Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Consumption of a high-fat diet (HFD) is one of the main causes of non-alcoholic fatty liver disease (NAFLD), which is increasing due to lifestyle changes and is still an important global health issue. Despite the efforts, there is still no common treatment for this disease. Studies have shown that the root of Janisch has a hypolipidemic effect and a significant antioxidant effect on liver tissue in diabetic rats. However, no experimental study has been performed on the hepatoprotective effects of this herb on HFD-induced NAFLD have been proven.

Objective

This study aimed to evaluate the effect of Janisch extract (RTE) on HFD-induced NAFLD in BALB/c mice.

Materials and Methods

The study was performed with two models of prevention and therapeutic effect of RTE. Serum biochemical markers, histopathology, oxidative stress indicators, and qRT-PCR were measured to evaluate the effects of RTE on lipid metabolism disorders in mice feeding with HFD.

Results

In the prevention model, compared to the HFD group, RTE treatment decreased the levels of glucose, triglyceride, and cholesterol and improved liver profile markers, oxidative stress, and expression of genes involved in lipid metabolism.

Conclusion

The results of this study suggest that RTE has hepatoprotective effects against HFD-induced liver damage by reducing oxidative stress, lipogenesis, and increasing beta-oxidation of free fatty acids.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808248646231102075104
2023-11-07
2025-07-14
Loading full text...

Full text loading...

References

  1. Aron-WisnewskyJ. VigliottiC. WitjesJ. LeP. HolleboomA.G. VerheijJ. NieuwdorpM. ClémentK. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders.Nat. Rev. Gastroenterol. Hepatol.202017527929710.1038/s41575‑020‑0269‑9 32152478
    [Google Scholar]
  2. KneemanJ.M. MisdrajiJ. CoreyK.E. Secondary causes of nonalcoholic fatty liver disease.Therap. Adv. Gastroenterol.20125319920710.1177/1756283X11430859 22570680
    [Google Scholar]
  3. YounossiZ. AnsteeQ.M. MariettiM. HardyT. HenryL. EslamM. GeorgeJ. BugianesiE. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.2018151112010.1038/nrgastro.2017.109 28930295
    [Google Scholar]
  4. FingasC.D. BestJ. SowaJ.P. CanbayA. Epidemiology of nonalcoholic steatohepatitis and hepatocellular carcinoma.Clin. Liver Dis.20168511912210.1002/cld.585 31041078
    [Google Scholar]
  5. ZouX. YanC. ShiY. CaoK. XuJ. WangX. ChenC. LuoC. LiY. GaoJ. PangW. ZhaoJ. ZhaoF. LiH. ZhengA. SunW. LongJ. SzetoI.M.Y. ZhaoY. DongZ. ZhangP. WangJ. LuW. ZhangY. LiuJ. FengZ. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin.Antioxid. Redox Signal.201421111557157010.1089/ars.2013.5538 24393106
    [Google Scholar]
  6. ChenZ. TianR. SheZ. CaiJ. LiH. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.Free Radic. Biol. Med.202015211614110.1016/j.freeradbiomed.2020.02.025 32156524
    [Google Scholar]
  7. QuijanoC. TrujilloM. CastroL. TrostchanskyA. Interplay between oxidant species and energy metabolism.Redox Biol.20168284210.1016/j.redox.2015.11.010 26741399
    [Google Scholar]
  8. DayE.A. FordR.J. SteinbergG.R. AMPK as a therapeutic target for treating metabolic diseases.Trends Endocrinol. Metab.201728854556010.1016/j.tem.2017.05.004 28647324
    [Google Scholar]
  9. YuanT. YangT. ChenH. FuD. HuY. WangJ. YuanQ. YuH. XuW. XieX. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis.Redox Biol.20192024726010.1016/j.redox.2018.09.025 30384259
    [Google Scholar]
  10. SekiyaM. HiraishiA. TouyamaM. SakamotoK. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells.Biochem. Biophys. Res. Commun.2008375460260710.1016/j.bbrc.2008.08.068 18727921
    [Google Scholar]
  11. TrépoE. RomeoS. Zucman-RossiJ. NahonP. PNPLA3 gene in liver diseases.J. Hepatol.201665239941210.1016/j.jhep.2016.03.011 27038645
    [Google Scholar]
  12. RenT. ZhuJ. ZhuL. ChengM. The combination of blueberry juice and probiotics ameliorate non-alcoholic steatohepatitis (NASH) by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α.Nutrients20179319810.3390/nu9030198 28264426
    [Google Scholar]
  13. YoshikawaT. IdeT. ShimanoH. YahagiN. Amemiya-KudoM. MatsuzakaT. YatohS. KitamineT. OkazakiH. TamuraY. SekiyaM. TakahashiA. HastyA.H. SatoR. SoneH. OsugaJ. IshibashiS. YamadaN. Cross-talk between peroxisome proliferator-activated receptor (PPAR) α and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling.Mol. Endocrinol.20031771240125410.1210/me.2002‑0190 12730331
    [Google Scholar]
  14. KerstenS. Integrated physiology and systems biology of PPARα.Mol. Metab.20143435437110.1016/j.molmet.2014.02.002 24944896
    [Google Scholar]
  15. MuraseT. MisawaK. MinegishiY. AokiM. OminamiH. SuzukiY. ShibuyaY. HaseT. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice.Am. J. Physiol. Endocrinol. Metab.20113001E122E13310.1152/ajpendo.00441.2010 20943752
    [Google Scholar]
  16. PanM.H. ChenJ.W. KongZ.L. WuJ.C. HoC.T. LaiC.S. Attenuation by tetrahydrocurcumin of adiposity and hepatic steatosis in mice with high-fat-diet-induced obesity.J. Agric. Food Chem.20186648126851269510.1021/acs.jafc.8b04624 30415544
    [Google Scholar]
  17. DehghanH. SalehiP. AmiriM.S. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum.Ind. Crops Prod.201811730330910.1016/j.indcrop.2018.02.086
    [Google Scholar]
  18. HosseiniA. RajabianA. FanoudiS. FarzadniaM. BoroushakiM.T. Protective effect of Rheum turkestanicum root against mercuric chloride-induced hepatorenal toxicity in rats.Avicenna J. Phytomed.201886488497 30456196
    [Google Scholar]
  19. AmiriM.S. JoharchiM.R. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran.Avicenna J. Phytomed.201333254271 25050282
    [Google Scholar]
  20. AmiriM.S. JoharchiM.R. TaghavizadehyazdiM.E. Ethno-medicinal plants used to cure jaundice by traditional healers of mashhad, iran.Iran. J. Pharm. Res.2014131157162 24734067
    [Google Scholar]
  21. XuG. WangX. LiuC. LiW. WeiS. LiuY. ChengX. LiuJ. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene.Genome201356210911310.1139/gen‑2012‑0182 23517320
    [Google Scholar]
  22. SinghA. LalM. SamantS.S. Diversity, indigenous uses and conservation prioritization of medicinal plants in Lahaul valley, proposed Cold Desert Biosphere Reserve, India.International Journal of Biodiversity Science & Management20095313215410.1080/17451590903230249
    [Google Scholar]
  23. HadjzadehM.A. RajaeiZ. KhodaeiE. MalekM. GhanbariH. Rheum turkestanicum rhizomes possess anti-hypertriglyceridemic, but not hypoglycemic or hepatoprotective effect in experimental diabetes.Avicenna J. Phytomed.20177119 28265541
    [Google Scholar]
  24. HosseiniA. MollazadehH. AmiriM.S. SadeghniaH.R. GhorbaniA. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats.Biomed. Pharmacother.20178660561110.1016/j.biopha.2016.12.059 28027536
    [Google Scholar]
  25. Shafiee-NickR. GhorbaniA. Vafaee BagheriF. RakhshandehH. Chronic administration of a combination of six herbs inhibits the progression of hyperglycemia and decreases serum lipids and aspartate amino transferase activity in diabetic rats.Adv. Pharmacol. Sci.201220121610.1155/2012/789796 23304131
    [Google Scholar]
  26. MahdinezhadM.R. HooshmandS. SoukhtanlooM. JamshidiS.T. EhtiatiS. GhorbaniA. Protective effects of a standardized extract of Iris germanica on pancreas and liver in streptozotocin-induced diabetic rats.Res. Pharm. Sci.20201617178 33953776
    [Google Scholar]
  27. HooshmandS. MahdinezhadM.R. Taraz JamshidiS. SoukhtanlooM. MirzaviF. IranshahiM. HasanpourM. GhorbaniA. MORUS NIGRA L. extract prolongs survival of rats with hepatocellular carcinoma.Phytother. Res.20213563365337610.1002/ptr.7056 33624311
    [Google Scholar]
  28. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  29. Jahani YazdiA. JavanshirS. SoukhtanlooM. Jalili-NikM. JafarianA.H. IranshahiM. HasanpourM. KhatamiS.M. HosseiniA. AmiriM.S. GhorbaniA. Acute and sub-acute toxicity evaluation of the root extract of Rheum turkestanicum Janisch.Drug Chem. Toxicol.202043660961510.1080/01480545.2018.1561713 31264488
    [Google Scholar]
  30. KeshS.B. SarkarD. MannaK. High-fat diet-induced oxidative stress and its impact on metabolic syndrome: A review.Asian J. Pharm. Clin. Res.2016914752
    [Google Scholar]
  31. RoloA.P. TeodoroJ.S. PalmeiraC.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis.Free Radic. Biol. Med.2012521596910.1016/j.freeradbiomed.2011.10.003 22064361
    [Google Scholar]
  32. SarwarR. PierceN. KoppeS. Obesity and nonalcoholic fatty liver disease: Current perspectives.Diabetes Metab. Syndr. Obes.20181153354210.2147/DMSO.S146339 30288073
    [Google Scholar]
  33. SakamotoY. NaritaK. NakaneA. Reduced IL-1β production in diet-induced obese mice impairs host defense against skin Staphylococcus aureus infection.Hirosaki Medical Journal2012642940
    [Google Scholar]
  34. LimH. ParkJ. KimH.L. KangJ. JeongM.Y. YounD.H. JungY. KimY.I. KimH.J. AhnK.S. KimS.J. ChoeS.K. HongS.H. UmJ.Y. Chrysophanic acid suppresses adipogenesis and induces thermogenesis by activating AMP-activated protein kinase alpha in vivo and in vitro.Front. Pharmacol.2016747610.3389/fphar.2016.00476 28008317
    [Google Scholar]
  35. ParkE. LeeC.G. JeonH. JeongH. YeoS. YongY. JeongS.Y. Anti-obesity effects of combined Cornus officinalis and Ribes fasciculatum extract in high-fat diet-induced obese male mice.Animals20211111318710.3390/ani11113187 34827919
    [Google Scholar]
  36. LiJ. WuH. LiuY. YangL. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR.Exp. Anim.202069332633510.1538/expanim.19‑0148
    [Google Scholar]
  37. WangK. CaoP. WangH. TangZ. WangN. WangJ. ZhangY. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice.Sci. Rep.2016612622910.1038/srep26229 27189109
    [Google Scholar]
  38. GhorbaniA. Protective Effects of Rheum Turkestanicum Janischagainst Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats.202110.21203/rs.3.rs‑528331/v1
    [Google Scholar]
  39. ParkM. YooJ.H. LeeY.S. LeeH.J. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice.Nutrients201911349410.3390/nu11030494 30813654
    [Google Scholar]
  40. YangW. SheL. YuK. YanS. ZhangX. TianX. MaS. ZhangX. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model.Mol. Med. Rep.20161443277328410.3892/mmr.2016.5634 27573054
    [Google Scholar]
  41. LiH. HuangW. WangM. ChenP. ChenL. ZhangX. Tandem Mass Tag-based quantitative proteomics analysis of metabolic associated fatty liver disease induced by high fat diet in mice.Nutr. Metab.20201719710.1186/s12986‑020‑00522‑3 33292312
    [Google Scholar]
  42. YangL. ZhouY. SongH. ZhengP. Jiang-Zhi granules decrease sensitivity to low-dose CCl4 induced liver injury in NAFLD rats through reducing endoplasmic reticulum stress.BMC Complement. Altern. Med.201919122810.1186/s12906‑019‑2641‑2 31438932
    [Google Scholar]
  43. PantsariM.W. HarrisonS.A. Nonalcoholic fatty liver disease presenting with an isolated elevated alkaline phosphatase.J. Clin. Gastroenterol.200640763363510.1097/00004836‑200608000‑00015 16917408
    [Google Scholar]
  44. SunL. Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease.Endocrine202069210.1007/s12020‑020‑02319‑z
    [Google Scholar]
  45. HadizadehF. FaghihimaniE. AdibiP. Nonalcoholic fatty liver disease: Diagnostic biomarkers.World J. Gastrointest. Pathophysiol.201782112610.4291/wjgp.v8.i2.11 28573064
    [Google Scholar]
  46. JarrarM. ShafeyA. The paradox of ectopic melanin synthesis in adipose: Potential mechanism, benefits and perspectives in abating obesity complications.J. Obe. Weight Loss Ther.2017810.4172/2165‑7904.1000363
    [Google Scholar]
  47. XuW. ZhaoT. XiaoH. The implication of oxidative stress and AMPK-nrf2 antioxidative signaling in pneumonia pathogenesis.Front. Endocrinol.20201140010.3389/fendo.2020.00400 32625169
    [Google Scholar]
  48. LiJ. ZhengX. MaX. XuX. DuY. LvQ. LiX. WuY. SunH. YuL. ZhangZ. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway.J. Inorg. Biochem.201919711069810.1016/j.jinorgbio.2019.110698 31054488
    [Google Scholar]
  49. LiW. YangH. ZhaoQ. WangX. ZhangJ. ZhaoX. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice.J. Agric. Food Chem.201967277726773710.1021/acs.jafc.9b02523 31203627
    [Google Scholar]
  50. GuM. ZhaoP. HuangJ. ZhaoY. WangY. LiY. LiY. FanS. MaY.M. TongQ. YangL. JiG. HuangC. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor.Front. Pharmacol.2016734510.3389/fphar.2016.00345 27733832
    [Google Scholar]
  51. NiX. WangH. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).Am. J. Transl. Res.20168210731081 27158393
    [Google Scholar]
  52. SahinE. BagciR. Bektur AykanatN.E. KacarS. SahinturkV. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice.J. Food Biochem.2020446e1319410.1111/jfbc.13194 32189355
    [Google Scholar]
  53. SouzaK.S. MoreiraL.S. SilvaB.T. OliveiraB.P.M. CarvalhoA.S. SilvaP.S. VerriW.A.Jr Sá-NakanishiA.B. BrachtL. ZanoniJ.N. GonçalvesO.H. BrachtA. ComarJ.F. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats.Life Sci.202128411991010.1016/j.lfs.2021.119910 34453939
    [Google Scholar]
  54. JiangW. ZhouR. LiP. SunY. LuQ. QiuY. WangJ. LiuJ. HaoK. DingX. Protective effect of chrysophanol on LPS/D -GalN-induced hepatic injury through the RIP140/NF-κB pathway.RSC Advances2016644381923820010.1039/C5RA19841K
    [Google Scholar]
  55. ShenC. PanZ. WuS. ZhengM. ZhongC. XinX. LanS. ZhuZ. LiuM. WuH. HuangQ. ZhangJ. LiuZ. SiY. TuH. DengZ. YuY. LiuH. ZhongY. GuoJ. CaiJ. XianS. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway.J. Ethnopharmacol.202127911434010.1016/j.jep.2021.114340 34171397
    [Google Scholar]
  56. ZhengW. WangS.Y. Antioxidant activity and phenolic compounds in selected herbs.J. Agric. Food Chem.200149115165517010.1021/jf010697n 11714298
    [Google Scholar]
  57. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep.201924e0037010.1016/j.btre.2019.e00370 31516850
    [Google Scholar]
  58. LiuB. ZhangJ. SunP. YiR. HanX. ZhaoX. Raw Bowl Tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice.Biomolecules20199943510.3390/biom9090435 31480575
    [Google Scholar]
  59. JianT. LüH. DingX. WuY. ZuoY. LiJ. ChenJ. GuH. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice.PeerJ20197e816510.7717/peerj.8165 31803542
    [Google Scholar]
  60. FerréP. FoufelleF. SREBP-1c transcription factor and lipid homeostasis: Clinical perspective.Horm. Res.20076827282 17344645
    [Google Scholar]
  61. LiJ.L. WangQ.Y. LuanH.Y. KangZ.C. WangC.B. Effects of L-carnitine against oxidative stress in human hepatocytes: Involvement of peroxisome proliferator-activated receptor alpha.J. Biomed. Sci.20121913210.1186/1423‑0127‑19‑32 22435679
    [Google Scholar]
  62. LeeM.R. ParkK. MaJ. Leonurus japonicus Houtt attenuates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 Cells and mice fed a high-fat diet.Nutrients20171012010.3390/nu10010020 29295591
    [Google Scholar]
  63. SundaresanA. RadhigaT. PugalendiK.V. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice.Eur. J. Pharmacol.201474129730310.1016/j.ejphar.2014.07.032 25149666
    [Google Scholar]
  64. LiX. WangR. ZhouN. WangX. LiuQ. BaiY. BaiY. LiuZ. YangH. ZouJ. WangH. ShiT. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model.Biomed. Rep.201311717610.3892/br.2012.27 24648896
    [Google Scholar]
  65. XuJ. PengY. ZengY. HuaY. XuX. 2, 3, 4′, 5-tetrahydroxystilbene-2-0-β-d glycoside attenuates age-and diet-associated non-alcoholic steatohepatitis and atherosclerosis in LDL receptor knockout mice and its possible mechanisms.Int. J. Mol. Sci.2019207161710.3390/ijms20071617 30939745
    [Google Scholar]
  66. MontgomeryM.K. HallahanN.L. BrownS.H. LiuM. MitchellT.W. CooneyG.J. TurnerN. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding.Diabetologia20135651129113910.1007/s00125‑013‑2846‑8 23423668
    [Google Scholar]
  67. LiD. JiangC. MeiG. ZhaoY. ChenL. LiuJ. TangY. GaoC. YaoP. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes.Nutrients20201210295410.3390/nu12102954 32992479
    [Google Scholar]
  68. MatsuzakaT. ShimanoH. New perspective on type 2 diabetes, dyslipidemia and non‐alcoholic fatty liver disease.J. Diabetes Investig.202011353253410.1111/jdi.13258 32232972
    [Google Scholar]
  69. WuT. TangQ. YuZ. GaoZ. HuH. ChenW. ZhengX. YuT. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice.Int J Food Sci Nutr.201465335135910.3109/09637486.2013.85474924224922
    [Google Scholar]
  70. LiuS. ChangX. YuJ. XuW. Cerasus humilis cherry polyphenol reduces high-fat diet-induced obesity in C57BL/6 mice by mitigating fat deposition, inflammation, and oxidation.J. Agric. Food Chem.202068154424443610.1021/acs.jafc.0c01617 32227855
    [Google Scholar]
  71. HostenA.O. BUN and Creatinine, in Clinical Methods: The History, Physical, and Laboratory Examinations WalkerH.K. HallW.D. HurstJ.W. Butterworths1990
    [Google Scholar]
  72. MezeyE. Liver disease and protein needs.Annu. Rev. Nutr.198221215010.1146/annurev.nu.02.070182.000321 6764731
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808248646231102075104
Loading
/content/journals/lddd/10.2174/0115701808248646231102075104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test