626 34218082
    [Google Scholar]
  10. ChenL. ZhangY. WangC. TangZ. MengQ. SunH. QiY. MaX. LiL. LiY. XuY. Design, synthesis, and biological evaluation of hydroxamic acid-substituted 2,4-diaryl aminopyrimidines as potent EGFRT790M/L858R inhibitors for the treatment of NSCLC.Bioorg. Chem.202111410504510.1016/j.bioorg.2021.105045 34161879
    [Google Scholar]
  11. XiaoQ. QuR. GaoD. YanQ. TongL. ZhangW. DingJ. XieH. LiY. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors.Bioorg. Med. Chem.201624122673268010.1016/j.bmc.2016.04.032 27131639
    [Google Scholar]
  12. LiY. ChangY. FuJ. DingR. ZhangL. LiangT. LiuY. LiuY. HuJ. Design, synthesis and biological evaluation of aminopyrimidine derivatives bearing a 4,5,6,7-tetrahydrothieno [3,2-c]pyridine as potent EGFR inhibitors.Eur. J. Med. Chem.202122611384510.1016/j.ejmech.2021.113845 34534838
    [Google Scholar]
  13. LiuQ. LuoY. LiZ. ChenC. FangL. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity.Bioorg. Med. Chem.20213611609410.1016/j.bmc.2021.116094 33667898
    [Google Scholar]
  14. YanQ. ChenY. TangB. XiaoQ. QuR. TongL. LiuJ. DingJ. ChenY. DingN. TanW. XieH. LiY. Discovery of novel 2,4-diarylaminopyrimidine derivatives as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation.Eur. J. Med. Chem.201815229830610.1016/j.ejmech.2018.04.052 29730192
    [Google Scholar]
  15. ZhouF. ZhangL. JinY. LiuW. ChengP. HeX. XieJ. ShenS. LeiJ. JiH. HuY. LiuY. CuiY. LvQ. LanJ. Discovery of N -aryl- N ′-pyrimidin-4-yl ureas as irreversible L858R/T790M mutant selective epidermal growth factor receptor inhibitors.Bioorg. Med. Chem. Lett.20182871257126110.1016/j.bmcl.2017.12.009 29534926
    [Google Scholar]
  16. DengY. WangJ. ChuH. WangJ. HuY. lin, Y.; Shu, M.; Lin, Z. 3D-QSAR and docking studies on pyrimidine derivatives as CSF-1R inhibitors.Lett. Drug Des. Discov.202017334135510.2174/1570180816666190329224946
    [Google Scholar]
  17. YangY. QinJ. LiuH. YaoX. Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors.J. Chem. Inf. Model.201151368069210.1021/ci100427j 21338122
    [Google Scholar]
  18. ZhuJ. WuY. XuL. JinJ. Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3Î2 (GSK3Î2) with pyrazine ATP-competitive inhibitors by 3DQSAR, molecular docking, molecular dynamics simulation and free energy calculations.Curr. Computeraided Drug Des.2020161173010.2174/18756697OTk0jNDkgTcVY 31284868
    [Google Scholar]
  19. LiuY. TianZ. LiH. LiuZ. ShiL. YangL. 3D quantitative structure–activity relationships study on anti-gastric cancer of chrysin derivatives.J. Math. Chem.20236151205121610.1007/s10910‑023‑01455‑x
    [Google Scholar]
  20. ZareiO. RaeppelS.L. Hamzeh-MivehroudM. An alignment-independent three-dimensional quantitative structure–activity relationship study on ron receptor tyrosine kinase inhibitors.J. Bioinform. Comput. Biol.2022203225001510.1142/S0219720022500159 35880255
    [Google Scholar]
  21. ZhaoL. FuL. LiG. YuY. WangJ. LiangH. ShuM. LinZ. WangY. Three-dimensional quantitative structural-activity relationship and molecular dynamics study of multivariate substituted 4-oxyquinazoline HDAC6 inhibitors.Mol. Divers.20232731123114010.1007/s11030‑022‑10474‑w 35767128
    [Google Scholar]
  22. DengR. HeW. GuoH. SuZ. WuW. WuZ. In silico design of RORγ inverse agonists based on 3D-QSAR and molecular docking.New J. Chem.202246188464847710.1039/D1NJ05185G
    [Google Scholar]
  23. XuY. HeZ. LiuH. ChenY. GaoY. ZhangS. WangM. LuX. WangC. ZhaoZ. LiuY. ZhaoJ. YuY. YangM. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno[3,2- b]pyrrole-5-carboxamide derivatives as LSD1 inhibitors.RSC Advances202010126927694310.1039/C9RA10085G 35493862
    [Google Scholar]
  24. HadniH. ElhallaouiM. 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents.New J. Chem.202044166553656510.1039/C9NJ05767F
    [Google Scholar]
  25. JiangZ. ZhengX. LiZ. PanS. WangX. ZhangC. LiZ. LuoH.B. WuD. CaiX. 3D-QSAR modeling of Phosphodiesterase-5 inhibitors: Evaluation and comparison of the receptor- and ligand-based alignments.Med. Chem. Res.201928682083010.1007/s00044‑019‑02311‑x
    [Google Scholar]
  26. BalupuriA. BalasubramanianP.K. ChoS.J. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors.Arab. J. Chem.20201311052107810.1016/j.arabjc.2017.09.009
    [Google Scholar]
  27. WangF. YangW. LiZ. ZhouB. Studies on molecular mechanism between SHP2 and pyridine derivatives by 3D-QSAR, molecular docking and MD simulations.J. Saudi Chem. Soc.2021251110134610.1016/j.jscs.2021.101346
    [Google Scholar]
  28. XuH.R. FuL. ZhanP. LiuX.Y. 3D-QSAR analysis of a series of S -DABO derivatives as anti-HIV agents by CoMFA and CoMSIA.SAR QSAR Environ. Res.20162712999101410.1080/1062936X.2016.1233580 27667445
    [Google Scholar]
  29. Çapanİ. GümüşM. GökceH. ÇetinH. SertY. Kocaİ. Synthesis, dielectric properties, molecular docking and ADME studies of pyrrole-3-ones.J. Biomol. Struct. Dyn.202240198655867110.1080/07391102.2021.1914174 33890547
    [Google Scholar]
  30. BicakB. Structural, spectroscopic, molecular docking, ADME, molecular dynamics studies of Val-Trp dipeptide.J. Biomol. Struct. Dyn.202311810.1080/07391102.2023.2183041 36843537
    [Google Scholar]
  31. KumarA. SharmaS. MishraS. OjhaS. UpadhyayP. ADME prediction, structure-activity relationship of boswellic acid scaffold for the aspect of anticancer & anti-inflammatory potency.Anti- Cancer Agent. Me.2023231314991505
    [Google Scholar]
  32. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  33. HanC. WeiB.B. ShangP.P. GuoX.Y. BaiL.G. MaZ.Y. Design, synthesis and evaluation of 2-(2-oxoethyl)pyrimidine-5-carboxamide derivatives as acetylcholinesterase inhibitors.Bioorg. Med. Chem. Lett.20227212887310.1016/j.bmcl.2022.128873 35779827
    [Google Scholar]
  34. RamuN. KrishnaT.M. NasipireddyV. KapavarapuR. NarsimhaS. Fused Imidazo[2,1‐b][1,2,3]triazolo[4,5‐d][1,3]thiazines: One‐pot synthesis, antibiofilim, bactericidal effects, and in silico studies.ChemistrySelect2023826e20230077710.1002/slct.202300777
    [Google Scholar]
  35. RamasamyS. RajanA.T. Unraveling the pharmaceutical benefits of freshly prepared amino acid-based schiff bases via dft, in silico molecular docking and ADMET.J. Fluoresc.20223251873188810.1007/s10895‑022‑02987‑2 35749028
    [Google Scholar]
  36. ZhaoL. ZhangT. LuoY. LiL. ChengR. ShiZ. WangG. RenT. Effects of temperature and microwave on the stability of the blast effector complex APikL2A/sHMA25 as determined by molecular dynamics analyses.J. Mol. Model.202329513410.1007/s00894‑023‑05550‑3 37041399
    [Google Scholar]
  37. BhandariS. AgrwalA. KasanaV. TandonS. BoulaamaneY. MauradyA. β‐amino carbonyl derivatives: Synthesis, molecular docking, ADMET, molecular dynamic and herbicidal studies.ChemistrySelect2022748e20220157210.1002/slct.202201572
    [Google Scholar]
  38. IdokoV.O. SulaimanM.A. AdamuR.M. AbdullahiA.D. TajuddeenN. MohammedA. InuwaH.M. IbrahimM.A. Evaluating khaya senegalensis for dipeptidyl peptidase‐IV inhibition using in vitro analysis and molecular dynamic simulation of identified bioactive compounds.Chem. Biodivers.2023202e20220090910.1002/cbdv.202200909 36565063
    [Google Scholar]
  39. ZhaoJ. YuN. ZhaoX. QuanW. ShuM. 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors.J. Mol. Model.202329513110.1007/s00894‑023‑05525‑4 37020092
    [Google Scholar]
  40. ZhangC. LiQ. MengL. RenY. Design of novel dopamine D 2 and serotonin 5-HT 2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations.J. Biomol. Struct. Dyn.202038386088510.1080/07391102.2019.1590244 30916624
    [Google Scholar]
  41. TuccinardiT. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery?Expert Opin. Drug Discov.202116111233123710.1080/17460441.2021.1942836 34165011
    [Google Scholar]
  42. Lima SilvaW.J. Freitas de FreitasR. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors.J. Comput. Aid. Mol. Des.2023113
    [Google Scholar]
  43. WangE. LiuH. WangJ. WengG. SunH. WangZ. KangY. HouT. Modeling, Development and evaluation of MM/GBSA based on a variable dielectric GB model for predicting protein-ligand binding affinities.J. Chem. Inf. Model.202060115353536510.1021/acs.jcim.0c00024 32175734
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808267565231012095231
Loading
/content/journals/lddd/10.2174/0115701808267565231012095231
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3D-QSAR; ADMET; EGFR; inhibitor; molecular docking; molecular dynamics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test