Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Chronic myeloid leukemia (CML) is considered a type of hematopoietic stem cell disease that affects the bone marrow and blood.

Objective

This study aimed to investigate the possible role of the extract CII-3 (PAE CII-3) in the aging of K562 cells.

Materials and Methods

The proliferation and cell cycle of K562 cells were determined using the CCK-8 assay and the cell cycle assay, respectively. K562 cells were stained with SA-β-Gal to evaluate cell aging. The mitochondrial membrane potential of K562 cells was detected with the JC-1 mitochondrial membrane potential assay kit. Telomerase activity was verified using the PCR assay. The transcription of silencing information regulator 2 related enzyme 1 (SIRT1), TSC2, and the mTOR gene were evaluated with RT-PCR assay. The expression of SIRT1, p-TSC2, and p-mTOR was examined using a Western blot assay.

Results

PAE CII-3 at all concentrations (5, 10, 20, 40, 80, 160 μg/mL) demonstrated obvious inhibitory effects on K562 cell proliferation, among which 80 μg/mL showed the highest inhibitory effect. PAE CII-3 significantly blocked the cell cycle and reduced the colony-forming unit (CFU) of K562 cells compared to those in the Control group ( < 0.001). PAE CII-3 markedly increased positive SA-β-Gal staining K562 cells compared to the Control group ( < 0.001). PAE CII-3 significantly reduced mitochondrial membrane potential and decreased TERT gene transcription in K562 cells compared to those of the Control group ( < 0.001). The transcription of the SIRT1 gene ( < 0.01) and the TCS2 gene ( < 0.001) was markedly decreased, and the transcription of the mTOR gene ( < 0.05) was significantly increased in K562 cells treated with PAE CII-3 compared to those of the Control group. PAE CII-3 significantly decreased the expression of SIRT1 ( < 0.01) and p-TSC2 ( < 0.001) and upregulated the expression of p-mTOR ( < 0.01) in K562 cells compared to those of the Control group.

Conclusion

PAE CII-3 treatment could trigger aging in K562 cells by activating the SIRT1/TSC2/mTOR signaling pathway. This study would provide a potential hypothesis of the mechanism by which PAE CII-3 treatment induces the aging of chronic myeloid leukemia cells.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808252949231012113909
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. LiuY.H. ZhuM. LeiP.P. PanX.Y. MaW.N. ND-09 inhibits chronic myeloid leukemia K562 cell growth by regulating BCR-ABL signaling.Oncol. Rep.202146113610.3892/or.2021.8087 34036393
    [Google Scholar]
  2. SumiK. TagoK. NakazawaY. TakahashiK. OheT. MashinoT. Funakoshi-TagoM. Novel mechanism by a Bis-pyridinium fullerene derivative to induce apoptosis by enhancing the MEK-ERK pathway in a reactive oxygen species-independent manner in BCR-ABL-positive chronic myeloid leukemia-derived K562 cells.Int. J. Mol. Sci.202223274910.3390/ijms23020749 35054935
    [Google Scholar]
  3. Calvo-AlvarezJ. Jimenez-Del-RioM. Velez-PardoC. Vitamin E TPGS 1000 induces apoptosis in the K562 cell line: Implications for chronic myeloid leukemia.Oxid. Med. Cell. Longev.2021202111510.1155/2021/5580288 34211630
    [Google Scholar]
  4. SoveriniS. ManciniM. BavaroL. CavoM. MartinelliG. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy.Mol. Cancer20181714910.1186/s12943‑018‑0780‑6
    [Google Scholar]
  5. FeriottoG. TagliatiF. BrunelloA. BeninatiS. TabolacciC. MischiatiC. A central contribution of TG2 activity to the antiproliferative and pro-apoptotic effects of caffeic Acid in K562 cells of human chronic myeloid leukemia.Int. J. Mol. Sci.202223231500410.3390/ijms232315004 36499332
    [Google Scholar]
  6. YungY. LeeE. ChuH.T. YipP.K. GillH. Targeting abnormal hematopoietic stem cells in chronic myeloid leukemia and philadelphia chromosome-negative classical myeloproliferative neoplasms.Int. J. Mol. Sci.202122265910.3390/ijms22020659 33440869
    [Google Scholar]
  7. HughesT.P. MauroM.J. CortesJ.E. MinamiH. ReaD. DeAngeloD.J. BrecciaM. GohY.T. TalpazM. HochhausA. le CoutreP. OttmannO. HeinrichM.C. SteegmannJ.L. DeiningerM.W.N. JanssenJ.J.W.M. MahonF.X. MinamiY. YeungD. RossD.M. TallmanM.S. ParkJ.H. DrukerB.J. HyndsD. DuanY. MeilleC. Hourcade-PotelleretF. VanasseK.G. LangF. KimD.W. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure.N. Engl. J. Med.2019381242315232610.1056/NEJMoa1902328 31826340
    [Google Scholar]
  8. ZhangY. LouY. WangJ. YuC. ShenW. Research status and molecular mechanism of the traditional chinese medicine and antitumor therapy combined strategy based on tumor microenvironment.Front. Immunol.20211160970510.3389/fimmu.2020.609705 33552068
    [Google Scholar]
  9. XuJ. CheY. LiuX. LiuC. MengD. PangX. HeM. LiuG. ZhangC. YangD. XiaoH. The regulating effect of CII-3 and its active components from Periplaneta americana on M1/M2 macrophage polarization.Molecules20222714441610.3390/molecules27144416 35889289
    [Google Scholar]
  10. XiaoY. GaoC. WuJ. LiJ. WangL. YouY. PengT. ZhangK. CaoM. HongJ. Periplaneta americana extract alleviates steatohepatitis in a mouse model by modulating HMGB1-mediated inflammatory response.Front. Pharmacol.20221399552310.3389/fphar.2022.995523 36278177
    [Google Scholar]
  11. XueN. HeM. LiY. WuJ. DuW. WuX. YangZ. ZhangC. LiQ. XiaoH. Periplaneta americana extract promotes intestinal mucosa repair of ulcerative colitis in rat.Acta Cir. Bras.20203510e20200100210.1590/s0102‑865020200100000002 33237174
    [Google Scholar]
  12. WangF. LiS. MaL. GengY. ShenY. ZengJ. Study on the mechanism of Periplaneta americana extract to accelerate wound healing after diabetic anal fistula operation based on network pharmacology.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/6659154 33777160
    [Google Scholar]
  13. LiL.J. XuX.H. YuanT.J. HouJ. YuC.L. PengL.H. Periplaneta Americana L. as a novel therapeutics accelerates wound repair and regeneration.Biomed. Pharmacother.201911410885810.1016/j.biopha.2019.108858 30986622
    [Google Scholar]
  14. LvH. WangY. ZhangR. ZhangH.H. PengF. Study on anti-tumor effects of periplaneta Americana polypeptide PAP-2 on H22 tumor-bearing mice.J Chin Pharm.2019305
    [Google Scholar]
  15. OuH.L. ChangX. WangX. LvY. PengF. WuX.M. Preliminary study of peptide from periplaneta Americana on antitumor immunity in L1210-bearing mice.Chung Kuo Yao Hsueh Tsa Chih2018536
    [Google Scholar]
  16. GaoG. ChenW. YanM. LiuJ. LuoH. WangC. YangP. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling.Int. J. Mol. Med.2020451195209 31746373
    [Google Scholar]
  17. TangY.L. ZhouY. WangY.P. HeY.H. DingJ.C. LiY. WangC.L. Ginsenoside Rg1 protects against Sca 1+ HSC/HPC cell aging by regulating the SIRT1 FOXO3 and SIRT3 SOD2 signaling pathways in a γ ray irradiation induced aging mice model.Exp. Ther. Med.20202021245125210.3892/etm.2020.8810 32765665
    [Google Scholar]
  18. ZhouY. WangY.P. HeY.H. DingJ.C. Ginsenoside rg1 performs anti-aging functions by suppressing mitochondrial pathway-mediated apoptosis and activating Sirtuin 3 (SIRT3)/Superoxide Dismutase 2 (SOD2) pathway in Sca-1+ HSC/HPC cells of an aging rat model.Med. Sci. Monit.202026e92066610.12659/MSM.920666 32253370
    [Google Scholar]
  19. Suarez-LopezL. SriramG. KongY.W. MorandellS. MerrickK.A. HernandezY. HaigisK.M. YaffeM.B. MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis.Proc. Natl. Acad. Sci. USA201811518E4236E424410.1073/pnas.1722020115 29666270
    [Google Scholar]
  20. ZhaoY. YangA. TuP. HuZ. Anti-tumor effects of the American cockroach, Periplaneta americana.Chin. Med.20171212610.1186/s13020‑017‑0149‑6 28919922
    [Google Scholar]
  21. MaH. LiX. CheJ. FanH. LiuQ. XiaH. The inhibitory effect of Periplaneta americana L. on hepatocellular carcinoma: Explore the anti-hepatocellular carcinoma active site and its mechanism of action.J. Ethnopharmacol.202229111488410.1016/j.jep.2021.114884 34999145
    [Google Scholar]
  22. KimI.W. ChoiR.Y. LeeJ.H. SeoM. LeeH.J. KimM.A. KimS.H. KimI. HwangJ.S. Anticancer activity of periplanetasin-5, an antimicrobial peptide from the cockroach Periplaneta americana.J. Microbiol. Biotechnol.202131101343134910.4014/jmb.2104.04040 34409948
    [Google Scholar]
  23. HuY. LuX. LiuG. LiM. PengF. Effect of Periplaneta americana extract on two human lung tumor cell lines.J. Pharm. Anal.20113712451250
    [Google Scholar]
  24. OttoT. SicinskiP. Cell cycle proteins as promising targets in cancer therapy.Nat. Rev. Cancer20171729311510.1038/nrc.2016.138 28127048
    [Google Scholar]
  25. JiangY. WangX. JinC. ChenX. WangQ. LiuG. The inhibitory effect of Periplaneta americana extract on Lewis lung cancer in Mice.J Kunming Med Coll.200751316
    [Google Scholar]
  26. JiangY. WangX. JinC. YuanF. LiuG. LiS. An experimental study of traditional Chinese medicine Kangfuxin inducing apoptosis in vitro of peptic carcinoma cell line BGC-823.J Kunming Med Coll.20062759
    [Google Scholar]
  27. DimriG.P. LeeX. BasileG. AcostaM. ScottG. RoskelleyC. MedranoE.E. LinskensM. RubeljI. Pereira-SmithO. A biomarker that identifies senescent human cells in culture and in aging skin in vivo.Proc. Natl. Acad. Sci. USA199592209363936710.1073/pnas.92.20.9363 7568133
    [Google Scholar]
  28. TowerJ. Programmed cell death in aging.Ageing. Res. Rev.201523Pt A9010010.1016/j.arr.2015.04.002
    [Google Scholar]
  29. ZengY. YangK. Sirtuin 1 participates in the process of age-related retinal degeneration.Biochem. Biophys. Res. Commun.20154681-216717210.1016/j.bbrc.2015.10.139 26522222
    [Google Scholar]
  30. AbbasianS. ShokrgozarN. TamaddonG. Sirtuin1 and chronic myeloid leukemia: A comprehensive glance at drug resistance.Clin. Lab.20216705/202110.7754/Clin.Lab.2020.200835 33978360
    [Google Scholar]
  31. MaieseK. Moving to the Rhythm with clock (circadian) genes, autophagy, mTOR, and SITR1 in degenerative disease and cancer.Curr. Neurovasc. Res.2017143299304 28721811
    [Google Scholar]
  32. TangY.L. ZhangC.G. LiuH. ZhouY. WangY.P. LiY. HanY.J. WangC.L. Ginsenoside rg1 inhibits cell proliferation and induces markers of cell senescence in CD34+CD38– leukemia stem cells derived from kg1α acute myeloid leukemia cells by activating the Sirtuin 1 (SIRT1)/Tuberous Sclerosis Complex 2 (TSC2) signaling pathway.Med. Sci. Monit.202026e91820710.12659/MSM.918207 32037392
    [Google Scholar]
  33. WeichhartT. mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review.Gerontology201864212713410.1159/000484629 29190625
    [Google Scholar]
  34. LuH. JiaC. WuD. JinH. LinZ. PanJ. LiX. WangW. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway.Cell Death Dis.2021121086510.1038/s41419‑021‑04157‑x 34556628
    [Google Scholar]
  35. ChenP. ChenF. LeiJ. LiQ. ZhouB. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin a attenuates d-galactose-induced brain aging in mice.Neurotherapeutics20191641269128210.1007/s13311‑019‑00753‑0 31420820
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808252949231012113909
Loading
/content/journals/lddd/10.2174/0115701808252949231012113909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test