Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Methamphetamine (METH) is a highly addictive neural stimulant that severely affects the CNS and can induce oxidative damage. Piperine and curcumin are active constituents that have numerous properties, including antioxidant, anti-inflammatory, and neuroprotective.

Objective

In this study, the synergistic effect of piperine and curcumin nanoparticles was investigated on the acute doses of METH-induced neurotoxicity in mice brains.

Methods

METH (6 mg/kg, i.p) was administered to 14 groups of mice and piperine-curcumin nanoparticles at different doses (10, 20, 40 mg/kg and 20, 40 and 60 mg/kg, respectively) were administered. Open field test (OFT) and conditioned place preference (CPP) were used to investigate locomotor activity, anxiety-like behavior, and addictive behavior in mice. Oxidative stress biomarkers (reactive oxygen species (ROS), protein carbonyl content, lipid peroxidation, glutathione content, and mitochondrial function were evaluated in isolated brain mitochondria.

Results

We found that piperine and curcumin nanoparticles significantly decreased hyperlocomotion and anxiety-like behavior in METH-treated mice. Also, METH enhanced CPP whilst piperine and curcumin nanoparticles suppressed the effect of METH-induced CPP. METH administration significantly increased ROS, protein carbonyl content, and lipid peroxidation and decreased glutathione content and mitochondrial function in the isolated brain mitochondria. Piperine and curcumin nanoparticles (at all doses) showed synergistic effects on reducing oxidative damages in a dose-dependent manner compared to the METH group.

Conclusion

In conclusion, combined piperine and curcumin nanoparticles showed greater neuroprotective effects against METH-induced neurotoxicity due to their greater permeability and better antioxidant properties than piperine and curcumin alone.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808249823231017103251
2023-10-27
2024-12-29
Loading full text...

Full text loading...

References

  1. MayerA. MiskellyG. A review on the current methods of methamphetamine remediation, their limitations, and chemical degradation techniques that have been investigated.Forensic Chem.20222710039910.1016/j.forc.2022.100399
    [Google Scholar]
  2. WinkelmanT.N.A. AdmonL.K. JenningsL. ShippeeN.D. RichardsonC.R. BartG. Evaluation of amphetamine-related hospitalizations and associated clinical outcomes and costs in the United States.JAMA Netw. Open201816e183758e18375810.1001/jamanetworkopen.2018.3758 30646256
    [Google Scholar]
  3. LoprestiA.L. Potential role of curcumin for the treatment of major depressive disorder.CNS Drugs202236212314110.1007/s40263‑022‑00901‑9 35129813
    [Google Scholar]
  4. KishS.J. FitzmauriceP.S. BoileauI. SchmunkG.A. AngL.C. FurukawaY. ChangL.J. WickhamD.J. SherwinA. TongJ. Brain serotonin transporter in human methamphetamine users.Psychopharmacology (Berl.)2009202464966110.1007/s00213‑008‑1346‑x 18841348
    [Google Scholar]
  5. KitamuraO. TokunagaI. GotohdaT. KuboS. Immunohistochemical investigation of dopaminergic terminal markers and caspase-3 activation in the striatum of human methamphetamine users.Int. J. Legal Med.2007121316316810.1007/s00414‑006‑0087‑9 16622715
    [Google Scholar]
  6. RadulyF. RaditoiuV. RaditoiuA. PurcarV. Curcumin: Modern applications for a versatile additive.Coatings202111551910.3390/coatings11050519
    [Google Scholar]
  7. GravesS.M. XieZ. StoutK.A. ZampeseE. BurbullaL.F. ShihJ.C. KondapalliJ. PatriarchiT. TianL. BrichtaL. GreengardP. KraincD. SchumackerP.T. SurmeierD.J. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain.Nat. Neurosci.2020231152010.1038/s41593‑019‑0556‑3 31844313
    [Google Scholar]
  8. BazylianskaV. SharmaA. ChauhanH. SchneiderB. MoszczynskaA. Dopamine and methamphetamine differentially affect electron transport chain complexes and parkin in rat striatum: New insight into methamphetamine neurotoxicity.Int. J. Mol. Sci.202123136310.3390/ijms23010363 35008791
    [Google Scholar]
  9. DavidsonC. GowA.J. LeeT.H. EllinwoodE.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment.Brain Res. Brain Res. Rev.200136112210.1016/S0165‑0173(01)00054‑6 11516769
    [Google Scholar]
  10. RyskalinL. Puglisi-AllegraS. LazzeriG. BiagioniF. BuscetiC.L. BalestriniL. FornasieroA. LeoneS. PompiliE. FerrucciM. FornaiF. Neuroprotective effects of curcumin in methamphetamine-induced toxicity.Molecules2021269249310.3390/molecules26092493 33923340
    [Google Scholar]
  11. Hadizadeh-BazazM. VaeziG. khaksariM. HojatiV. Curcumin attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against methamphetamine neurotoxicity in male Wistar rats: Histological and biochemical changes.Neurotoxicology20218420821710.1016/j.neuro.2021.03.011 33819551
    [Google Scholar]
  12. PrathipatiB. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia.Current research in behavioral sciences2021210002910.1016/j.crbeha.2021.100029
    [Google Scholar]
  13. ClarkA.J. DavisM.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.Proc. Natl. Acad. Sci. USA201511240124861249110.1073/pnas.1517048112 26392563
    [Google Scholar]
  14. YadavJ.K. Management of Alzheimer’s Disease with nutraceuticals. Nutraceuticals in Brain Health and Beyond.Elsevier202139140810.1016/B978‑0‑12‑820593‑8.00028‑8
    [Google Scholar]
  15. DongW. YangB. WangL. LiB. GuoX. ZhangM. JiangZ. FuJ. PiJ. GuanD. ZhaoR. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling.Toxicol. Appl. Pharmacol.2018346283610.1016/j.taap.2018.03.020 29571711
    [Google Scholar]
  16. ChinD. HuebbeP. PallaufK. RimbachG. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations.Curr. Med. Chem.201320323955398510.2174/09298673113209990210 23931272
    [Google Scholar]
  17. MythriR.B. BharathM.M. Curcumin: a potential neuroprotective agent in Parkinson’s disease.Curr. Pharm. Des.2012181919910.2174/138161212798918995 22211691
    [Google Scholar]
  18. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  19. Abdollahzadeh EstakhriM. ShokrzadehM. JaafariM.R. KaramiM. MohammadiH. Organ toxicity attenuation by nanomicelles containing curcuminoids: Comparing the protective effects on tissues oxidative damage induced by diazinon.Iran. J. Basic Med. Sci.20192211724 30944703
    [Google Scholar]
  20. RaoofiA. DelbariA. MahdianD. MojadadiM.S. AkhlaghiM. DadashizadehG. EbrahimiV. AminiA. GolmohammadiR. JavadiniaS.S. KhaneghahA.M. Effects of curcumin nanoparticle on the histological changes and apoptotic factors expression in testis tissue after methylphenidate administration in rats.Acta Histochem.2021123115165610.1016/j.acthis.2020.151656 33249311
    [Google Scholar]
  21. BolatZ.B. IslekZ. DemirB.N. YilmazE.N. SahinF. UcisikM.H. Curcumin-and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model.Front. Bioeng. Biotechnol.202085010.3389/fbioe.2020.00050 32117930
    [Google Scholar]
  22. HeidariH. BagherniyaM. MajeedM. SathyapalanT. JamialahmadiT. SahebkarA. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies.Phytother. Res.20233741462148710.1002/ptr.7737 36720711
    [Google Scholar]
  23. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑957450 9619120
    [Google Scholar]
  24. PariharV.K. Nano-pharmacokinetics and cancer theranostics. Nano-Pharmacokinetics and Theranostics.Elsevier202122123210.1016/B978‑0‑323‑85050‑6.00014‑1
    [Google Scholar]
  25. RahimiH.R. MohammadpourA.H. DastaniM. JaafariM.R. AbnousK. Ghayour MobarhanM. Kazemi OskueeR. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial.Avicenna J. Phytomed.201665567577 27761427
    [Google Scholar]
  26. Sadeghi GhadiZ. DinarvandR. AsemiN. Talebpour AmiriF. EbrahimnejadP. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin.Eur. J. Pharm. Sci.201913023424610.1016/j.ejps.2019.01.035 30711688
    [Google Scholar]
  27. YangC. FuX. HaoW. XiangX. LiuT. YangB.Z. ZhangX. Gut dysbiosis associated with the rats’ responses in methamphetamine‐induced conditioned place preference.Addict. Biol.2021264e1297510.1111/adb.12975 33094505
    [Google Scholar]
  28. KhodamoradiM. TirgarF. GhazviniH. RafaieeR. TamijaniS.M.S. KarimiN. YadegariA. KhachakiA.S. AkhtariJ. Role of the cannabinoid CB1 receptor in methamphetamine-induced social and recognition memory impairment.Neurosci. Lett.202277913663410.1016/j.neulet.2022.136634 35429587
    [Google Scholar]
  29. KhalifehS. KhodamoradiM. HajaliV. GhazviniH. EliasyL. KheradmandA. FarniaV. AkhtariJ. ShahveisiK. GhalehnoeiH. Naloxone ameliorates spatial memory deficits and hyperthermia induced by a neurotoxic methamphetamine regimen in male rats.Galen Med. J.20198118210.31661/gmj.v8i0.1182 34466469
    [Google Scholar]
  30. Shamsi-GoushkiA. MortazaviZ. MirshekarM.A. MohammadiM. Moradi-KorN. Jafari-MaskouniS. ShahrakiM. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats.Diabetes Metab. Syndr. Obes.2020132337234610.2147/DMSO.S247351 32753918
    [Google Scholar]
  31. MoutabianH. Ghahramani-AslR. MortezazadehT. LaripourR. NarmaniA. ZamaniH. AtaeiG. BagheriH. FarhoodB. SathyapalanT. SahebkarA. The cardioprotective effects of nano‐curcumin against doxorubicin‐induced cardiotoxicity: A systematic review.Biofactors202248359761010.1002/biof.1823 35080781
    [Google Scholar]
  32. AnoosheM. NouriK. Karimi-HaghighiS. MousaviZ. HaghparastA. Cannabidiol efficiently suppressed the acquisition and expression of methamphetamine-induced conditioned place preference in the rat.Behav. Brain Res.202140411315810.1016/j.bbr.2021.113158 33571569
    [Google Scholar]
  33. KarlF. ColaçoM.B.N. SchulteA. SommerC. ÜçeylerN. Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice.BMC Neurosci.20192011610.1186/s12868‑019‑0498‑4 30975083
    [Google Scholar]
  34. BameriB. ShakiF. AhangarN. AtaeeR. SamadiM. MohammadiH. Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol.Int. J. Toxicol.201837216417010.1177/1091581817753607 29554822
    [Google Scholar]
  35. AshariS. KaramiM. ShokrzadehM. GhandadiM. Ghassemi-BarghiN. DashtiA. RanaeeM. MohammadiH. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models.Toxicol. Mech. Methods202030642743710.1080/15376516.2020.1758980 32312132
    [Google Scholar]
  36. AltomareA. BaronG. GianazzaE. BanfiC. CariniM. AldiniG. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives.Redox Biol.20214210189910.1016/j.redox.2021.101899 33642248
    [Google Scholar]
  37. WangY. BasdoganY. ZhangT. LankoneR.S. WallaceA.N. FairbrotherD.H. KeithJ.A. GilbertsonL.M. Unveiling the synergistic role of oxygen functional groups in the graphene-mediated oxidation of glutathione.ACS Appl. Mater. Interfaces20201241457534576210.1021/acsami.0c11539 32940454
    [Google Scholar]
  38. MohammadnejadL. SoltaninejadK. SeyedabadiM. Ghasem PouriS.K. ShokrzadehM. MohammadiH. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol.Toxicol. Res.20211061162117010.1093/toxres/tfab096 34956619
    [Google Scholar]
  39. FathiH. EbrahimzadehM.A. ZiarA. MohammadiH. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L.Cell Biol. Toxicol.2015314-523123910.1007/s10565‑015‑9307‑8 26493312
    [Google Scholar]
  40. ZhangK.K. ChenL.J. LiJ.H. LiuJ.L. WangL.B. XuL.L. YangJ.Z. LiX.W. XieX.L. WangQ. Methamphetamine disturbs gut homeostasis and reshapes serum metabolome, inducing neurotoxicity and abnormal behaviors in mice.Front. Microbiol.20221375518910.3389/fmicb.2022.755189 35509309
    [Google Scholar]
  41. GomesK.M. PetronilhoF.C. MantovaniM. GarbelottoT. BoeckC.R. Dal-PizzolF. QuevedoJ. Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats.Neurochem. Res.20083361024102710.1007/s11064‑007‑9544‑1 18049893
    [Google Scholar]
  42. GopalK.V. MillerB.R. GrossG.W. Acute and sub-chronic functional neurotoxicity of methylphenidate on neural networks in vitro.J. Neural Transm. (Vienna)2007114111365137510.1007/s00702‑007‑0759‑8 17576514
    [Google Scholar]
  43. ChangL. ErnstT. SpeckO. PatelH. DeSilvaM. Leonido-YeeM. MillerE.N. Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users.Psychiatry Res. Neuroimaging20021142657910.1016/S0925‑4927(02)00004‑5 12036507
    [Google Scholar]
  44. OttonelliI. Nanowired delivery of curcumin attenuates methamphetamine neurotoxicity and elevates levels of dopamine and brain-derived neurotrophic factor. Progress in Nanomedicine in Neurologic Diseases.Springer202338541610.1007/978‑3‑031‑32997‑5_10
    [Google Scholar]
  45. ChenY.J. LiuY.L. ZhongQ. YuY.F. SuH.L. ToqueH.A. DangY.H. ChenF. XuM. ChenT. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice.Neurosci. Bull.201228322223210.1007/s12264‑012‑1236‑4 22622821
    [Google Scholar]
  46. MotaghinejadM. MotevalianM. ShababB. FatimaS. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats.J. Neural Transm. (Vienna)2017124112113110.1007/s00702‑016‑1623‑5 27682635
    [Google Scholar]
  47. ShresthaP. KatilaN. LeeS. SeoJ.H. JeongJ.H. YookS. Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies.Biomed. Pharmacother.202215411359110.1016/j.biopha.2022.113591 36007276
    [Google Scholar]
  48. VeschsanitN. YangJ.L. NgampramuanS. ViwatpinyoK. PinyomahakulJ. LwinT. ChancharoenP. RungruangS. GovitrapongP. MukdaS. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice.Life Sci.202126511884410.1016/j.lfs.2020.118844 33278389
    [Google Scholar]
  49. MozaffariS. Ramezany YasujS. MotaghinejadM. MotevalianM. KheiriR. Crocin acting as a neuroprotective agent against methamphetamine-induced neurodegeneration via CREB-BDNF signaling pathway.Iran. J. Pharm. Res.2019182745758 31531058
    [Google Scholar]
  50. RoshanbakhshH. Effects of piperine pretreatment on antioxidant capacity and spatial memory impairment induced by local injection of lysolecethin in rat hippocampus.J. Mazandaran Univ. Med. Sci.202030188116
    [Google Scholar]
  51. KharazmiK. HeydariA. ArdjmandA. The effect of curcumin pre-treatment on morphine-induced inhibitory memory impairment and nitric oxide level in rat.KAUMS Journal201923119[FEYZ].
    [Google Scholar]
  52. BhatA. MahalakshmiA.M. RayB. TuladharS. HediyalT.A. ManthiannemE. PadamatiJ. ChandraR. ChidambaramS.B. SakharkarM.K. Benefits of curcumin in brain disorders.Biofactors201945566668910.1002/biof.1533 31185140
    [Google Scholar]
  53. RakotoarisoaM. AngelovaA. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders.The Road from Nanomedicine to Precision Medicine20191027106510.1201/9780429295010‑33
    [Google Scholar]
  54. ComimC.M. GomesK.M. RéusG.Z. PetronilhoF. FerreiraG.K. StreckE.L. Dal-PizzolF. QuevedoJ. Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder.Acta Neuropsychiatr.20142629610310.1017/neu.2013.35 24855887
    [Google Scholar]
  55. WangH. LiuJ. GaoG. WuX. WangX. YangH. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury.Brain Res.2016163921422710.1016/j.brainres.2015.07.029 26232071
    [Google Scholar]
  56. YuJ. YuanH. BaoL. SiL. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology.Mol. Divers.202125123324810.1007/s11030‑020‑10055‑9 32130644
    [Google Scholar]
  57. KunduS. SinghS. Protective mechanisms of 3-acetyl-11-keto-β-boswellic acid and piperine in fluid percussion rat model of traumatic brain injury targeting Nrf2 and NFkB signaling.Neurotox. Res.2023411578410.1007/s12640‑022‑00628‑x 36576717
    [Google Scholar]
  58. PawarK.S. MastudR.N. PawarS.K. PawarS.S. BhoiteR.R. BhoiteR.R. KulkarniM.V. DeshpandeA.R. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial.Front. Pharmacol.20211266936210.3389/fphar.2021.669362 34122090
    [Google Scholar]
  59. KakaralaM. BrennerD.E. KorkayaH. ChengC. TaziK. GinestierC. LiuS. DontuG. WichaM.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine.Breast Cancer Res. Treat.2010122377778510.1007/s10549‑009‑0612‑x 19898931
    [Google Scholar]
  60. BhutaniM.K. BishnoiM. KulkarniS.K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes.Pharmacol. Biochem. Behav.2009921394310.1016/j.pbb.2008.10.007 19000708
    [Google Scholar]
  61. LiQ. ZhaiW. JiangQ. HuangR. LiuL. DaiJ. GongW. DuS. WuQ. Curcumin–piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy.Int. J. Pharm.20154901-2223110.1016/j.ijpharm.2015.05.008 25957703
    [Google Scholar]
  62. MachadoN.D. ArmasG.V. FernándezM.A. GrijalvoS. Díaz DíazD. Neuroprotective effects of resveratrol in ischemic brain injury.NeuroSci20212330531910.3390/neurosci2030022
    [Google Scholar]
  63. VijayalakshmiS. The pro-apoptotic and cytotoxic efficacy of polydatin encapsulated poly (lactic-co-glycolic acid)(PLGA) nanoparticles.Process Biochem.202111121021810.1016/j.procbio.2021.10.033
    [Google Scholar]
  64. SundaramJ.R. PooreC.P. SulaimeeN.H.B. PareekT. CheongW.F. WenkM.R. PantH.C. FrautschyS.A. LowC.M. KesavapanyS. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears Hallmarks of Alzheimer’s Disease.J. Alzheimers Dis.20176041429144210.3233/JAD‑170093 29036814
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808249823231017103251
Loading
/content/journals/lddd/10.2174/0115701808249823231017103251
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): curcumin; memory impairments; Methamphetamine; nanoparticles; oxidative stress; piperine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test