Skip to content
2000
image of Numerical Investigation of Polymer-based Biomaterials for Artificial Hip Joint with Diverse Boundary Conditions

Abstract

Background

Hip suffering is a serious concern for human health, which may be caused by arthritis, accidents, and childhood disorders; hence, man-made joints are the only option for restoring the function of natural hips and ensuring a comfortable life. To design an effective hip joint is a challenging task; there are myriads of novel designs continuously patented over the last two decades.

Methods

The finite element approach was utilized in this extensive investigation to assess self-mated polymer-based biomaterials (PTFE, UHMWPE, and PEEK) with different boundary conditions. The numerical analysis was performed to find the stress intensity and deflection of the femoral head and the acetabular components; the evaluation was done critically with a 10-node quadratic tetrahedron element and different mesh intensities.

Results

The detailed outcome showcases that the bare PEEK mated GO-PEEK has good load resistance and is affected by minimum stress and deflection, which is quantified at 20.89% less than the PTFE with GO-PEEK (M3) combination. This stress and deflection are quite higher than those of metal implants (Ti6Al4V) but comparatively more prominent materials for human cortical bone.

Conclusion

This investigation proved the polymer-on-polymer combination effectively eliminates stress shielding and metal ion emission, reducing revision surgery and elevating implant longevity. Therefore, it was identified that PEEK-based polymer composites are the best-suited alternative substance for hip repair applications.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121315250240822091850
2024-10-14
2025-01-17
Loading full text...

Full text loading...

References

  1. Sheridan M. Winters C. Collins M.N. Biomaterials: Antimicrobial surfaces in biomedical engineering and healthcare. Curr. Opin. Biomed. Eng. 2022 22 7 100373 10.1016/j.cobme.2022.100373.
    [Google Scholar]
  2. Kolawole F.O. Owa A.F. Kolawole S.K. Madueke C.I. Polymeric nanocomposites for artificial implants. Hybrid Polymeric Nanocomposites from Agricultural Waste. CRC Press 2023 321 341
    [Google Scholar]
  3. Wei Y. Li M.J.B.E.B.M.F. Mechanisms for biomaterials reconstruct microenvironment in bone regeneration. Biomaterials Effect on the Bone Microenvironment 2023 129 156 10.1002/9783527837823.ch5.
    [Google Scholar]
  4. Yalcin S. Yıldırım M. Kamil N.İ.K. Cytotoxicity and biocompatibility of biobased materials. Biobased Materials. Springer 2022 17 34 10.1007/978‑981‑19‑6024‑6_2
    [Google Scholar]
  5. Sathishkumar S. Jawahar P. Chakraborti P. Synthesis, properties, and applications of PEEK-based biomaterials. Advanced Materials for Biomedical Applications. CRC Press 2022 81 107 10.1201/9781003344810‑5
    [Google Scholar]
  6. Nayak C. Balani K. Frontiers in multi-functional biomaterials for hip joint application. New Horizons in Metallurgy, Materials and Manufacturing Springer 2023
    [Google Scholar]
  7. Choroszyński M. Choroszyński M.R. Biomaterials for hip implants - Important considerations relating to the choice of materials. Bio-Algorithms and Med-Systems 2017 13 3 10.1515/bams‑2017‑0017
    [Google Scholar]
  8. Sankar S. Paulraj J. Chakraborti P. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: A review. Int. J. Mater. Res. 2023 114 10 11 10.1515/ijmr‑2022‑0225
    [Google Scholar]
  9. Khalifa A.A. Bakr H.M.J.A. Updates in biomaterials of bearing surfaces in total hip arthroplasty. Arthroplasty 2021 3 1 32 10.1186/s42836‑021‑00092‑6
    [Google Scholar]
  10. Ferguson R.J. Palmer AJ. Porter ML. Malchau H. Glyn-Jones S. Hip replacement. Lancet. 2018 392 10158 1662 1671 10.1016/S0140‑6736(18)31777‑X
    [Google Scholar]
  11. Haffer H. Wang Z. Hu Z. Perka C. Total hip replacement influences spinopelvic mobility: A prospective observational study. J Arthroplasty. 2022 37 2 316 324.e2 10.1016/j.arth.2021.10.029
    [Google Scholar]
  12. Sathishkumar S. Paulraj J. Chakraborti P. Muthuraj M. Comprehensive review on biomaterials and their inherent behaviors for hip repair applications. ACS Appl. Bio Mater. 2023 6 11 4439 4464 10.1021/acsabm.3c00327 37871169
    [Google Scholar]
  13. Mathur H. Zala K. Choksh JJ. Causes of revision after total hip arthroplasty in patients undergoing revision total hip arthroplasty younger than 50 years of age. J Orthop Trauma. 2023 6 1 111 10.4103/jodp.jodp_100_22.
    [Google Scholar]
  14. Nemmani A. Mutra R.R. Balamurali G. Static structural analysis of hip joint with various profiles by finite element method. IOP Conf. Series Mater. Sci. Eng. 2021 1123 1 012054 10.1088/1757‑899X/1123/1/012054
    [Google Scholar]
  15. Mour M. Das D. Winkler T. Morlock MM. Advances in porous biomaterials for dental and orthopaedic applications. Materials (Basel) 2010 3 5 2947 2974 10.3390/ma3052947
    [Google Scholar]
  16. Sahai N. Saxena K.K. Gupta N. Designing & simulation of a lightweight hip implant stem: an FEM based approach. Advances in Materials and Processing Technologies 2021 8 4 1 9 10.1080/2374068X.2021.1934646
    [Google Scholar]
  17. Bougherara H. Zdero R. Dubov A. Shah S. Khurshid S. Schemitsch E.H. A preliminary biomechanical study of a novel carbon–fibre hip implant versus standard metallic hip implants. Med. Eng. Phys. 2011 33 1 121 128 10.1016/j.medengphy.2010.09.011 20952241
    [Google Scholar]
  18. Zhu H. Zhu T. Dong Ronghua H.G. Flexible hip joint stem and hip joint prosthesis using same. US.Patent2023/0022603 A1, 2023. 2023
  19. Monif M.M. Finite element study on the predicted equivalent stresses in the artificial hip joint. J. Biomed. Sci. Eng. 2012 5 2 43 51 10.4236/jbise.2012.52007
    [Google Scholar]
  20. Jiang H. Static and dynamic mechanics analysis on artificial hip joints with different interface designs by the finite element method. J. Bionics Eng. 2007 4 2 123 131 10.1016/S1672‑6529(07)60024‑9
    [Google Scholar]
  21. Sivasankar M. Arunkumar S. Velu B. A review on total hip replacement. 2016 10.13140/RG.2.2.13686.80969.
    [Google Scholar]
  22. Henyš P. Čapek L. Impact Force, Polar Gap and Modal Parameters Predict Acetabular Cup Fixation: A Study on a Composite Bone. Ann. Biomed. Eng. 2018 46 4 590 604 10.1007/s10439‑018‑1980‑3 29340934
    [Google Scholar]
  23. Sridhar I. Adie P.P. Ghista D.N. Optimal design of customised hip prosthesis using fiber reinforced polymer composites. Mater. Des. 2010 31 6 2767 2775 10.1016/j.matdes.2010.01.016
    [Google Scholar]
  24. Vogel D. Wehmeyer M. Kebbach M. Heyer H. Bader R. Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis. J. Mech. Behav. Biomed. Mater. 2021 113 104115 10.1016/j.jmbbm.2020.104115 33189013
    [Google Scholar]
  25. Das S.S. Chakraborti P. Bhowmik C. Modeling and numerical simulations of a MoP hip-prostheses using a novel bio-plastic material ptfe-glass composite. 2019
    [Google Scholar]
  26. Anguiano-Sanchez J. Martinez-Romero O. Siller H.R. Diaz-Elizondo J.A. Flores-Villalba E. Rodriguez C.A. Influence of PEEK coating on hip implant stress shielding: A finite element analysis. Comput. Math. Methods Med. 2016 2016 1 10 10.1155/2016/6183679 27051460
    [Google Scholar]
  27. Guner A.T. Kocak S. Meran C. Mechanical analysis of a PEEK titanium alloy macro-composite hip stem by finite element method. J. Braz. Soc. Mech. Sci. Eng. 2024 46 6 338 10.1007/s40430‑024‑04939‑2
    [Google Scholar]
  28. Eltit F. Wang Q. Wang R. Mechanisms of adverse local tissue reactions to hip implants. Front Bioeng Biotechnol. 2019 7 176 10.3389/fbioe.2019.00176
    [Google Scholar]
  29. Abitha H. Kavitha V. Gomathi B. A recent investigation on shape memory alloys and polymers based materials on bio artificial implants-hip and knee joint. Mater. Today Proc. 2020 33 Part 7 4458 4466 10.1016/j.matpr.2020.07.711
    [Google Scholar]
  30. Vinoth A. Design and Development of Hybrid Uhmwpe Composites for Hip Implants 2022 SRM institue of Scienece and Technology. http://hdl.handle.net/10603/399016
    [Google Scholar]
  31. Sathishkumar S. Jawahar P. Chakraborti P. Influence of carbonaceous reinforcements on mechanical and tribological properties of PEEK composites – A review Polym.-Plast. Technol. Mater. 10.1080/25740881.2022.2061995
    [Google Scholar]
  32. Bachtar F. Chen X. Hisada T. Finite element contact analysis of the hip joint. Med Biol Eng Comput. 2006 44 8 643 651 10.1007/s11517‑006‑0074‑9
    [Google Scholar]
  33. Drugă C. Serban I. Anca S. Numerical analysis of a total hip prosthesis under static loading conditions. Acoustics and Vibration of Mechanical Structures – AVMS 2022 187 195 10.1007/978‑3‑030‑96787‑1_21.
    [Google Scholar]
  34. Colic K. Finite element modeling of hip implant static loading. Procedia Eng. 2016 149 257 262 10.1016/j.proeng.2016.06.664
    [Google Scholar]
  35. Guzmán M. Durazo E. Ortiz A. Sauceda I. Siqueiros M. González L. Jiménez D. Finite element assessment of a hybrid proposal for hip stem, from a standardized base and different activities. Appl. Sci. (Basel) 2022 12 16 7963 10.3390/app12167963
    [Google Scholar]
/content/journals/eng/10.2174/0118722121315250240822091850
Loading
/content/journals/eng/10.2174/0118722121315250240822091850
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Hip joint ; Finite element method ; composites ; artificial joints ; Biomaterials ; Polymer implants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test