Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Vinpocetine (Vinp), a derivative of alkaloid vincristine with anti-inflammatory and antioxidant effects, has been shown to have neuroprotective effects in Parkinson's disease (PD). Its role and mechanisms, however, are not fully understood. Therefore, the aim of this study was to investigate the effects and possible mechanisms of Vinp on PD cells.

Methods

SH-SY5Y cells were treated with Vinp and then with rotenone to induce a cellular model of PD. The proliferation level and apoptosis rate of SH-SY5Y cells after different treatments were detected by MTT and flow cytometry assays, respectively. Western blot was used to determine the relative protein expression of α-Synuclein (α-Syn) in differently treated cells. Additionally, commercial kits and ELISA were used to determine oxidative stress-related indicators (superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS)) and inflammatory factors (tumor necrosis factor α [TNF-α], interleukin-5 (IL-5), and interleukin-1β (IL-1β)) in SH-SY5Y cells after different treatments, respectively.

Results

Vinp at different concentrations (5, 10, and 50 μM) had no significant effect on the proliferation and apoptosis of SH-SY5Y cells. For rotenone-induced SH-SY5Y cells, Vinp pretreatment could significantly reduce α-Syn expression, increased cell viability and decreased apoptosis, oxidative stress (downregulation of ROS and MDA levels and upregulation of SOD activity) and inflammation (increased levels of TNF-α, IL-5, and IL-1β). In contrast, overexpression of α-Syn in SH-SY5Y cells with Vinp pretreatment and rotenone induction partially reversed the aforementioned protective effects of Vinp, causing a decrease in proliferation, an increase in apoptosis rate, inflammation, and oxidative stress.

Conclusion

Vinp exerted neuroprotective effects by downregulating α-Syn to promote proliferation, inhibit apoptosis, and inhibit oxidative stress and inflammation in rotenone-induced SH-SY5Y cells.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808274204231012111936
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. CabreiraV. Massano, J. Parkinson’s Disease: Clinical review and update.Acta Med. Port.2019321066167010.20344/amp.11978 31625879
    [Google Scholar]
  2. KaruppagounderS.S. WangH. KellyT. RushR. NguyenR. BisenS. YamashitaY. SloanN. DangB. SigmonA. LeeH.W. Marino LeeS. WatkinsL. KimE. BrahmachariS. KumarM. WernerM.H. DawsonT.M. DawsonV.L. The c-Abl inhibitor IkT-148009 suppresses neurodegeneration in mouse models of heritable and sporadic Parkinson’s disease.Sci. Transl. Med.202315679eabp935210.1126/scitranslmed.abp9352 36652533
    [Google Scholar]
  3. DorseyE.R. BloemB.R. The parkinson pandemic-a call to action.JAMA Neurol.201875191010.1001/jamaneurol.2017.3299 29131880
    [Google Scholar]
  4. RajanS. KaasB. Parkinson’s disease: Risk factor modification and prevention.Semin. Neurol.202242562663810.1055/s‑0042‑1758780 36427528
    [Google Scholar]
  5. MaranJ.J. AdesinaM.M. GreenC.R. KwakowskyA. MugishoO.O. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain.Ageing Res. Rev.20238810195410.1016/j.arr.2023.101954 37187367
    [Google Scholar]
  6. LiQ. LiuS. YanJ. SunM.Z. GreenawayF.T. The potential role of miR-124-3p in tumorigenesis and other related diseases.Mol. Biol. Rep.20214843579359110.1007/s11033‑021‑06347‑4 33877528
    [Google Scholar]
  7. AlexanderG.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.Dialogues Clin. Neurosci.20046325928010.31887/DCNS.2004.6.3/galexander 22033559
    [Google Scholar]
  8. ChangA. FoxS.H. Psychosis in Parkinson’s Disease: Epidemiology, pathophysiology, and management.Drugs201676111093111810.1007/s40265‑016‑0600‑5 27312429
    [Google Scholar]
  9. WangT. LiC. HanB. WangZ. MengX. ZhangL. HeJ. FuF. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo.BMC Complement. Med. Ther.20202012010.1186/s12906‑019‑2738‑7 32020857
    [Google Scholar]
  10. SenekM. NyholmD. Continuous drug delivery in Parkinson’s disease.CNS Drugs2014281192710.1007/s40263‑013‑0127‑1 24323838
    [Google Scholar]
  11. ZhangL. YangL. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: A review of the literature.Molecules201420133534710.3390/molecules20010335 25549058
    [Google Scholar]
  12. ZhangY.S. LiJ.D. YanC. An update on vinpocetine: New discoveries and clinical implications.Eur. J. Pharmacol.20188193034
    [Google Scholar]
  13. SzilagyiG. NagyZ. BalkayL. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: A PET study.J. Neurol. Sci.2005229-230275284
    [Google Scholar]
  14. Abo-ElmattyD.M. ElshazlyS.M. ZaitoneS.A. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.Indian J. Pharmacol.201244677477910.4103/0253‑7613.103300 23248410
    [Google Scholar]
  15. PingZ. XiaomuW. XufangX. LiangS. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients.Neurol. Sci.201940111312010.1007/s10072‑018‑3592‑y 30315378
    [Google Scholar]
  16. IsholaI.O. AwogbindinI.O. Olubodun-ObadunT.G. OlajigaA.E. Adeyemi, OO Vinpocetine prevents rotenone-induced Parkinson disease motor and non-motor symptoms through attenuation of oxidative stress, neuroinflammation and alpha-synuclein expressions in rats.Neurotoxicology2023963752
    [Google Scholar]
  17. ZhouQ. GuoD. LiX. WangY. YeX. XueS. WangX. Anti-inflammatory effects of vinpocetine in LPS-stimulated microglia via activation of AMPK.An. Acad. Bras. Cienc.2020924e2020024110.1590/0001‑3765202020200241 33237143
    [Google Scholar]
  18. LiuX. QuL. ZhangN. Ndfip1 prevents rotenone-induced neurotoxicity and upregulation of alpha-Synuclein in SH-SY5Y cells.Front. Mol. Neurosci.202013613404
    [Google Scholar]
  19. HesterK. KirraneE. AndersonT. KulikowskiN. SimmonsJ.E. LehmannD.M. Environmental exposure to metals and the development of tauopathies, synucleinopathies, and TDP-43 proteinopathies: A systematic evidence map protocol.Environ. Int.2022169107528
    [Google Scholar]
  20. FerreiraJ.J. MestreT.A. LyonsK.E. Benito-LeónJ. TanE.K. AbbruzzeseG. HallettM. HaubenbergerD. ElbleR. DeuschlG. MDS evidence‐based review of treatments for essential tremor.Mov. Disord.201934795095810.1002/mds.27700 31046186
    [Google Scholar]
  21. HeidariA. YazdanpanahN. RezaeiN. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease.J. Neuroinflammation202219113510.1186/s12974‑022‑02496‑w 35668422
    [Google Scholar]
  22. GreenamyreJ.T. BetarbetR. ShererT.B. The rotenone model of Parkinson’s disease: Genes, environment and mitochondria.Parkinsonism Relat. Disord.20039Suppl. 2596410.1016/S1353‑8020(03)00023‑3 12915069
    [Google Scholar]
  23. Ibarra-GutiérrezM.T. Serrano-GarcíaN. Orozco-IbarraM. Rotenone-induced model of Parkinson’s Disease: Beyond mitochondrial complex I inhibition.Mol. Neurobiol.20236041929194810.1007/s12035‑022‑03193‑8 36593435
    [Google Scholar]
  24. SawadaH. OedaT. KohsakaM. UmemuraA. TomitaS. ParkK. MizoguchiK. MatsuoH. HasegawaK. FujimuraH. SugiyamaH. NakamuraM. KikuchiS. YamamotoK. FukudaT. ItoS. GotoM. KiyoharaK. KawamuraT. Early use of donepezil against psychosis and cognitive decline in Parkinson’s disease: A randomised controlled trial for 2 years.J. Neurol. Neurosurg. Psychiatry201889121332134010.1136/jnnp‑2018‑318107 30076270
    [Google Scholar]
  25. ThomasA. BonanniL. GambiF. Di IorioA. OnofrjM. Pathological gambling in Parkinson disease is reduced by amantadine.Ann. Neurol.201068340040410.1002/ana.22029 20687121
    [Google Scholar]
  26. PeñaE. BorruéC. MataM. Martínez-CastrilloJ. Alonso-CanovasA. ChicoJ. López-ManzanaresL. LlaneroM. Herreros-RodríguezJ. EsquivelA. Maycas-CepedaT. Ruíz-HueteC. Impact of SAfinamide on depressive symptoms in Parkinson’s disease patients (SADness-PD Study): A multicenter retrospective study.Brain Sci.202111223210.3390/brainsci11020232 33668408
    [Google Scholar]
  27. AbdelmageedN. TwafikW.A. SeddekA.L. MoradS.A.F. Vinpocetine-based therapy is an attractive strategy against oxidative stress-induced hepatotoxicity in vitro by targeting Nrf2/HO-1 pathway.EXCLI J.202120550561
    [Google Scholar]
  28. IsholaI.O. AkinyedeA.A. AdeluwaT.P. MicahC. Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: Involvement of oxidative stress and neuroinflammation.Metab. Brain Dis.20183351493150010.1007/s11011‑018‑0256‑9 29855979
    [Google Scholar]
  29. SharmaS. DeshmukhR. Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.Neuroscience2015286393403
    [Google Scholar]
  30. Kalia, LV Diagnostic biomarkers for Parkinson’s disease: Focus on alpha-synuclein in cerebrospinal fluid.Parkinsonism Relat. Disord.201959212510.1016/j.parkreldis.2018.11.016
    [Google Scholar]
  31. KalsoomI. WangY. LiB. WenH. Research progress of α-Synuclein aggregation inhibitors for potential Parkinson’s disease treatment.Mini Rev. Med. Chem.202323201959197410.2174/1389557523666230517163501 37198991
    [Google Scholar]
  32. BreydoL. WuJ.W. UverskyV.N. α-Synuclein misfolding and Parkinson’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822226128510.1016/j.bbadis.2011.10.002 22024360
    [Google Scholar]
  33. HuynhV.A. TakalaT.M. MurrosK.E. DiwediB. SarisP.E.J. Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease.Front. Cell. Infect. Microbiol.202313118131510.3389/fcimb.2023.1181315
    [Google Scholar]
  34. ZhangJ. LiX. LiJ.D. The roles of post-translational modifications on alpha-synuclein in the pathogenesis of Parkinson’s diseases.Front. Neurosci.201913381
    [Google Scholar]
  35. WakabayashiK. Where and how alpha‐synuclein pathology spreads in Parkinson’s disease.Neuropathology202040541542510.1111/neup.12691 32750743
    [Google Scholar]
  36. SunF. DengY. HanX. A secret that underlies Parkinson’s disease: The damaging cycle.Neurochem. Int.2019129104484
    [Google Scholar]
  37. LinD. LiY. HuangK. Exploration of the alpha-syn/T199678/miR-519-3p/KLF9 pathway in a PD-related alpha-syn pathology.Brain Res. Bull.20221865061
    [Google Scholar]
  38. YangQ. WangY. ZhaoC. PangS. LuJ. ChanP. α‐Synuclein aggregation causes muscle atrophy through neuromuscular junction degeneration.J. Cachexia Sarcopenia Muscle202314122624210.1002/jcsm.13123 36416282
    [Google Scholar]
  39. Al-KuraishyH.M. Al-GareebA.I. Role of vinpocetine in ischemic stroke and poststroke outcomes: A critical review.Brain Circ.202061110
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808274204231012111936
Loading
/content/journals/lddd/10.2174/0115701808274204231012111936
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test