Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The lead compounds isolated from medicinal plants constitute a matrix for research and discovery of new drugs using study and molecular docking.

Objective

This work explores the study and the molecular docking of two rare phytochemicals, namely Microphynolide A (1) and Microphynolide B (2), isolated from the Saharan medicinal plant ( family).

Methods

In the current work, several integrated web-based pharmacokinetic tools were used to estimate the druggability of two isolated phytochemicals. In addition, molecular docking was conducted using AutoDockVina 4.2 to study the binding interactions with the targets predicted employing the PharmMapper server. The toxicological study was evaluated using ProTox-II online server. DFT methods were utilized to evaluate some physicochemical properties of structures, vibrational wavenumbers, and molecular electrostatic potentials.

Results

Molecules (1) and (2) showed good ADMET profiles and antineoplastic activity. Also, they exhibited non-toxicity and belong to the Toxicity class VI (LD50 >8000 mg/kg) with immunotoxic activity. A good correlation was observed between the experimental and theoretical IR spectra, with no negative values in the theoretical spectra indicating the high stability of these compounds. Docking simulation studies against protein receptors Sulfotransferase 1A1 (PDB ID: 1LS6) and Angiogenin (PDB ID: 1B1I) displayed good binding affinity values of -5.8 and -6.8 kcal/mol, respectively, with number of H-bonding interactions. Furthermore, the control molecules -Nitrophenol (pNP), Dopamine, Axitinib and Bevacizumab displayed values of binding energies of -6.7, -6.7, -6.9 and -6.3 Kcal/mol, respectively.

Conclusion

This study provides evidence supporting that the two molecules could be effective drugs to inhibit cancer cells and did not show any acute toxicity or mutagenic effects.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230726111321
2023-09-07
2025-07-08
Loading full text...

Full text loading...

References

  1. NabatiM. KermanianM. Mohammadnejad-mehrabaniH. Rahbar KafshboranH. MehmannavazM. SarsharS. Theoretical investigation on the antitumor drug: Thiotepa and its interaction with s-donor biomolecules and dna purine bases.Chem. Methodol.201822128140
    [Google Scholar]
  2. SubramanyamM. SreenivasuluR. GundlaR. RaoM.V.B. RaoK.P. Synthesis, biological evaluation and docking studies of 1,3,4-oxadiazole fused benzothiazole derivatives for anticancer drugs.Lett. Drug Des. Discov.201815121299130710.2174/1570180815666180219165119
    [Google Scholar]
  3. RemingtonM.D. The Science and Practice of Pharmacy.19th ed.PennsylvaniaMACK Publishing Company1995
    [Google Scholar]
  4. GilchristT.L. Heterocyclic Chemistry.3rd ed.EnglandAddison-Wesley1997
    [Google Scholar]
  5. Bramhananda ReddyN. BurraV.R. RavindranathL.K. Naresh KumarV. SreenivasuluR. SadanandamP. Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents.Monatsh. Chem.2016147359960410.1007/s00706‑016‑1684‑z
    [Google Scholar]
  6. PadmajaP. YedukondaluM. SridharR. BusiS. RaoM. Synthesis and antimicrobial screening of novel 3,5-disubstituted indazole derivatives.Lett. Drug Des. Discov.201310762563110.2174/1570180811310070010
    [Google Scholar]
  7. MehtaB. RambabuD. RajaG. PrasadA. FangJ.M. RaoM. Synthesis of novel macrocyclic tetra amides.Lett. Drug Des. Discov.201411675676110.2174/1570180811666140116215724
    [Google Scholar]
  8. CaronP.R. MullicanM.D. MashalR.D. WilsonK.P. SuM.S. MurckoM.A. Chemogenomic approaches to drug discovery.Curr. Opin. Chem. Biol.20015446447010.1016/S1367‑5931(00)00229‑5 11470611
    [Google Scholar]
  9. KhanF. Kumar YadavD. MauryaA. Kumar SrivastavaS. Modern methods & web resources in drug design & discovery.Lett. Drug Des. Discov.20118546949010.2174/157018011795514249
    [Google Scholar]
  10. Sams-DoddF. Drug discovery: Selecting the optimal approach.Drug Discov. Today2006119-1046547210.1016/j.drudis.2006.03.015 16635811
    [Google Scholar]
  11. BharathE.N. ManjulaS.N. VijaychandA. In silico drug design tool for overcoming the innovation deficit in the drug discovery process.Int. J. Pharm. Pharm. Sci.20113812
    [Google Scholar]
  12. SarnpitakP. MujumdarP. TaylorP. CrossM. CosterM.J. GorseA.D. KrasavinM. HofmannA. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery.Biotechnol. Adv.201533694194710.1016/j.biotechadv.2015.05.006 26025037
    [Google Scholar]
  13. AsadaY. SukemoriA. WatanabeT. MallaK.J. YoshikawaT. LiW. KuangX. KoikeK. ChenC.H. AkiyamaT. QianK. Nakagawa-GotoK. Morris-NatschkeS.L. LuY. LeeK.H. Isolation, structure determination, and anti-HIV evaluation of tigliane-type diterpenes and biflavonoid from Stellera chamaejasme.J. Nat. Prod.201376585285710.1021/np300815t 23611151
    [Google Scholar]
  14. RamsewakR.S. NairM.G. DeWittD.L. MattsonW.G. ZasadaJ. Phenolic glycosides from Dirca palustris.J. Nat. Prod.199962111558156110.1021/np9903595 10579873
    [Google Scholar]
  15. LeeK.H. TagaharaK. SuzukiH. WuR.Y. HarunaM. HallI.H. HuangH.C. ItoK. IidaT. LaiJ.S. Antitumor agents. 49 tricin, kaempferol-3-O-β-D-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from Wikstroemia indica.J. Nat. Prod.198144553053510.1021/np50017a003 7320737
    [Google Scholar]
  16. YangL. QiaoL. JiC. XieD. GongN.B. LuY. ZhangJ. DaiJ. GuoS. Antidepressant abietane diterpenoids from Chinese eaglewood.J. Nat. Prod.201376221622210.1021/np3006925 23394318
    [Google Scholar]
  17. BoukefM.K. Cultural and technical cooperation agency. Raditional medicine and pharmacoTpoeia. Plants in traditional Tunisian medicineParis, France1986
    [Google Scholar]
  18. DahamnaS. DehimiK. MerghemM. DjarmouniM. BouamraD. HarzallahD. KhennoufS. Antioxidant, antibacterial and hypoglycemicactivity of extractsfrom Thymelaea microphylla Coss. et Dur.Int. J. Phytocosmet. Nat. Ingred.2015211510.15171/ijpni.2015.15
    [Google Scholar]
  19. NomanL. ZellaguiA. HallisY. YagliogluA.S. DemirtasI. GherrafN. RhouatiS. Antioxidant and antimicrobial activities of an endemic desert species Thymelea microphyllaCoss. et Dur.Der. Pharm. Lett.20157118121
    [Google Scholar]
  20. MansourR.B. ChaouachiF. FallehH. PichetteA. LegaultJ. KsouriR. Powerful anti-inflammatory, anti-Herpes and anticancer capacities of Thymelaea microphylla L. and TLC phenolic identification.J. Nat. Prod. Res. Appl.20221311610.46325/jnpra.v1i03.24
    [Google Scholar]
  21. BencheikhN. OuahhoudS. CorderoM.A.W. AlotaibiA. FakchichJ. OuassouH. AssriS.E. ChoukriM. ElachouriM. Nephroprotective and Antioxidant Effects of Flavonoid-Rich Extract of Thymelaea microphylla Coss. et Dur Aerial Part.Appl. Sci.20221218927210.3390/app12189272
    [Google Scholar]
  22. GhanemH. HabaH. MarcourtL. BenkhaledM. WolfenderJ.L. Microphynolides A and B, new spiro-γ-lactone glycosides from Thymelaea microphylla.Nat. Prod. Res.201428201732173810.1080/14786419.2014.942662 25076123
    [Google Scholar]
  23. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33
    [Google Scholar]
  24. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a 23092397
    [Google Scholar]
  25. PoroikovV.V. FilimonovD.A. IhlenfeldtW.D. GloriozovaT.A. LaguninA.A. BorodinaY.V. StepanchikovaA.V. NicklausM.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser.J. Chem. Inf. Comput. Sci.200343122823610.1021/ci020048r 12546557
    [Google Scholar]
  26. LiuX. OuyangS. YuB. LiuY. HuangK. GongJ. ZhengS. LiZ. LiH. JiangH. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach.Nucleic Acids Res.201038(Web Server issue)W6091410.1093/nar/gkq30020430828
    [Google Scholar]
  27. WangX. PanC. GongJ. LiuX. LiH. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs.J. Chem. Inf. Model.20165661175118310.1021/acs.jcim.5b00690 27187084
    [Google Scholar]
  28. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  29. DrwalM.N. BanerjeeP. DunkelM. WettigM. R. PreissnerR. ProTox: A web server for the in silico prediction of rodent oral toxicity.Nucleic Acids Res.201442(Web Server issue)W538
    [Google Scholar]
  30. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  31. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. PeterssonG.A. NakatsujiH. LiX. CaricatoM. MarenichA.V. BloinoJ. JaneskoB.G. GompertsR. MennucciB. HratchianH.P. OrtizJ.V. IzmaylovA.F. SonnenbergJ.L. Williams-YoungD. DingF. LippariniF. EgidiF. GoingsJ. PengB. PetroneA. HendersonT. RanasingheD. ZakrzewskiV.G. GaoJ. RegaN. ZhengG. LiangW. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. ThrossellK. MontgomeryJ.A.Jr PeraltaJ.E. OgliaroF. BearparkM.J. HeydJ.J. BrothersE.N. KudinK.N. StaroverovV.N. KeithT.A. KobayashiR. NormandJ. RaghavachariK. RendellA.P. BurantJ.C. IyengarS.S. TomasiJ. CossiM. MillamJ.M. KleneM. AdamoC. CammiR. OchterskiJ.W. MartinR.L. MorokumaK. FarkasO. ForesmanJ.B. FoxD.J. Gaussian, Inc., Wallingford CT..Available from: https://www.scirp.org/(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=2418053 2016
  32. LeeC. YangW. ParrR.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  33. BeckeA.D. Density‐functional thermochemistry. III. The role of exact exchange.J. Chem. Phys.19939875648565210.1063/1.464913
    [Google Scholar]
  34. JamrózM.H. Vibrational energy distribution analysis (VEDA): Scopes and limitations.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311422023010.1016/j.saa.2013.05.096 23778167
    [Google Scholar]
  35. IrikuraK.K. JohnsonR.D.III KackerR.N. Uncertainties in scaling factors for ab initio vibrational frequencies.J. Phys. Chem. A2005109378430843710.1021/jp052793n 16834237
    [Google Scholar]
  36. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  37. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.019 11259830
    [Google Scholar]
  38. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  39. SrimaiV. RameshM. Satya ParameshwarK. ParthasarathyT. Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives.Med. Chem. Res.201322115314532310.1007/s00044‑013‑0532‑5
    [Google Scholar]
  40. ParamashivamS.K. ElayaperumalK. NatarajanB. RamamoorthyM. BalasubramanianS. DhiraviamK. In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases.Bioinformation2015112738410.6026/97320630011073 25848167
    [Google Scholar]
  41. YangC. LiQ. LiY. Targeting nuclear receptors with marine natural products.Mar. Drugs201412260163510.3390/md12020601 24473166
    [Google Scholar]
  42. AminM.L. P-glycoprotein inhibition for optimal drug delivery.Drug Target Insights201377DTI.S1251910.4137/DTI.S1251924023511
    [Google Scholar]
  43. LevinG.M. P-glycoprotein: Why this drug transporter may be clinically important.Curr. Psychiatr.2012113840
    [Google Scholar]
  44. El-ajailyM.M. SarangiA.K. MohapatraR.K. HassanS.S. EldaghareR.N. MohapatraP.K. RavalM.K. DasD. MahalA. CipurkovicA. Al-NoorT.H. Transition metal complexes of (E)‐2((2‐hydroxybenzylidene) amino‐3‐mercaptopropanoic acid: XRD, anticancer, molecular modeling and molecular docking studies.ChemistrySelect201943499991000510.1002/slct.201902306
    [Google Scholar]
  45. YousefT.A. Abu El-ReashG.M. El MorshedyR.M. Quantum chemical calculations, experimental investigations and DNA studies on (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes.Polyhedron2012451718510.1016/j.poly.2012.07.041
    [Google Scholar]
  46. ChermetteH. Chemical reactivity indexes in density functional theory.J. Comput. Chem.199920112915410.1002/(SICI)1096‑987X(19990115)20:1<129::AID‑JCC13>3.0.CO;2‑A
    [Google Scholar]
  47. ParrR.G. SzentpályL. LiuS. Electrophilicity Index.J. Am. Chem. Soc.199912191922192410.1021/ja983494x
    [Google Scholar]
  48. ParrR.G. DonnellyR.A. LevyM. PalkeW.E. Electronegativity: The density functional viewpoint.J. Chem. Phys.19786883801380710.1063/1.436185
    [Google Scholar]
  49. KoopmansT. On the assignment of wave functions and eigenvalues to the individual electrons of an atom.Physica193411-610411310.1016/S0031‑8914(34)90011‑2
    [Google Scholar]
  50. DomingoL.R. PérezP. The nucleophilicity N index in organic chemistry.Org. Biomol. Chem.20119207168717510.1039/c1ob05856h 21842104
    [Google Scholar]
  51. PolitzerP. LaurenceP.R. JayasuriyaK. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena.Environ. Health Perspect.19856119120210.1289/ehp.8561191 2866089
    [Google Scholar]
  52. MurrayJ.S. PolitzerP. The electrostatic potential: An overview.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111215316310.1002/wcms.19
    [Google Scholar]
  53. GadreS.R. SureshC.H. MohanN. Electrostatic potential topology for probing molecular structure, bonding and reactivity.Molecules20212611328910.3390/molecules26113289 34072507
    [Google Scholar]
  54. LakshminarayananS. JeyasinghV. MurugesanK. SelvapalamN. DassG. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions.J. Photochem. Photobiol.2021610002210.1016/j.jpap.2021.100022
    [Google Scholar]
  55. CampanarioJ.M. BronchaloE. HidalgoM.A. An effective approach for teaching intermolecular interactions.J. Chem. Educ.199471976110.1021/ed071p761
    [Google Scholar]
  56. KhaouaO. BenbellatN. ZeroualS. MouffoukS. GolhenS. GouasmiaA. ChermetteH. HabaH. Combined experimental, computational studies (synthesis, crystal structural, DFT calculations, spectral analysis) and biological evaluation of the new homonuclear complex Di-μ-benzoato-bis [benzoatodipyridine-cobalt (II)].J. Mol. Struct.2023127313433110.1016/j.molstruc.2022.134331
    [Google Scholar]
  57. HiremathS.M. KhemalapureS.S. HiremathC.S. PatilA.S. BasanagoudaM. Quantum chemical computational and spectroscopic (IR, Raman, NMR, and UV) studies on the 5-(5-methoxy-benzofuran-3-ylmethyl)-3H-[1, 3, 4] oxadiazole-2-thione.J. Mol. Struct.2020121012804110.1016/j.molstruc.2020.128041
    [Google Scholar]
  58. Basha AF. KhanF.L.A. MuthuS. RajaM. Elaborated molecular structure, molecular docking and vibrational spectroscopic investigation of N-((4-aminophenyl)sulfonyl)benzamide with Density functional theory.Chem. Data Collect.20213110060910.1016/j.cdc.2020.100609
    [Google Scholar]
  59. LipinD.V. DenisovaE.I. ShipilovskikhD.A. MakhmudovR.R. IgidovN.M. ShipilovskikhS.A. Synthesis, intramolecular cyclization, and anti-inflammatory activity of substituted 2-[2-(4-R-Benzoyl)hydrazinylidene]-4-oxobutanoic Acids.Russ. J. Org. Chem.202258121759176810.1134/S1070428022120041
    [Google Scholar]
  60. MoosavinejadS.M. MadhoushiM. VakiliM. RasouliD. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy.Maderas Cienc. Tecnol.201921ahead010.4067/S0718‑221X2019005000310
    [Google Scholar]
  61. FatimaA. KhanumG. Kumar SrivastavaS. VermaI. SiddiquiN. JavedS. Synthesis, computational, spectroscopic, hirshfeld surface, electronic state and molecular docking studies on diethyl-5-amino-3-methylthiophene-2,4-dicarboxylate.Chem. Phys. Lett.202178413910310.1016/j.cplett.2021.139103
    [Google Scholar]
  62. BarnettA.C. TsvetanovS. GamageN. MartinJ.L. DugglebyR.G. McManusM.E. Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3.J. Biol. Chem.200427918187991880510.1074/jbc.M312253200 14871892
    [Google Scholar]
  63. SwannJ. MurryJ. YoungJ.A.T. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages.Virol. J.20161313010.1186/s12985‑016‑0491‑9 26906565
    [Google Scholar]
  64. FätkenheuerG. PozniakA.L. JohnsonM.A. PlettenbergA. StaszewskiS. HoepelmanA.I.M. SaagM.S. GoebelF.D. RockstrohJ.K. DezubeB.J. JenkinsT.M. MedhurstC. SullivanJ.F. RidgwayC. AbelS. JamesI.T. YouleM. van der RystE. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1.Nat. Med.200511111170117210.1038/nm1319 16205738
    [Google Scholar]
  65. ShapiroR. ValleeB.L. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA.J. Cell. Biochem.199146179185
    [Google Scholar]
  66. KishimotoK. LiuS. TsujiT. OlsonK.A. HuG. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis.Oncogene200524344545610.1038/sj.onc.1208223 15558023
    [Google Scholar]
  67. WuD. YuW. KishikawaH. FolkerthR.D. IafrateA.J. ShenY. XinW. SimsK. HuG. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis.Ann. Neurol.200762660961710.1002/ana.21221 17886298
    [Google Scholar]
  68. ZhangY. WangY. WeiY. WuJ. ZhangP. ShenS. Structural insights into the catalytic mechanism of human angiogenin-ALS-causing mutants: A molecular dynamics simulation study.J. Mol. Graph. Model.202097107601
    [Google Scholar]
  69. GangulyT.C. KrasnykhV. FalanyC.N. Bacterial expression and kinetic characterization of the human monoamine-sulfating form of phenol sulfotransferase.Drug Metab. Dispos.1995239945950 8565785
    [Google Scholar]
  70. ReiterC. MwalukoG. DunnetteJ. Van LoonJ. WeinshilboumR. Thermolabile and thermostable human platelet phenol sulfotransferase.Naunyn Schmiedebergs Arch. Pharmacol.1983324214014710.1007/BF00497020 6139755
    [Google Scholar]
  71. RaftogianisR.B. WoodT.C. WeinshilboumR.M. Human phenol sulfotransferases SULT1A2 and SULT1A1.Biochem. Pharmacol.199958460561610.1016/S0006‑2952(99)00145‑8 10413297
    [Google Scholar]
  72. RenS. XiongX. YouH. ShenJ. ZhouP. The combination of immune checkpoint blockade and angiogenesis inhibitors in the treatment of advanced non-small cell lung cancer.Front. Immunol.20211268913210.3389/fimmu.2021.689132 34149730
    [Google Scholar]
  73. RaniV. PrabhuA. Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment.Curr. Pharm. Des.202127791993110.2174/1381612826666201002145454 33006535
    [Google Scholar]
  74. MajnooniM.B. FakhriS. GhanadianS.M. BahramiG. MansouriK. IranpanahA. FarzaeiM.H. MojarrabM. Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways.Metabolites202313332310.3390/metabo13030323 36984763
    [Google Scholar]
  75. KaoR.Y.T. JenkinsJ.L. OlsonK.A. KeyM.E. FettJ.W. ShapiroR. A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity.Proc. Natl. Acad. Sci.20029915100661007110.1073/pnas.152342999 12118120
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230726111321
Loading
/content/journals/lddd/10.2174/1570180820666230726111321
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test