Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

Land use and Land cover (LULC) are now major worldwide issues. The need for land is growing due to urbanisation and industrialisation, thus to meet this need, forest and vegetation land are transformed to open land that is either utilised for colonisation of urban areas or industrial usage. Patents are done on the calculation of LST.

Methods

The study aims to provide a detailed analysis of land and temperature change with variation in Normalized difference vegetation index (NDVI) and normalized difference build-up index (NDBI) for the study area using a geospatial technique. The LULC classification is performed based on four classes which are Bare land, Built-up, Vegetation, and Waterbodies from the year 2000 to 2020. The classified data is further used to extract the Land Surface Temperature (LST) data from the thermal band to generate LST maps. The NDVI and NDBI maps are also generated using the land sat imageries. From the above-mentionedanalysis, it is found that Nagpur city temperature has risen by 3.67°C in two decades. Whereas, LULC results show that bare land and vegetation decreased by 11.88% and 14.93% respectively, while an increase is seen for built-up and water bodies by 25.62% and 0.19% respectively.

Results

Regression analysis between temperature and NDVI, NDBI shows that temperature and NDVI have a negation relation and NDBI has a positive relation with temperature (Pearson’s r: between -0.89 to -0.81 and between 0.90 to 0.81 respectively) for both the years. The increased temperature is a result of urbanization in the study area. The study reveals that for assessment of LULC and LST with the incorporation of GIS and Remote sensing can be effective and swift.

Conclusion

This study recommends that policymakers develop policies that should minimize the transition of different classes and check the outcome of industries and the temperature of the surroundings.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121253733231002044751
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. AbdallahC. FaourG. Landslide hazard mapping of Ibrahim River Basin, Lebanon.Nat. Hazards201785123726610.1007/s11069‑016‑2560‑1
    [Google Scholar]
  2. PelF. World Urbanization Prospects: The 2018 Revision, Methodology.United Nations2018
    [Google Scholar]
  3. YuW. ZangS. WuC. LiuW. NaX. Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China.Appl. Geogr.201131260060810.1016/j.apgeog.2010.11.019
    [Google Scholar]
  4. MitsudaY. ItoS. A review of spatial-explicit factors determining spatial distribution of land use/land-use change.Landsc. Ecol. Eng.20117111712510.1007/s11355‑010‑0113‑4
    [Google Scholar]
  5. MahmoodR. PielkeR.A.Sr HubbardK.G. NiyogiD. BonanG. LawrenceP. McNiderR. McAlpineC. EtterA. GamedaS. QianB. CarletonA. Beltran-PrzekuratA. ChaseT. QuintanarA.I. AdegokeJ.O. VezhapparambuS. ConnerG. AsefiS. SertelE. LegatesD.R. WuY. HaleR. FrauenfeldO.W. WattsA. ShepherdM. MitraC. AnantharajV.G. FallS. LundR. TreviñoA. BlankenP. DuJ. ChangH-I. LeeperR. NairU.S. DoblerS. DeoR. SyktusJ. Impacts of land use/land cover change on climate and future research priorities.Bull. Am. Meteorol. Soc.2010911374610.1175/2009BAMS2769.1
    [Google Scholar]
  6. WengQ. A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China.Int. J. Remote Sens.2001221019992014
    [Google Scholar]
  7. SakhreS. DeyJ. VijayR. KumarR. Geospatial assessment of land surface temperature in Nagpur, India: An impact of urbanization.Environ. Earth Sci.2020791022610.1007/s12665‑020‑08952‑1
    [Google Scholar]
  8. AlvesD.S. SkoleD.L. Characterizing land cover dynamics using multi-temporal imagery.Int. J. Remote Sens.199617483583910.1080/01431169608949049
    [Google Scholar]
  9. CornerR.J. DewanA.M. ChakmaS. Monitoring and prediction of land-use and land-cover (LULC) change. ", In: A. Dewan, and R. Corner, Eds.,Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health. DewanA. CornerR. DordrechtSpringer Netherlands2014759710.1007/978‑94‑007‑6735‑5_5
    [Google Scholar]
  10. ChenX.L. ZhaoH-M. LiP-X. YinZ-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes.Remote Sens. Environ.2006104213314610.1016/j.rse.2005.11.016
    [Google Scholar]
  11. KumarM. Impact of urbanisation on land surface temperature in Nagpur, Maharashtra.Sustainable Smart Cities in India: Challenges and Future Perspectives. SharmaP. RajputS. ChamSpringer International Publishing201722724110.1007/978‑3‑319‑47145‑7_15
    [Google Scholar]
  12. GohainK.J. MohammadP. GoswamiA. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India.Quat. Int.2021575-57625926910.1016/j.quaint.2020.04.052
    [Google Scholar]
  13. DistrictCensusHandbook (DCHB) Census, 2011.2011
    [Google Scholar]
  14. GaziM.Y. ZillurR. MahinU. ArifurR.F.M. Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh.GeoJournal20208621192134
    [Google Scholar]
  15. MishraP.K. RaiA. RaiS.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India.Egypt. J. Remote Sens. Space Sci.202023213314310.1016/j.ejrs.2019.02.001
    [Google Scholar]
  16. DuttaS. GuchhaitS.K. Assessment of land use land cover dynamics and urban growth of Kanksa Block in Paschim Barddhaman District, West Bengal.GeoJournal202087971990
    [Google Scholar]
  17. AkyürekD. KoçÖ. AkbabaE.M. SunarF. Land use/land cover change detection using multi–temporal satellite dataset: A case study in istanbul new airport. ISPRS -.Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci2018XLII-3W4172210.5194/isprs‑archives‑XLII‑3‑W4‑17‑2018
    [Google Scholar]
  18. UrgessaT. LemessaD. Spatiotemporal landuse land cover changes in walmara district, central oromia, Ethiopia.Earth Sci. 2020913210.11648/j.earth.20200901.14
    [Google Scholar]
  19. SansareD.A. MhaskeS.Y. Land use change mapping and its impact on storm water runoff using Remote sensing and GIS: a case study of Mumbai, India.IOP Conf. Ser. Earth Environ. Sci.2020500101208210.1088/1755‑1315/500/1/012082
    [Google Scholar]
  20. SansareD.A. MhaskeS.Y. Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India.Nat. Hazards202010031117113610.1007/s11069‑019‑03852‑5
    [Google Scholar]
  21. KhandelwalS. GoyalR. KaulN. MathewA. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India.Egypt. J. Remote Sens. Space Sci.2018211879410.1016/j.ejrs.2017.01.005
    [Google Scholar]
  22. YaoR. WangL. HuangX. NiuZ. LiuF. WangQ. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities.Sci. Total Environ.201760974275410.1016/j.scitotenv.2017.07.217 28763671
    [Google Scholar]
  23. PengJ. XieP. LiuY. MaJ. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region.Remote Sens. Environ.201617314515510.1016/j.rse.2015.11.027
    [Google Scholar]
  24. FuP. WengQ. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery.Remote Sens. Environ.201617520521410.1016/j.rse.2015.12.040
    [Google Scholar]
  25. BokaieM. ZarkeshM.K. ArastehP.D. HosseiniA. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran.Sustain Cities Soc.2016239410410.1016/j.scs.2016.03.009
    [Google Scholar]
  26. ZhouD. ZhaoS. LiuS. ZhangL. ZhuC. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers.Remote Sens. Environ.2014152516110.1016/j.rse.2014.05.017
    [Google Scholar]
  27. KhanF. DasB. MishraR.K. An automated land surface temperature modelling tool box designed using spatial technique for ArcGIS.Earth Sci. Inform.2021
    [Google Scholar]
  28. KhanF. DasB. MohammadP. Urban growth modeling and prediction of land use land cover change over nagpur city, india using cellular automata approach In: P.K. Rai, V.N. Mishra, and P. Singh, Eds., geospatial technology for landscape and environmental Management: Sustainable Assessment and Planning.. Springer Singapore: Singapore, 2022, pp. 261-282.10.1007/978‑981‑16‑7373‑3_13
    [Google Scholar]
  29. KhanF. A review on the feasibility and application of geospatial techniques in geotechnical engineering field.Mater. Today Proc.202149311319
    [Google Scholar]
  30. GuyotG. GuX.F. Effect of radiometric corrections on NDVI-determined from SPOT-HRV and Landsat-TM data.Remote Sens. Environ.199449316918010.1016/0034‑4257(94)90012‑4
    [Google Scholar]
  31. Landsat 8 (L8)Data Users Handbook Vol. version 5. 2019. USGS: Sioux Falls, South Dakota, 2019. 2019
    [Google Scholar]
  32. USGS, Landsat 8 OLI and TIRS Calibration Notices., 2017.2017https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices
  33. SobrinoJ.A. Jiménez-MuñozJ.C. PaoliniL. Land surface temperature retrieval from LANDSAT TM 5.Remote Sens. Environ.200490443444010.1016/j.rse.2004.02.003
    [Google Scholar]
  34. "A method for calculating land surface temperature using an automatic lst tool", In: The patent office journal.. India, 2021, p. 38120.2021
    [Google Scholar]
  35. KafyA.A. FaisalA.A. Al RakibA. RoyS. FerdousiJ. RaikwarV. KonaM.A. FatinS.M.A.A. Predicting changes in land use/land cover and seasonal land surface temperature using multi-temporal landsat images in the northwest region of Bangladesh.Heliyon202177e0762310.1016/j.heliyon.2021.e07623 34386619
    [Google Scholar]
  36. SahanaM. AhmedR. SajjadH. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India.Model. Earth Syst. Environ.2016228110.1007/s40808‑016‑0135‑5
    [Google Scholar]
  37. FonsekaH.P.U. ZhangH. SunY. SuH. LinH. LinY. Urbanization and its impacts on land surface temperature in colombo metropolitan area, Sri Lanka, from 1988 to 2016.Remote Sens. (Basel)201911895710.3390/rs11080957
    [Google Scholar]
  38. YuanF. BauerM.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery.Remote Sens. Environ.2007106337538610.1016/j.rse.2006.09.003
    [Google Scholar]
  39. GuhaS. GovilH. DeyA. GillN. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy.Eur. J. Remote Sens.201851166767810.1080/22797254.2018.1474494
    [Google Scholar]
  40. LivionaD.A. The effect of NDVI and NDBI on land surface temperature in cirebon city 2015 and 2019 ", E3S Web of Conferences, 2020p. 13006
    [Google Scholar]
  41. ChenL. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image 2013 6th International Congress on Image and Signal Processing (CISP), 2013 16-18 December 2013, Hangzhou, China2013
    [Google Scholar]
  42. OgashawaraI. BastosV. A quantitative approach for analyzing the relationship between urban heat islands and land cover.Remote Sens.20124113596361810.3390/rs4113596
    [Google Scholar]
/content/journals/eng/10.2174/0118722121253733231002044751
Loading
/content/journals/eng/10.2174/0118722121253733231002044751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test