Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Breast cancer is one of the most prevalent malignancies among women around the world. , a natural food coloring and flavoring, has potent anti-tumor properties. The aim of the current study was to investigate the therapeutic potential of crocin, the main pharmacological active component of saffron, either alone or in combination with the standard chemotherapeutic treatment, 5-FU, in Breast cancer (BC) progression in both cellular and animal models.

Material and Methods

MTT, Real-Time PCR, Western Blotting, Hematoxylin and eosin () tissue staining were applied to determine the anti-tumor properties of crocin in and samples.

Results

Our findings showed that crocin decreased breast cancer cell proliferation by suppressing cyclin D1 expression and Wnt/β-catenin signaling activation. Moreover, this molecule improved 5-FU anti-cancer activities by decreasing the tumor volume and weight, increasing tumor necrosis, and suppressing tumor inflammation in an animal model. Inflammation-associated anti-cancer activity of crocin is mediated by the down-regulation of pro-inflammatory genes, including IFN-γ and IL-1β, as well as inhibition of oxidative stress responses within the tumor environment.

Conclusion

This is the first study demonstrating the potent anti-tumor properties of crocin against BC progression. Our results suggest that this effective and low-toxic molecule could be a promising agent for reducing BC tumor progression when administered either alone or in combination with standard treatment in breast cancer patients.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808258032231204080133
2024-01-23
2024-12-29
Loading full text...

Full text loading...

References

  1. BensonJ.R. JatoiI. The global breast cancer burden.Future Oncol.20128669770210.2217/fon.12.61 22764767
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  3. MillerK.D. SiegelR.L. LinC.C. MariottoA.B. KramerJ.L. RowlandJ.H. SteinK.D. AlteriR. JemalA. Cancer treatment and survivorship statistics, 2016.CA Cancer J. Clin.201666427128910.3322/caac.21349 27253694
    [Google Scholar]
  4. AfolabiO.K. AdelekeG.E. UgbajaR.N. Crocin alleviates 5-Fluorouracil-induced hepatotoxicity through the abrogation of oxidative stress in male wistar rats.Asian Pacific Journal of Health Sciences201632586810.21276/apjhs.2016.3.2.11
    [Google Scholar]
  5. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: Mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc1074 12724731
    [Google Scholar]
  6. SwainS.M. LippmanM.E. EganE.F. DrakeJ.C. SteinbergS.M. AllegraC.J. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer.J. Clin. Oncol.19897789089910.1200/JCO.1989.7.7.890 2661735
    [Google Scholar]
  7. RaymondE. Buquet-FagotC. DjelloulS. MesterJ. CvitkovicE. AllainP. LouvetC. GespachC. Antitumor activity of oxaliplatin in combination with 5-fluorouracil and the thymidylate synthase inhibitor AG337 in human colon, breast and ovarian cancers.Anticancer Drugs19978987688510.1097/00001813‑199710000‑00009 9402315
    [Google Scholar]
  8. González-SarríasA. Tomé-CarneiroJ. BellesiaA. Tomás-BarberánF.A. EspínJ.C. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells.Food Funct.2015651460146910.1039/C5FO00120J 25857357
    [Google Scholar]
  9. KoE.Y. MoonA. Natural products for chemoprevention of breast cancer.J. Cancer Prev.201520422323110.15430/JCP.2015.20.4.223 26734584
    [Google Scholar]
  10. GoldbergJ.E. SchwertfegerK.L. Proinflammatory cytokines in breast cancer: Mechanisms of action and potential targets for therapeutics.Curr. Drug Targets20101191133114610.2174/138945010792006799 20545607
    [Google Scholar]
  11. AminK.A. MohamedB.M. El-wakilM.A.M. IbrahemS.O. Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers.J. Breast Cancer201215330631210.4048/jbc.2012.15.3.306 23091543
    [Google Scholar]
  12. AmerizadehF. RezaeiN. RahmaniF. HassanianS.M. Moradi-MarjanehR. FiujiH. BoroumandN. Nosrati-TirkaniA. Ghayour-MobarhanM. FernsG.A. KhazaeiM. AvanA. Crocin synergistically enhances the antiproliferative activity of 5‐flurouracil through Wnt/PI3K pathway in a mouse model of colitis‐associated colorectal cancer.J. Cell. Biochem.201811912102501026110.1002/jcb.27367 30129057
    [Google Scholar]
  13. WangJ. KeY. ShuT. Crocin has pharmacological effects against the pathological behavior of colon cancer cells by interacting with the STAT3 signaling pathway.Exp. Ther. Med.202019212971303 32010302
    [Google Scholar]
  14. YaoC. LiuB.B. QianX.D. LiL.Q. CaoH.B. GuoQ.S. ZhouG.F. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity.OncoTargets Ther.2018112017202810.2147/OTT.S154586 29670377
    [Google Scholar]
  15. ChenS. ZhaoS. WangX. ZhangL. JiangE. GuY. ShangguanA.J. ZhaoH. LvT. YuZ. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells.Transl. Lung Cancer Res.201546775783 26798587
    [Google Scholar]
  16. HashemzehiM. RahmaniF. KhoshakhlaghM. AvanA. AsgharzadehF. BarnehF. Moradi-MarjanehR. SoleimaniA. FiujiH. FernsG.A. RyzhikovM. JafariM. KhazaeiM. HassanianS.M. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer.EXCLI J.202120506521 33883980
    [Google Scholar]
  17. LiB. RyderJ. SuY. ZhouY. LiuF. NiB. FRAT1 peptide decreases Aβ production in swAPP 751 cells.FEBS Lett.2003553334735010.1016/S0014‑5793(03)01042‑1 14572648
    [Google Scholar]
  18. CrossD.A.E. AlessiD.R. CohenP. AndjelkovichM. HemmingsB.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature1995378655978578910.1038/378785a0 8524413
    [Google Scholar]
  19. VigneronF. Dos SantosP. LemoineS. BonnetM. TariosseL. CouffinhalT. DuplaàC. Jaspard-VinassaB. GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways.Cardiovasc. Res.2011901495610.1093/cvr/cvr002 21233250
    [Google Scholar]
  20. CleversH. Wnt/beta-catenin signaling in development and disease.Cell2006127346948010.1016/j.cell.2006.10.018 17081971
    [Google Scholar]
  21. BehrensJ. von KriesJ.P. KühlM. BruhnL. WedlichD. GrosschedlR. BirchmeierW. Functional interaction of β-catenin with the transcription factor LEF-1.Nature1996382659263864210.1038/382638a0 8757136
    [Google Scholar]
  22. AungH.H. WangC.Z. NiM. FishbeinA. MehendaleS.R. XieJ.T. ShoyamaC.Y. YuanC.S. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells.Exp. Oncol.2007293175180 18004240
    [Google Scholar]
  23. ArziL. FarahiA. JafarzadehN. RiaziG. SadeghizadehM. HoshyarR. Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with Wnt/β-Catenin pathway in murine model.DNA Cell Biol.201837121068107510.1089/dna.2018.4351 30351203
    [Google Scholar]
  24. LiuH. WangG. YangL. QuJ. YangZ. ZhouX. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-catenin pathway.PLoS One20161112e016840610.1371/journal.pone.0168406 27977766
    [Google Scholar]
  25. ChikazawaN. TanakaH. TasakaT. NakamuraM. TanakaM. OnishiH. KatanoM. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells.Anticancer Res.201030620412048 20651349
    [Google Scholar]
  26. WangZ. LiB. ZhouL. YuS. SuZ. SongJ. SunQ. ShaO. WangX. JiangW. WillertK. WeiL. CarsonD.A. LuD. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells.Proc. Natl. Acad. Sci. USA201611346131501315510.1073/pnas.1616336113 27799526
    [Google Scholar]
  27. Takahashi-YanagaF. SasaguriT. Drug development targeting the glycogen synthase kinase-3β (GSK-3β)-mediated signal transduction pathway: inhibitors of the Wnt/β-catenin signaling pathway as novel anticancer drugs.J. Pharmacol. Sci.2009109217918310.1254/jphs.08R28FM 19179804
    [Google Scholar]
  28. DeyN. BarwickB.G. MorenoC.S. Ordanic-KodaniM. ChenZ. Oprea-IliesG. TangW. CatzavelosC. KerstannK.F. SledgeG.W.Jr AbramovitzM. BouzykM. DeP. Leyland-JonesB.R. Wnt signaling in triple negative breast cancer is associated with metastasis.BMC Cancer201313153710.1186/1471‑2407‑13‑537 24209998
    [Google Scholar]
  29. ArziL. RiaziG. SadeghizadehM. HoshyarR. JafarzadehN. A comparative study on anti-invasion, antimigration, and antiadhesion effects of the bioactive carotenoids of saffron on 4T1 breast cancer cells through their effects on Wnt/β-catenin pathway genes.DNA Cell Biol.201837869770710.1089/dna.2018.4248 29969282
    [Google Scholar]
  30. PhesseT. FlanaganD. VincanE. Frizzled7: A promising Achilles’ heel for targeting the Wnt receptor complex to treat cancer.Cancers2016855010.3390/cancers8050050 27196929
    [Google Scholar]
  31. YangL. WuX. WangY. ZhangK. WuJ. YuanY-C. DengX. ChenL. KimC.C.H. LauS. SomloG. YenY. FZD7 has a critical role in cell proliferation in triple negative breast cancer.Oncogene201130434437444610.1038/onc.2011.145 21532620
    [Google Scholar]
  32. ChangJ.X. GaoF. ZhaoG.Q. ZhangG.J. Expression and clinical significance of NEDD9 in lung tissues.Med. Oncol.20122942654266010.1007/s12032‑012‑0213‑0 22447485
    [Google Scholar]
  33. LiY. BavarvaJ.H. WangZ. GuoJ. QianC. ThibodeauS.N. GolemisE.A. LiuW. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression.Oncogene201130232633264310.1038/onc.2010.632 21317929
    [Google Scholar]
  34. KongC. WangC. WangL. MaM. NiuC. SunX. DuJ. DongZ. ZhuS. LuJ. HuangB. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer.PLoS One201167e2266610.1371/journal.pone.0022666 21829474
    [Google Scholar]
  35. GillesC. PoletteM. MestdagtM. Nawrocki-RabyB. RuggeriP. BirembautP. FoidartJ.M. Transactivation of vimentin by β-catenin in human breast cancer cells.Cancer Res.2003631026582664 12750294
    [Google Scholar]
  36. OlsenJ.J. PohlS.Ö-G. DeshmukhA. VisweswaranM. WardN.C. ArfusoF. AgostinoM. DharmarajanA. The role of Wnt signalling in angiogenesis.Clin. Biochem. Rev.2017383131142 29332977
    [Google Scholar]
  37. LehmannB.D. BauerJ.A. ChenX. SandersM.E. ChakravarthyA.B. ShyrY. PietenpolJ.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.J. Clin. Invest.201112172750276710.1172/JCI45014 21633166
    [Google Scholar]
  38. CramptonS.P. WuB. ParkE.J. KimJ.H. SolomonC. WatermanM.L. HughesC.C.W. Integration of the β-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2.PLoS One2009411e784110.1371/journal.pone.0007841 19924227
    [Google Scholar]
  39. MehnerC. HocklaA. MillerE. RanS. RadiskyD.C. RadiskyE.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer.Oncotarget2014592736274910.18632/oncotarget.1932 24811362
    [Google Scholar]
  40. DengY.H. PuX.X. HuangM.J. XiaoJ. ZhouJ.M. LinT.Y. LinE.H. 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells.Chin. J. Cancer201029981081510.5732/cjc.010.10134 20800023
    [Google Scholar]
  41. MorrisP.G. HudisC. GiriD.D. MorrowM. FalconeD.J. ZhouX.K. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer.Cancer Prev. Res.2011471021102910.1158/1940‑6207.CAPR‑11‑0110
    [Google Scholar]
  42. CalogeroR.A. CorderoF. ForniG. CavalloF. Inflammation and breast cancer. Inflammatory component of mammary carcinogenesis in ErbB2 transgenic mice.Breast Cancer Res.20079421110.1186/bcr1745 17705881
    [Google Scholar]
  43. BakshiH.A. HakkimF.L. SamS. JavidF. RashanL. Dietary crocin reverses melanoma metastasis.J. Biomed. Res.20173213950 29219852
    [Google Scholar]
  44. SosnoskiD.M. NorgardR.J. GroveC.D. FosterS.J. MastroA.M. Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment.Clin. Exp. Metastasis201532433534410.1007/s10585‑015‑9710‑9 25749879
    [Google Scholar]
  45. MandaiM. HamanishiJ. AbikoK. MatsumuraN. BabaT. KonishiI. Dual faces of IFNγ in cancer progression: A role of PD-L1 induction in the determination of pro- and antitumor immunity.Clin. Cancer Res.201622102329233410.1158/1078‑0432.CCR‑16‑0224 27016309
    [Google Scholar]
  46. HajraK.M. ChenD.Y. FearonE.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer.Cancer Res.200262616131618 11912130
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808258032231204080133
Loading
/content/journals/lddd/10.2174/0115701808258032231204080133
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 5-FU; breast cancer; crocin; malondialdehyde; Saffron
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test