Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Globally, hepatitis B and C infect 400 million people, more than 10 times the number of people living with HIV. In 2019, it was estimated that 1.1 million people died as a result of the disease (PAHO/WHO, January 2023).

Objective

This study aimed to conduct a computational analysis of the proteins that express the hepatitis virus envelope glycoproteins in order to gain insight into their function.

Methods

Different computational tools were used to calculate the Polarity Index Method 2.0 v (PIM 2.0 v) profile (previously titled Polarity Index Method profile) and the Protein Intrinsic Disorder Predisposition (PIDP) analyzed for each sequence, in addition to computational tools that made it possible to revise these proteins at the genetic level.

Results

Both the PIM 2.0 v profile and the PIDP profile of various hepatitis B and C virus envelope glycoproteins were able to reproduce the structural and morphological similarities that they had previously. The presence of certain patterns in each of these profiles made this accomplishment feasible.

Conclusion

Computational programs could reproduce characteristic PIM 2.0 v profiles of the hepatitis B and C virus envelope glycoproteins. This information is useful for a better understanding of this emerging virus.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808264877231014175922
2024-11-01
2025-01-24
Loading full text...

Full text loading...

References

  1. PapavramidouN. FeeE. Christopoulou-AletraH. Jaundice in the hippocratic corpus.J. Gastrointest. Surg.2007111217281731
    [Google Scholar]
  2. RoholmK. IversenP. Changes in the liver in acute epidemic hepatitis (catarrhal jaundice) based on 38 aspiration biopsies.Acta Pathol. Microbiol. Scand.193916442744210.1111/j.1600‑0463.1939.tb06050.x
    [Google Scholar]
  3. LürmanA. Eine ikterusepidemie; Berliner klinische Wochenschrift1885
    [Google Scholar]
  4. JehnJ. Eine icterusepidemie in wahrscheinlichem Zusammenhang mit vorausgegangener revaccination.Dtsch. Med. Wochenschr.18851120339341, 354-35610.1055/s‑0028‑1142335
    [Google Scholar]
  5. FlaumA. MalmrosH. PerssonE. Eine nosocomiale ikterus-epidemie.Acta Med. Scand.1926Suppl. 16544553
    [Google Scholar]
  6. DruckerE. AlcabesP.G. MarxP.A. The injection century: Massive unsterile injections and the emergence of human pathogens.Lancet200135892971989199210.1016/S0140‑6736(01)06967‑7 11747942
    [Google Scholar]
  7. World Health Organization. Prevention and control of viral hepatitis infection framework for global action.2012Available from: http://www.who.int/csr/disease/hepatitis/GHP_Framework_En.pdf
  8. CaccamoG. SaffiotiF. RaimondoG. Hepatitis B virus and hepatitis C virus dual infection.World J. Gastroenterol.20142040145591456710.3748/wjg.v20.i40.14559 25356020
    [Google Scholar]
  9. FeinstoneS.M. KapikianA.Z. PurcellR.H. AlterH.J. HollandP.V. Transfusion-associated hepatitis not due to viral hepatitis type A or B.N. Engl. J. Med.19752921576777010.1056/NEJM197504102921502 163436
    [Google Scholar]
  10. LiangT.J. HepatitisB. The virus and disease.Hepatology200949S5S13S2110.1002/hep.22881 19399811
    [Google Scholar]
  11. HoofnagleJ.H. Course and outcome of hepatitis C.Hepatology2002365S21S29 12407573
    [Google Scholar]
  12. ChooQ.L. KuoG. WeinerA.J. OverbyL.R. BradleyD.W. HoughtonM. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.Science1989244490235936210.1126/science.2523562 2523562
    [Google Scholar]
  13. BukhJ. PurcellR.H. MillerR.H. At least 12 genotypes of hepatitis C virus predicted by sequence analysis of the putative E1 gene of isolates collected worldwide.Proc. Natl. Acad. Sci.199390178234823810.1073/pnas.90.17.8234 8396266
    [Google Scholar]
  14. BukhJ. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control.J. Hepatol.2016651S2S2110.1016/j.jhep.2016.07.035 27641985
    [Google Scholar]
  15. ApweilerR. BairochA. WuC.H. BarkerW.C. BoeckmannB. FerroS. GasteigerE. HuangH. LopezR. MagraneM. MartinM.J. NataleD.A. O’DonovanC. RedaschiN. YehL.S. UniProt: The Universal Protein knowledgebase.Nucleic Acids Res.20043290001115D11910.1093/nar/gkh131 14681372
    [Google Scholar]
  16. RomeroP. ObradovicZ. LiX. GarnerE.C. BrownC.J. DunkerA.K. Sequence complexity of disordered protein.Proteins2001421384810.1002/1097‑0134(20010101)42:1<38:AID‑PROT50>3.0.CO;2‑3 11093259
    [Google Scholar]
  17. PengK. RadivojacP. VuceticS. DunkerA.K. ObradovicZ. Length-dependent prediction of protein intrinsic disorder.BMC Bioinformatics20067120810.1186/1471‑2105‑7‑208 16618368
    [Google Scholar]
  18. PengK. VuceticS. RadivojacP. BrownC.J. DunkerA.K. ObradovicZ. Optimizing long intrinsic disorder predictors with protein evolutionary information.J. Bioinform. Comput. Biol.200531356010.1142/S0219720005000886 15751111
    [Google Scholar]
  19. OkamotoH. ImaiM. ShimozakiM. HoshiY. IizukaH. GotandaT. TsudaF. MiyakawaY. MayumiM. Nucleotide sequence of a cloned hepatitis B virus genome, subtype ayr: Comparison with genomes of the other three subtypes.J. Gen. Virol.198667112305231410.1099/0022‑1317‑67‑11‑2305 3783127
    [Google Scholar]
  20. InchauspeG. ZebedeeS. LeeD.H. SugitaniM. NasoffM. PrinceA.M. Genomic structure of the human prototype strain H of hepatitis C virus: Comparison with American and Japanese isolates.Proc. Natl. Acad. Sci.19918822102921029610.1073/pnas.88.22.10292 1658800
    [Google Scholar]
  21. ZhouJ. OldfieldC.J. YanW. ShenB. DunkerA.K. Identification of intrinsic disorder in complexes from the protein data bank.ACS Omega2020529178831789110.1021/acsomega.9b03927 32743159
    [Google Scholar]
  22. GautamA. SinghH. TyagiA. ChaudharyK. KumarR. KapoorP. RaghavaG.P.S. CPPsite: A curated database of cell penetrating peptides.Database201220120bas01510.1093/database/bas015 22403286
    [Google Scholar]
  23. PolancoC. Castañón-GonzálezJ.A. UverskyV.N. BuhseT. Samaniego MendozaJ.L. CalvaJ.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins.Acta Biochim. Pol.201764199111 27824362
    [Google Scholar]
  24. PolancoC. HubermanA. Hernández-LemusE. UverskyV.N. Rios CastroM. Martnez-GarciaM. Vargas-AlarcónG. BuhseT. Pimentel HernándezC. ZazuetaC. Roldan GomezF.R. López OlivaE.J. Bioinformatics-based characterization of the variability of MPOX virus proteins.Lett. Drug Des. Discov.2024
    [Google Scholar]
  25. DayhoffG.W. UverskyV.N. Rapid prediction and analysis of protein intrinsic disorder.Protein Sci.20223112e4496
    [Google Scholar]
  26. MészárosB. ErdősG. DosztányiZ. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding.Nucleic Acids Res.201846W1W329W33710.1093/nar/gky384 29860432
    [Google Scholar]
  27. BrettinT. DavisJ.J. DiszT. EdwardsR.A. GerdesS. OlsenG.J. OlsonR. OverbeekR. ParrelloB. PuschG.D. ShuklaM. ThomasonJ.A.III StevensR. VonsteinV. WattamA.R. XiaF. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.Sci. Rep.201551836510.1038/srep08365 25666585
    [Google Scholar]
  28. RomeroP.R. ZaidiS. FangY.Y. UverskyV.N. RadivojacP. OldfieldC.J. CorteseM.S. SickmeierM. LeGallT. ObradovicZ. DunkerA.K. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms.Proc. Natl. Acad. Sci.2006103228390839510.1073/pnas.0507916103 16717195
    [Google Scholar]
  29. SharifniaZ. BandehpourM. KazemiB. ZarghamiN. Design and development of modified mRNA encoding the core antigen of the hepatitis C virus: A possible application in vaccine production.Iran. Biomed. J.2019231576710.29252/ibj.23.1.57 30056690
    [Google Scholar]
  30. McGregorJ. HardyJ.M. LayC.S. BooI. PiontekM. SuckowM. CoulibalyF. PoumbouriosP. CenterR.J. DrummerH.E. Virus-like particles containing the E2 core domain of hepatitis C virus generate broadly neutralizing antibodies in guinea pigs.J. Virol.2022965e01675e2110.1128/jvi.01675‑21 34986001
    [Google Scholar]
  31. ArafaM. BesheerT. El-ErakyA.M. Abo El-khairS.M. ElsamanoudyA.Z. Genetic variants of XRCC1 and risk of hepatocellular carcinoma in chronic hepatitis C patients.Br. J. Biomed. Sci.2019762646910.1080/09674845.2019.1594487 31025604
    [Google Scholar]
  32. BarooahP. SaikiaS. KalitaM.J. BharadwajR. SarmahP. BhattacharyyaM. GoswamiB. MedhiS. IL-10 polymorphisms and haplotypes predict susceptibility to hepatocellular carcinoma occurrence in patients with hepatitis C virus infection from Northeast India.Viral Immunol.202033645746710.1089/vim.2019.0170 32352886
    [Google Scholar]
  33. SchöbelA. Nguyen-DinhV. SchumannG.G. HerkerE. Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells.PLoS Pathog.2021174e100949610.1371/journal.ppat.1009496 33872335
    [Google Scholar]
  34. TranG. The role of hepatitis C virus in the pathogenesis of hepatocellular carcinoma.Biosci. Horiz.20081216717510.1093/biohorizons/hzn020
    [Google Scholar]
  35. GrakouiA. WychowskiC. LinC. FeinstoneS.M. RiceC.M. Expression and identification of hepatitis C virus polyprotein cleavage products.J. Virol.19936731385139510.1128/jvi.67.3.1385‑1395.1993 7679746
    [Google Scholar]
  36. HijikataM. KatoN. OotsuyamaY. NakagawaM. ShimotohnoK. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis.Proc. Natl. Acad. Sci.199188135547555110.1073/pnas.88.13.5547 1648221
    [Google Scholar]
  37. CocquerelL. MeunierJ.C. PillezA. WychowskiC. DubuissonJ. A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2.J. Virol.19987232183219110.1128/JVI.72.3.2183‑2191.1998 9499075
    [Google Scholar]
  38. KettinenH. GraceK. GrunertS. ClarkeB. RowlandsD. JacksonR. Mapping of the internal ribosome entry site at the 5′ end of the hepatitis C virus genome In Viral Hepatitis and Liver Disease.Proceedings of the International Symposium on Viral Hepatitis and Liver Disease: Molecules TodayMore Cures Tomorrow, Tokyo1993125131
    [Google Scholar]
  39. DengL.P. GuiX.E. ZhangY.X. GaoS.C. YangR.R. Impact of human immunodeficiency virus infection on the course of hepatitis C virus infection: A meta-analysis.World J. Gastroenterol.2009158996100310.3748/wjg.15.996 19248201
    [Google Scholar]
  40. ChanD.P.C. SunH.Y. WongH.T.H. LeeS.S. HungC.C. Sexually acquired hepatitis C virus infection: A review.Int. J. Infect. Dis.201649475810.1016/j.ijid.2016.05.030 27270138
    [Google Scholar]
  41. JianWu Y.; Shu Chen, L.; Gui Qiang, W. Effects of fatty liver and related factors on the efficacy of combination antiviral therapy in patients with chronic hepatitis C.Liver Int.200626216617210.1111/j.1478‑3231.2005.01219.x 16448454
    [Google Scholar]
  42. LampertB.C. KisslingK. Approaches and strategies to manage the hepatitis C virus-positive heart donor.Curr. Opin. Organ Transplant.202227322923410.1097/MOT.0000000000000984 35649114
    [Google Scholar]
  43. ZarkasiK.A. AbdullahN. Abdul MuradN.A. AhmadN. JamalR. Genetic factors for coronary heart disease and their mechanisms: A meta-analysis and comprehensive review of common variants from genome-wide association studies. diagnostics20221210256110.3390/diagnostics12102561 36292250
    [Google Scholar]
  44. TeH.S. JensenD.M. Epidemiology of hepatitis B and C viruses: A global overview.Clin. Liver Dis.2010141121[vii].10.1016/j.cld.2009.11.009 20123436
    [Google Scholar]
  45. MelikokiV. KourlabaG. KanavakiI. FessatouS. PapaevangelouV. Seroprevalence of hepatitis C in children without identifiable risk-factors: A systematic review and meta-analysis.J. Pediatr. Gastroenterol. Nutr.2021726e140e14810.1097/MPG.0000000000003099 33633077
    [Google Scholar]
  46. Abdel-GawadM. Abd-elsalamS. Abdel-GawadI. Tag-AdeenM. El-SayedM. Abdel-MalekD. Seroprevalence of hepatitis C virus infection in children: A systematic review and META‐ANALYSIS.Liver Int.20224261241124910.1111/liv.15212 35220648
    [Google Scholar]
  47. SperryA.B. BennettA. WenJ. Hepatitis B and C in children.Clin. Liver Dis.202226340342010.1016/j.cld.2022.03.005 35868682
    [Google Scholar]
  48. BenovaL. MohamoudY.A. CalvertC. Abu-RaddadL.J. Vertical transmission of hepatitis C virus: Systematic review and meta-analysis.Clin. Infect. Dis.201459676577310.1093/cid/ciu447
    [Google Scholar]
  49. World Health Organization(WHO). Global health sector strategies on, respectively, HIV, viral hepatitis, and sexually transmitted infections for the period 2022–2023.2022Available from https://www.who.int/publications/i/item/9789240053779
  50. IndolfiG. GuidoM. AzzariC. RestiM. Histopathology of hepatitis C in children, a systematic review: Implications for treatment.Expert Rev. Anti Infect. Ther.201513101225123510.1586/14787210.2015.1070668 26202832
    [Google Scholar]
  51. BasitH. TyagiI. KoiralaJ. Hepatitis C. [Updated 2023 Mar 26].StatPearls [Internet].Treasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  52. PisanoM.B. GiadansC.G. FlichmanD.M. RéV.E. PreciadoM.V. ValvaP. Viral hepatitis update: Progress and perspectives.World J. Gastroenterol.202127264018404410.3748/wjg.v27.i26.4018
    [Google Scholar]
  53. SaraceniC. BirkJ. A review of hepatitis B virus and hepatitis C virus immunopathogenesis. J. Clin. Transl. Hepatol.202100000000010.14218/JCTH.2020.0009534221927
    [Google Scholar]
  54. OttJ.J. StevensG.A. GroegerJ. WiersmaS.T. Global epidemiology of hepatitis B virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity.Vaccine201230122212221910.1016/j.vaccine.2011.12.116
    [Google Scholar]
  55. DusheikoG. AgarwalK. MainiM.K. New approaches to chronic hepatitis B.N. Engl. J. Med.20233881556910.1056/NEJMra2211764 36599063
    [Google Scholar]
  56. KhanamA. ChuaJ.V. KottililS. Immunopathology of chronic hepatitis B infection: Role of innate and adaptive immune responses in disease progression.Int. J. Mol. Sci.20212211549710.3390/ijms22115497 34071064
    [Google Scholar]
  57. ZhengJ.R. WangZ.L. FengB. Hepatitis B functional cure and immune response.Front. Immunol.2022131075916107591610.3389/fimmu.2022.1075916 36466821
    [Google Scholar]
  58. ChigbuD. LoonawatR. SehgalM. PatelD. JainP. Hepatitis C virus infection: Host-virus interaction and mechanisms of viral persistence.Cells20198437610.3390/cells8040376 31027278
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808264877231014175922
Loading
/content/journals/lddd/10.2174/0115701808264877231014175922
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test