Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Parkinson’s disease (PD) is a prevalent neurological disease characterized by the gradual degeneration of dopaminergic neurons leading to a dysfunctional central nervous system. Recently, major metabolites of leaves were revealed to exhibit good electron-shuttling potential in Microbial Fuel Cells (MFCs), similar to neurotransmitters dopamine and epinephrine.

Objective

This study aimed to identify the neuroprotective potentials of plant metabolites from coffee leaves and to determine their physicochemical and pharmacokinetic properties for developing viable anti-parkinsonian drug design.

Methods

Molecular docking was performed to evaluate the affinity of identified major compounds in against PD-target proteins and compare the results with the binding activity of existing drugs and natural ligands of the identified protein targets LibDock scores. The drug-likeness and ADMET profiles of each ligand were also evaluated using bioinformatics tools.

Results

metabolites exhibited various degrees of binding activity against PD targets. LibDock scores of test compounds showed that catechin, mangiferin, and chlorogenic acid exhibited higher docking scores than dopamine and levodopa. Physicochemical and pharmacokinetics analysis of the selected molecules revealed caffeine, catechin, and chlorogenic acid as promising candidates for drug development with a low risk of drug toxicity.

Conclusion

The present study indicates that leaves contain promising neuroprotective active compounds against Parkinson’s disease.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808268540231011071359
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  2. Dong-ChenX. YongC. YangX. Chen-YuS. Li-HuaP. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817310.1038/s41392‑023‑01353‑3 36810524
    [Google Scholar]
  3. KouliA. TorsneyK.M. KuanW.L. Parkinson’s Disease: Etiology, neuropathology, and pathogenesis.Parkinson’s Disease: Pathogenesis and Clinical Aspects.Codon Publications201832610.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  4. GandhiK.R. SaadabadiA. Levodopa (L-Dopa).StatPearls2023
    [Google Scholar]
  5. ZahoorI. ShafiA. HaqE. Pharmacological Treatment of Parkinson’s Disease.Parkinson’s Disease: Pathogenesis and Clinical AspectsCodon Publications: Brisbane (AU)201810.15586/codonpublications.parkinsonsdisease.2018.ch7
    [Google Scholar]
  6. JagadeesanA.J. MurugesanR. Vimala DeviS. MeeraM. MadhumalaG. Vishwanathan PadmajaM. RameshA. BanerjeeA. SushmithaS. KhokhlovA.N. MarottaF. PathakS. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: A review.Acta Biomed.2017883249262 29083328
    [Google Scholar]
  7. DiazN.L. WatersC.H. Current strategies in the treatment of Parkinson’s disease and a personalized approach to management.Expert Rev. Neurother.20099121781178910.1586/ern.09.117 19951137
    [Google Scholar]
  8. RahmanM.H. BajgaiJ. FadriquelaA. SharmaS. TrinhT.T. AkterR. JeongY.J. GohS.H. KimC.S. LeeK.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges.Molecules20212617532710.3390/molecules26175327 34500759
    [Google Scholar]
  9. MaherP. The potential of flavonoids for the treatment of neurodegenerative diseases.Int. J. Mol. Sci.20192012305610.3390/ijms20123056 31234550
    [Google Scholar]
  10. TsaiP.W. MailemR.C. TayoL.L. HsuehC.C. TsengC.C. ChenB.Y. Interactive network pharmacology and electrochemical analysis reveals electron transport-mediating characteristics of Chinese medicine formula Jing Guan Fang.J. Taiwan Inst. Chem. Eng.202314710489810.1016/j.jtice.2023.104898 37193294
    [Google Scholar]
  11. ChenB.Y. LinY.H. WuY.C. HsuehC.C. Deciphering electron-shuttling characteristics of neurotransmitters to stimulate bioelectricity-generating capabilities in microbial fuel cells.Appl. Biochem. Biotechnol.20201911597310.1007/s12010‑020‑03242‑9 31989437
    [Google Scholar]
  12. ChenB.Y. LiaoJ.H. HsuehC.C. QuZ. HsuA.W. ChangC.T. ZhangS. Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells.Energy20181611042105410.1016/j.energy.2018.07.177
    [Google Scholar]
  13. ChenB.Y. LiaoJ.H. HsuA.W. TsaiP.W. HsuehC.C. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells.Bioresour. Technol.20182569510110.1016/j.biortech.2018.01.152 29433051
    [Google Scholar]
  14. GuoL.L. QinL.J. XuB. WangX.Z. HsuehC.C. ChenB.Y. Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells.Biochem. Eng. J.2019148576410.1016/j.bej.2019.04.018
    [Google Scholar]
  15. TsaiP.W. TayoL.L. TingJ.U. HsiehC.Y. LeeC.J. ChenC.L. YangH.C. TsaiH.Y. HsuehC.C. ChenB.Y. Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells.Ind. Crops Prod.202319111594410.1016/j.indcrop.2022.115944 36405420
    [Google Scholar]
  16. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  17. LiuZ. LiuY. ZengG. ShaoB. ChenM. LiZ. JiangY. LiuY. ZhangY. ZhongH. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review.Chemosphere201820313915010.1016/j.chemosphere.2018.03.179 29614407
    [Google Scholar]
  18. BicakB. Kecel GunduzS. Computer-aided drug design of plant-based compounds.Isolation, Characterization, and Therapeutic Applications of Natural Bioactive Compounds.IGI Global Publishers202210.4018/978‑1‑6684‑7337‑5.ch013
    [Google Scholar]
  19. GnanarajC. SekarM. FuloriaS. SwainS.S. GanS.H. ChidambaramK. RaniN.N.I.M. BalanT. StephenieS. LumP.T. JeyabalanS. BegumM.Y. ChandramohanV. ThangaveluL. SubramaniyanV. FuloriaN.K. In silico molecular docking analysis of karanjin against Alzheimer’s and Parkinson’s Diseases as a potential natural lead molecule for new drug design, development and therapy.Molecules2022279283410.3390/molecules27092834 35566187
    [Google Scholar]
  20. PratamaM.R.F. PoerwonoH. SiswodiharjoS. ADMET properties of novel 5- O -benzoylpinostrobin derivatives.J. Basic Clin. Physiol. Pharmacol.20193062019025110.1515/jbcpp‑2019‑0251 31851612
    [Google Scholar]
  21. AlghamdiS.S. SulimanR.S. AljammazN.A. KahtaniK.M. AljatliD.A. AlbadraniG.M. Natural products as novel neuroprotective agents; computational predictions of the molecular targets, ADME properties, and safety profile.Plants202211454910.3390/plants11040549 35214883
    [Google Scholar]
  22. KumarG.P. KhanumF. Neuroprotective potential of phytochemicals.Pharmacogn. Rev.2012612819010.4103/0973‑7847.99898 23055633
    [Google Scholar]
  23. KumarV. Potential medicinal plants for CNS disorders: An overview.Phytother. Res.200620121023103510.1002/ptr.1970 16909441
    [Google Scholar]
  24. RussoA. BorrelliF. Bacopa monniera, a reputed nootropic plant: An overview.Phytomedicine200512430531710.1016/j.phymed.2003.12.008 15898709
    [Google Scholar]
  25. LeeH. KimY.O. KimH. KimS.Y. NohH.S. KangS.S. ChoG.J. ChoiW.S. SukK. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia.FASEB J.2003171312110.1096/fj.03‑0057fje 12897065
    [Google Scholar]
  26. Bitencourt-FerreiraG. Veit-AcostaM. de AzevedoW.F.Jr Van der waals potential in protein complexes.Methods Mol. Biol.20192053799110.1007/978‑1‑4939‑9752‑7_6 31452100
    [Google Scholar]
  27. RaschkaS. WolfA.J. Bemister-BuffingtonJ. KuhnL.A. Protein–ligand interfaces are polarized: Discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.J. Comput. Aided Mol. Des.201832451152810.1007/s10822‑018‑0105‑2 29435780
    [Google Scholar]
  28. FuY. ZhaoJ. ChenZ. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein.Comput. Math. Methods Med.2018201811210.1155/2018/3502514 30627209
    [Google Scholar]
  29. Chartier-HarlinM.C. KachergusJ. RoumierC. MourouxV. DouayX. LincolnS. LevecqueC. LarvorL. AndrieuxJ. HulihanM. WaucquierN. DefebvreL. AmouyelP. FarrerM. DestéeA. α-synuclein locus duplication as a cause of familial Parkinson’s disease.Lancet200436494401167116910.1016/S0140‑6736(04)17103‑1 15451224
    [Google Scholar]
  30. IbáñezP. BonnetA-M. DébargesB. LohmannE. TisonF. AgidY. DürrA. BriceA. PollakP. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease.Lancet200436494401169117110.1016/S0140‑6736(04)17104‑3 15451225
    [Google Scholar]
  31. WilsonC.N. MustafaS.J. Eds.; Adenosine Receptors in Health and Disease.Berlin, HeidelbergSpringer Berlin Heidelberg2009Vol. 19310.1007/978‑3‑540‑89615‑9_11
    [Google Scholar]
  32. OlanowC.W. BrundinP. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder?Mov. Disord.2013281314010.1002/mds.25373 23390095
    [Google Scholar]
  33. TeoK.C. HoS.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease.Transl. Neurodegener.2013211910.1186/2047‑9158‑2‑19 24011391
    [Google Scholar]
  34. ChoiJ.W. JangB.K. ChoN. ParkJ.H. YeonS.K. JuE.J. LeeY.S. HanG. PaeA.N. KimD.J. ParkK.D. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors.Bioorg. Med. Chem.201523196486649610.1016/j.bmc.2015.08.012 26337020
    [Google Scholar]
  35. SiramshettyV.B. NickelJ. OmieczynskiC. GohlkeB.O. DrwalM.N. PreissnerR. WITHDRAWN—a resource for withdrawn and discontinued drugs.Nucleic Acids Res.201644D1D1080D108610.1093/nar/gkv1192 26553801
    [Google Scholar]
  36. y, M.; Iliya S, S.Z.; Kani YA, M.B.K.; Wali U, A.M.B.; Tahiru A, M.H.Y.; Ahmed AY, M.Y.; Habeeb A, Y.A.; Saeed SA, F.I.B.; Uf, A. Molecular docking, drug-likeness and ADMET analysis of potential inhibitors (Ligands) from carica papaya against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Saudi Journal of Medicine20205522223210.36348/sjm.2020.v05i05.002
    [Google Scholar]
  37. WaringM.J. Lipophilicity in drug discovery.Expert Opin. Drug Discov.20105323524810.1517/17460441003605098 22823020
    [Google Scholar]
  38. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  39. NishaC.M. KumarA. NairP. GuptaN. SilakariC. TripathiT. KumarA. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β -secretase.Adv. Bioinforma.201620161610.1155/2016/9258578 27190510
    [Google Scholar]
  40. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  41. HakkolaJ. HukkanenJ. TurpeinenM. PelkonenO. Inhibition and induction of CYP enzymes in humans: An update.Arch. Toxicol.202094113671372210.1007/s00204‑020‑02936‑7 33111191
    [Google Scholar]
  42. PelkonenO. TurpeinenM. HakkolaJ. HonkakoskiP. HukkanenJ. RaunioH. Inhibition and induction of human cytochrome P450 enzymes: Current status.Arch. Toxicol.2008821066771510.1007/s00204‑008‑0332‑8 18618097
    [Google Scholar]
  43. BardalS.K. WaechterJ.E. MartinD.S. Pharmacokinetics In Applied pharmacology20111734
    [Google Scholar]
  44. Alarcón-HerreraN. Flores-MayaS. BellidoB. García-BoresA.M. MendozaE. Ávila-AcevedoG. Hernández-EcheagarayE. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity.Food Chem. Toxicol.2017109Pt 21018102510.1016/j.fct.2017.04.048 28478101
    [Google Scholar]
  45. TajikN. TajikM. MackI. EnckP. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature.Eur. J. Nutr.20175672215224410.1007/s00394‑017‑1379‑1 28391515
    [Google Scholar]
  46. ConteA. PellegriniS. TagliazucchiD. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin.Brain Res. Bull.2003621293810.1016/j.brainresbull.2003.08.001 14596889
    [Google Scholar]
  47. AhmedH. KhanM.A. Ali ZaidiS.A. MuhammadS. In silico and in vivo: Evaluating the therapeutic potential of kaempferol, quercetin, and catechin to treat chronic epilepsy in a rat model.Front. Bioeng. Biotechnol.20219754952
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808268540231011071359
Loading
/content/journals/lddd/10.2174/0115701808268540231011071359
Loading

Data & Media loading...

Supplements

Supplementary material

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test