Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

To resist the time-variant underwater acoustic (UWA) channel, large amounts of channel estimation algorithms for the UWA orthogonal frequency division multiplexing (OFDM) are presented. An updated review of the recent UWA OFDM channel estimators is suggested in this article.

Objective

The goal of this patent is to review and conclude the development of different types of channel estimators. The possible perspectives about the future UWA channel estimator design are also discussed.

Methodology

The principles and performances of the linear channel estimators, the compressed sensing (CS)-based channel estimators, and the neural network (NN)-based channel estimators are reviewed and discussed. Simulations are conducted to compare the typical implementations of the different methods.

Conclusion

To take more channel state characteristics into account, the data-driven methods have been applied in the channel estimator design. Compared with the linear and CS-based methods, the NN-based channel estimator shows the higher performance, robustness and lower complexity, which is promising to be applied with the proper structure and training sets.

Loading

Article metrics loading...

/content/journals/eng/10.2174/1872212118666230705141644
2023-09-18
2024-12-25
Loading full text...

Full text loading...

References

  1. KuaiX. SunH. ZhouS. ChengE. Impulsive noise mitigation in underwater acoustic OFDM systems.IEEE Trans. Vehicular Technol.201665108190820210.1109/TVT.2016.2516539
    [Google Scholar]
  2. FengX. WangJ. KuaiX. ZhouM. SunH. LiJ. Message passing-based impulsive noise mitigation and channel estimation for underwater acoustic OFDM communications.IEEE Trans. Vehicular Technol.202271161162510.1109/TVT.2021.3130061
    [Google Scholar]
  3. RoyS. DumanT.M. McDonaldV. ProakisJ.G. High-rate communication for underwater acoustic channels using multiple transmitters and space–time coding: Receiver structures and experimental results.IEEE J. Oceanic Eng.200732366368810.1109/JOE.2007.899275
    [Google Scholar]
  4. DiamantR. CampagnaroF. de Filippo de GraziaM. CasariP. TestolinA. Sanjuan CalzadoV. ZorziM. On the relationship between the underwater acoustic and optical channels.IEEE Trans. Wirel. Commun.201716128037805110.1109/TWC.2017.2756055
    [Google Scholar]
  5. ZhuP. XuX. TuX. ChenY. TaoY. Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication.IEEE Access20208133051331410.1109/ACCESS.2020.2966072
    [Google Scholar]
  6. ZhouS. WangZ. OFDM for underwater acoustic communications.John Wiley & Sons201410.1002/9781118693865
    [Google Scholar]
  7. Zhaohui Wang Shengli Zhou CatipovicJ. Jie Huang Factor-graph-based joint IBI/ICI mitigation for ofdm in underwater acoustic multipath channels with long-separated clusters.IEEE J. Oceanic Eng.201237468069410.1109/JOE.2012.2205639
    [Google Scholar]
  8. ZhouY. TongF. Channel estimation based equalizer for underwater acoustic multiple-input-multiple-output communication.IEEE Access20197790057901610.1109/ACCESS.2019.2921596
    [Google Scholar]
  9. StojanovicM. MIMO OFDM over underwater acoustic channels2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and ComputersPacific Grove, CA, USA200960560910.1109/ACSSC.2009.5469907
    [Google Scholar]
  10. HuangX. LawrenceV. OFDM with pilot aided channel estimation for time-varying shallow water acoustic channels2010 International Conference on Communication and Mobile Computer2010pp. 44244610.1109/CMC.2010.68
    [Google Scholar]
  11. SuzukiT. TranH. WadaT. An underwater acoustic OFDM communication system with shrimp (impulsive) noise cancelling2014 International Conference Computer Management and Telecommunication (ComManTel)pp. 1521562014
    [Google Scholar]
  12. ZhaoS. YanS. XiJ. Adaptive turbo equalization for differential ofdm systems in underwater acoustic communications.IEEE Trans. Vehicular Technol.20206911139371394110.1109/TVT.2020.3017778
    [Google Scholar]
  13. HuangJ. ZhouS. HuangJ. BergerC.R. WillettP. Progressive inter-carrier interference equalization for ofdm transmission over time-varying underwater acoustic channels.IEEE J. Sel. Top. Signal Process.2011581524153610.1109/JSTSP.2011.2160040
    [Google Scholar]
  14. QiaoG. BabarZ. MaL. AhmedN. Channel Estimation and Equalization of Underwater Acoustic MIMO-OFDM Systems: A Review Estimation du canal et l’égalisation des systèmes MEMS-MROF acoustiques sous-marins: une revue.Can. J. Electr. Comput. Eng.201942419920810.1109/CJECE.2019.2897587
    [Google Scholar]
  15. QinX. QuF. ZhengY. Block soft decision feedback turbo equalization for orthogonal signal-division multiplexing underwater acoustic communications.OCEANS 2019 MTS/IEEE SEATTLE2019Seattle, WA, USA1510.23919/OCEANS40490.2019.8962719
    [Google Scholar]
  16. NelsonJ. SingerA. KoetterR. Linear turbo equalization for parallel isi channels.IEEE Trans. Commun.200351686086410.1109/TCOMM.2003.813178
    [Google Scholar]
  17. Van De BeekJ. EdforsO. SandellM. WilsonS. BorjessonP. On channel estimation in OFDM systems1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First CenturyChicago, IL, USA1995pp. 81581910.1109/VETEC.1995.504981
    [Google Scholar]
  18. LiB. Further results on high-rate MIMO-OFDM underwater acoustic communications.Oceans2008200816
    [Google Scholar]
  19. ShiX. YangY. Adaptive sparse channel estimation based on RLS for underwater acoustic OFDM systems2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC)Harbin, China201626626910.1109/IMCCC.2016.80
    [Google Scholar]
  20. CotterS.F. RaoB.D. Sparse channel estimation via matching pursuit with application to equalization.IEEE Trans. Commun.200250337437710.1109/26.990897
    [Google Scholar]
  21. WangS. LiD. LiuM. HuangW. ChenH. CenY. Clustered-sparse bayesian learning for channel estimation in underwater acoustic OFDM systems2020 International Conference on Wireless Communications and Signal Processing (WCSP)Nanjing, China54655110.1109/WCSP49889.2020.9299826
    [Google Scholar]
  22. BergerC.R. Shengli Zhou PreisigJ.C. WillettP. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing.IEEE Trans. Signal Process.20105831708172110.1109/TSP.2009.2038424
    [Google Scholar]
  23. Ur Rehman JunejoN. EsmaielH. ZhouM. SunH. QiJ. WangJ. Sparse channel estimation of underwater TDS-OFDM system using look-ahead backtracking orthogonal matching pursuit.IEEE Access20186743897439910.1109/ACCESS.2018.2881766
    [Google Scholar]
  24. D. Hu X. Wang L. He A new sparse channel estimation and tracking method for time-varying OFDM systems.IEEE Trans. Vehicular Technol.20136294648465310.1109/TVT.2013.2266282
    [Google Scholar]
  25. YinY. LiuS. QiaoG. YangY. YangY. OFDM demodulation using virtual time reversal processing in underwater acoustic communications.J. Comput. Acoust.2015234154001110.1142/S0218396X15400111
    [Google Scholar]
  26. QiaoG. SongQ. MaL. LiuS. SunZ. GanS. Sparse bayesian learning for channel estimation in time-varying underwater acoustic ofdm communication.IEEE Access20186566755668410.1109/ACCESS.2018.2873406
    [Google Scholar]
  27. FengW. LiJ. Sparse bayesian learning for blind multichannel estimation in shallow water2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)Dalian, China20191510.1109/ICSPCC46631.2019.8960888
    [Google Scholar]
  28. LiuL. CaiL. MaL. QiaoG. Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach.IEEE Trans. Vehicular Technol.20217099063907610.1109/TVT.2021.3099797
    [Google Scholar]
  29. GaoL. LiuS. Underwater acoustic channel estimation based on sparsity-aware deep neural networks.OES China Ocean AcoustCOA2021pp. 544549
    [Google Scholar]
  30. ZhangY. WangH. LiC. ChenX. MeriaudeauF. On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications.Ocean Eng.202225911151810.1016/j.oceaneng.2022.111518
    [Google Scholar]
  31. HirayK. BabuK.V. A neural network based channel estimation scheme for OFDM system2016 International Conference on Communication and Signal Processing (ICCSP)Melmaruvathur, India20160438044110.1109/ICCSP.2016.7754174
    [Google Scholar]
  32. GuJ. ShanC. ChenX. YinH. WangW. A novel pilot-aided channel estimation scheme based on RNN for FDD-LTE systems2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)2018Hangzhou, Chinapp. 1510.1109/WCSP.2018.8555634
    [Google Scholar]
  33. MuradM. TasadduqI. OteroP. Pilots based LSE Channel Estimation for Underwater Acoustic OFDM Communication2020 Global Conf. Wireless and Optical Technologies (GCWOT)Malaga, Spainpp.16202010.1109/GCWOT49901.2020.9391633
    [Google Scholar]
  34. ZhangY. SunH. XuF. WangD. OFDM transform-domain channel estimation based on MMSE for underwater acoustic channels2008 2nd International Conference on Anti-counterfeiting, Security and IdentificationGuiyang2008pp. 17718110.1109/IWASID.2008.4688377
    [Google Scholar]
  35. ZhouM. WangJ. FengX. SunH. LiJ. KuaiX. On generative-adversarial-network-based underwater acoustic noise modeling.IEEE Trans. Vehicular Technol.20217099555955910.1109/TVT.2021.3102302
    [Google Scholar]
  36. PriyanjaliK.S. BabuA.V. An improved least square channel estimation technique for OFDM systems in sparse underwater acoustic channel2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI)Delhi, India5212525201410.1109/ICACCI.2014.6968326
    [Google Scholar]
  37. KariD. MarivaniI. KhanF. SayinM.O. KozatS.S. Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis.Digit. Signal Process.201768576810.1016/j.dsp.2017.05.006
    [Google Scholar]
  38. YuH. SongA. BadieyM. ChenF. JiF. Iterative estimation of doubly selective underwater acoustic channel using basis expansion models.Ad Hoc Netw.201534526110.1016/j.adhoc.2015.01.016
    [Google Scholar]
  39. ChenP. RongY. NordholmS. HeZ. Joint channel and impulsive noise estimation in underwater acoustic OFDM systems.IEEE Trans. Vehicular Technol.20176611105671057110.1109/TVT.2017.2743220
    [Google Scholar]
  40. ChoY.H. KoH.L. Channel estimation based on adaptive denoising for underwater acoustic OFDM systems.IEEE Access2020815719715721010.1109/ACCESS.2020.3018474
    [Google Scholar]
  41. NadakuditiR. PreisigJ.C. A channel subspace post-filtering approach to adaptive least-squares estimation.IEEE Trans. Signal Process.20045271901191410.1109/TSP.2004.828926
    [Google Scholar]
  42. MecheryJ.J. RemadeviM. Compressive sensing based underwater channel estimation.Procedia Comput. Sci.201711568369010.1016/j.procs.2017.09.155
    [Google Scholar]
  43. QiC. WuL. A study of deterministic pilot allocation for sparse channel estimation in OFDM systems.IEEE Commun. Lett.201216574274410.1109/LCOMM.2012.032612.112553
    [Google Scholar]
  44. KamaliA. Aghabozorgi SahafM.R. Doost HosseiniA.M. TadaionA.A. A low complexity DFT-matrix based pilot allocation algorithm for sparse channel estimation in OFDM systems.AEU Int. J. Electron. Commun.2014682858910.1016/j.aeue.2013.07.005
    [Google Scholar]
  45. TangL. WuH. JiangR. LuC. An improved pilot routing algorithm for compressed sensing-based channel estimation in underwater acoustic OFDM system2017 9th International Conference on Advanced Infocomm Technology (ICAIT)Chengdu, China2017909410.1109/ICAIT.2017.8388895
    [Google Scholar]
  46. JiangR. CaoS. GaoW. WangX. Grey correlation degree analysis on pilot pattern optimization for OFDM Channel Estimation2018 IEEE Global Commun. Conf. (GLOBECOM)Abu Dhabi, UAEpp. 16201810.1109/GLOCOM.2018.8647550
    [Google Scholar]
  47. YerramalliS. MitraU. TangZ. LeusG. Channel estimation for multi-layer block transmissions over underwater acoustic channels22012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)Pacific Grove, CA, USA15301535201210.1109/ACSSC.2012.6489284
    [Google Scholar]
  48. YuH. GuoJ. Compressed sensing: Underwater acoustic channel estimation with doppler shifts2012 8th International Conference on Wireless Communications, Networking and Mobile ComputingShanghai, China20121410.1109/WiCOM.2012.6478459
    [Google Scholar]
  49. ChenP. RongY. NordholmS. DuncanA. HeZ. “Compressed sensing based channel estimation and impulsive noise cancelation in underwater acoustic OFDM systems”, 2016 IEEE Region 10 Conf.TENCON201625392542
    [Google Scholar]
  50. KangT. IltisR. Matching pursuits channel estimation for an underwater acoustic OFDM modem2008 IEEE International Conference on Acoustics, Speech and Signal ProcessingLas Vegas, NV, USAp. 52965299200810.1109/ICASSP.2008.4518855
    [Google Scholar]
  51. WangH. HuangJ. HeC. ZhangQ. An efficient sparse channel estimation method with predetermined sparsity2013 IEEE Int. Conf. IEEE Region 10 (TENCON 2013)15201310.1109/TENCON.2013.6718511
    [Google Scholar]
  52. JiangW. TongF. ZhengS. CaoX. Estimation of underwater acoustic channel with hybrid sparsity via static-dynamic discriminative compressed sensing.IEEE Sensors J20202023145481455810.1109/JSEN.2020.3008163
    [Google Scholar]
  53. KhanM.R. DasB. PatiB.B. Channel estimation strategies for underwater acoustic (UWA) communication: An overview.J. Franklin Inst.2020357117229726510.1016/j.jfranklin.2020.04.002
    [Google Scholar]
  54. QuF. NieX. XuW. A two-stage approach for the estimation of doubly spread acoustic channels.IEEE J. Oceanic Eng.201540113114310.1109/JOE.2014.2307194
    [Google Scholar]
  55. WangZ. WuH. LiuS. An improved sparse underwater acoustic OFDM channel estimation method based on joint sparse model and exponential smoothing.onference: 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)16201710.1109/ICSPCC.2017.8242418
    [Google Scholar]
  56. LiuS. YangF. DingW. SongJ. Double kill: Compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications.IEEE Trans. Vehicular Technol.20166575099510910.1109/TVT.2015.2459060
    [Google Scholar]
  57. ChenY. ClementeC. SoraghanJ. WeissS. “Fractional Fourier Based Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication System, ”2016 Sensor Signal Proc. for Defence.SSPD201615
    [Google Scholar]
  58. WangJ. YanZ. ShiW. YangX. Underwater Acoustic Sparse Channel Estimation Based on DW-SACoSaMP Reconstruction Algorithm.IEEE Commun. Lett.201923111985198810.1109/LCOMM.2019.2933426
    [Google Scholar]
  59. WuX. HeC. DaiX. ZhangY. An improved sparsity adaptive CoSaMP with regularization for underwater channel estimation2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)Macau, Chinapp. 14202010.1109/ICSPCC50002.2020.9259493
    [Google Scholar]
  60. ZhangS. XuL. YanS. A low complexity OMP sparse channel estimation algorithm in OFDM system2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)Xi'an, Chinapp. 15202110.1109/ICSPCC52875.2021.9565070
    [Google Scholar]
  61. HuangJ. BergerC.R. ZhouS. HuangJ. Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDMSydney, Australia2010pp. 1510.1109/OCEANSSYD.2010.5603522
    [Google Scholar]
  62. LakshmiK. MuralikrishnaP. SomanK. Compressive estimation of UWA channels for OFDM transmission using iterative sparse reconstruction algorithmsInternational Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)2013Kottayam, Indiapp. 84785110.1109/iMac4s.2013.6526524
    [Google Scholar]
  63. SchniterP. PotterL. ZinielJ. Fast bayesian matching pursuit2008 Inf. Theory and Appl. Workshop3263332008
    [Google Scholar]
  64. QinX. QuF. WuY. MaD. “On Sparse Bayesian Spreading Function Estimation Based Iterative Detection in Multiple-Input Multiple-Output Underwater Acoustic Communications”,2018 OCEANS - MTS/IEEE Kobe Techno-Oceans.OTO2018pp. 17
    [Google Scholar]
  65. QinX. QuF. ZhengY. "Bayesian iterative channel estimation for multiple-input multiple-output underwater acoustic communications", OCEANS 2019 MTS/IEEE SEATTLESeattle, WA, USA201910.23919/OCEANS40490.2019.8962661
    [Google Scholar]
  66. QinX. QuF. ZhengY.R. Bayesian Iterative Channel Estimation and Turbo Equalization for Multiple-Input–Multiple-Output Underwater Acoustic Communications.IEEE J. Oceanic Eng.202146132633710.1109/JOE.2019.2956299
    [Google Scholar]
  67. GuiG. MehbodniyaA. AdachiF. Bayesian sparse channel estimation and data detection for OFDM communication systems2013 IEEE 78th Vehicular Technology Conference (VTC Fall)Las Vegas, NV, USA2013pp. 1510.1109/VTCFall.2013.6692113
    [Google Scholar]
  68. ChenH. QiC. Underwater acoustic channel estimation via fast Bayesian matching pursuit2017 9th International Conference on Wireless Communications and Signal Processing (WCSP)20171610.1109/WCSP.2017.8171016.
    [Google Scholar]
  69. BallalT. Al-NaffouriT.Y. AhmedS.F. Low-complexity bayesian estimation of cluster-sparse channels.IEEE Trans. Commun.201563114159417310.1109/TCOMM.2015.2480092
    [Google Scholar]
  70. QiaoG. SongQ. MaL. SunZ. ZhangJ. GanS. ZhangJ. Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications.Signal Processing202017510766810.1016/j.sigpro.2020.107668
    [Google Scholar]
  71. JiaS. ZouS. ZhangX. TianD. DaL. Multi-block Sparse Bayesian learning channel estimation for OFDM underwater acoustic communication based on fractional Fourier transform.Appl. Acoust.202219210872110.1016/j.apacoust.2022.108721
    [Google Scholar]
  72. LingJ. TanX. YardibiT. LiJ. Lundberg NordenvaadM. HeH. ZhaoK. On Bayesian Channel Estimation and FFT-Based Symbol Detection in MIMO Underwater Acoustic Communications.IEEE J. Oceanic Eng.2014391597310.1109/JOE.2012.2234893
    [Google Scholar]
  73. WangS. HeZ. NiuK. ChenP. RongY. “A sparse bayesian learning based joint channel and impulsive noise estimation algorithm for underwater acoustic ofdm systems”,2018 OCEANS - MTS/IEEE Kobe Techno-Oceans.OTO201815
    [Google Scholar]
  74. GüntürkünU. SchlegelC. TruhachevD. Compression-Aided Kalman Filter for recursive Bayesian estimation of sparse wideband channels in OFDM systems OCEANS 2016 MTS/IEEE Monterey,IEEE20161810.1109/OCEANS.2016.7761145
    [Google Scholar]
  75. ChenS. MulgrewB. McLaughlinS. Adaptive Bayesian decision feedback equaliser based on a radial basis function network[Conference Record] SUPERCOMM/ICC'92 Discovering a New World of Communications,19921267127110.1109/ICC.1992.268037
    [Google Scholar]
  76. Inhyok Cha KassamS.A. Channel equalization using adaptive complex radial basis function networks.IEEE J. Sel. Areas Comm.199513112213110.1109/49.363139
    [Google Scholar]
  77. LeeJ. BeachC. TepedelenliogluN. Channel equalization using radial basis function network1996 IEEE Int. Conf. Acoust., Speech, and Signal Proc. Conf. Proc.17191722vol. 3199610.1109/ICASSP.1996.544139
    [Google Scholar]
  78. GomesJ. BarrosoV. Using an RBF network for blind equalization: design and performance evaluation1997 IEEE Int. Conf. on Acoust., Speech, and Signal Proc.328532884199710.1109/ICASSP.1997.595495
    [Google Scholar]
  79. KumarP. SaratchandranP. SundararajanN. Communication channel equalisation using minimal radial basis function neural networksNeural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No. 98TH8378)199847748510.1109/NNSP.1998.710678
    [Google Scholar]
  80. KumarP. SaratchandranP. SundararajanN. Non-linear channel equalisation using minimal radial basis function neural networksProceedings of the 1998 IEEE Int. Conf. Acoust., Speech and Signal Proc., ICASSP ’98 (Cat. No. 98CH36181)337333766199810.1109/ICASSP.1998.679588
    [Google Scholar]
  81. Jungsik Lee BeachC. TepedelenliogluN. A practical radial basis function equalizer.IEEE Trans. Neural Netw.199910245045510.1109/72.75057718252544
    [Google Scholar]
  82. LeCunY. BengioY. HintonG. Deep learning.Nature201552143644410.1038/nature14539
    [Google Scholar]
  83. YeH. LiG.Y. JuangB.H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems.IEEE Wirel. Commun. Lett.20187111411710.1109/LWC.2017.2757490
    [Google Scholar]
  84. BaleviE. AndrewsJ.G. One-Bit OFDM Receivers via Deep Learning.IEEE Trans. Commun.20196764326433610.1109/TCOMM.2019.2903811
    [Google Scholar]
  85. HonkalaM. KorpiD. HuttunenJ.M.J. DeepRx: Fully Convolutional Deep Learning Receiver.IEEE Trans. Wirel. Commun.20212063925394010.1109/TWC.2021.3054520
    [Google Scholar]
  86. KimJ. RoH. ParkH. Deep learning-based detector for dual mode OFDM wth index modulation.IEEE Wirel. Commun. Lett.20211071562156610.1109/LWC.2021.3074433
    [Google Scholar]
  87. ZhaoH. JiF. WenM. YuH. GuanQ. Multi-task learning based underwater acoustic OFDM communications IEEE Int. Conf. on Signal Proc., Commun. and Comput. (ICSPCC)15202110.1109/ICSPCC52875.2021.9564511
    [Google Scholar]
  88. GaoX. JinS. WenC.K. LiG.Y. ComNet: Combination of deep learning and expert knowledge in Ofdm receivers.IEEE Commun. Lett.201822122627263010.1109/LCOMM.2018.2877965
    [Google Scholar]
  89. ZhangM. WenC. JinS. ZhengF. A Model-driven deep learning network for quantized GFDM receiver.J. Communications and Information Networks201943535910.23919/JCIN.2019.8917885
    [Google Scholar]
  90. HuQ. GaoF. ZhangH. JinS. LiG.Y. Deep learning for channel estimation: Interpretation, Performance, and Comparison. IEEE Trans. Wirel. Commun.20212042398241210.1109/TWC.2020.3042074
    [Google Scholar]
  91. ChengX. LiuD. ZhuZ. ShiW. LiY. A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM Systems201810.1109/WCSP.2018.8555649
    [Google Scholar]
  92. LeeS. JuH. ShimB. Pilot assignment and channel estimation via deep neural network2018 24th Asia-Pacific Conference on Communications (APCC)201845445810.1109/APCC.2018.8633453
    [Google Scholar]
  93. LiaoY. HuaY. DaiX. YaoH. YangX. Chanestnet: A deep learning based channel estimation for high-speed scenariosICC 2019-2019 IEEE international conference on communications (ICC)20191610.1109/ICC.2019.8761312
    [Google Scholar]
  94. MashhadiM.B. GündüzD. Pruning the Pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems.IEEE Trans. Wirel. Commun.202120106315632810.1109/TWC.2021.3073309
    [Google Scholar]
  95. JiangP. WenC.K. JinS. LiG.Y. Dual CNN-based channel estimation for MIMO-OFDM systems.IEEE Trans. Commun.20216995859587210.1109/TCOMM.2021.3085895
    [Google Scholar]
  96. YangY. GaoF. MaX. ZhangS. Deep learning-based channel estimation for doubly selective fading channels.IEEE Access20197365793658910.1109/ACCESS.2019.2901066
    [Google Scholar]
  97. JiangR. WangX. CaoS. ZhaoJ. LiX. Deep neural networks for channel estimation in underwater acoustic OFDM systems.IEEE Access20197235792359410.1109/ACCESS.2019.2899990
    [Google Scholar]
  98. ZhangY. LiJ. ZakharovY. LiX. LiJ. Deep learning based underwater acoustic OFDM communications.Appl. Acoust.2019154535810.1016/j.apacoust.2019.04.023
    [Google Scholar]
  99. ZhouM. WangJ. SunH. QiJ. FengX. EsmaielH. A novel DNN based channel estimator for underwater acoustic communications with IM-OFDM2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)16202010.1109/ICSPCC50002.2020.9259486
    [Google Scholar]
  100. OuyangD. LiY. WangZ. Channel Estimation for Underwater Acoustic OFDM Communications: An Image Super-Resolution ApproachConf. on Commun16202110.1109/ICC42927.2021.9500819
    [Google Scholar]
  101. KarunakaranS. ShanthindD. Hari BabuV.V. Mutahar AaqibS. WITHDRAWN: Machine learning based wireless acoustic communication with enhanced performance.Mater. Today Proc.202110.1016/j.matpr.2020.12.1132
    [Google Scholar]
  102. ZhaoR. LiM. BaiW. Underwater acoustic networks environment simulation with combination of BELLHOP and OPNET modelerOCEANS 2017-AberdeenAberdeen, UK201710.1109/OCEANSE.2017.8085016
    [Google Scholar]
  103. JiaF. ChengE. YuanF. The study on time-variant characteristics of under water acoustic channels2012 International Conference on Systems and Informatics (ICSAI2012)Yantai, China16501654201210.1109/ICSAI.2012.6223357
    [Google Scholar]
  104. ZhangJ. CrossJ. ZhengY. R. Statistical channel modeling of wireless shallow water acoustic communications from experiment data2010 - MILCOM 2010 Military communications conferenceSan Jose, CA, USA201010.1109/MILCOM.2010.5680323
    [Google Scholar]
  105. BeygiS. MitraU. Multi-scale multi-lag channel estimation using low rank structure of received signal2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Florence, Italy2014pp. 4299430310.1109/ICASSP.2014.6854413
    [Google Scholar]
  106. BeygiS. MitraU. Multi-Scale Multi-Lag Channel Estimation Using Low Rank Approximation for OFDM. IEEE Trans. Signal Process.201563184744475510.1109/TSP.2015.2449266
    [Google Scholar]
  107. BeygiS. MitraU. PetragliaM.R. Multi-scale multi-lag channel estimation via linearization of training signal spectrum and sparse approximation2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)South Brisbane, QLD, Australiapp. 32223226201510.1109/ICASSP.2015.7178566
    [Google Scholar]
  108. KimS. Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems.IEEE Commun. Lett.201216568568710.1109/LCOMM.2012.032612.120250
    [Google Scholar]
  109. BuR. WangS. YuX. Blind channel estimation and phase ambiguity elimination in MIMO-OFDM UWA communications2016 IEEE Int. Conf. on Signal Process.162016
    [Google Scholar]
  110. PanayirciE. AltabbaaM.T. PoorH.V. Channel Estimation and Equalization for Alamouti SF-Coded OFDM-UWA Communications.IEEE Trans. Vehicular Technol.20217021709172310.1109/TVT.2021.3056004
    [Google Scholar]
  111. AltabbaaM. Sparse channel estimation for mimo index modulated ofdm based underwater acoustic communications2020 International Conference on Communication, Computing and Industry 4.0 (C2I4)Bangalore, India16202010.1109/c2i451079.2020.9368920
    [Google Scholar]
  112. AltabbaaM. OgrenciA. PanayirciE. PoorH. Sparse channel estimation for space-time block coded ofdm-based underwater acoustic channels2018 IEEE Global Commun. Conf. (GLOBECOM)16201810.1109/GLOCOM.2018.8647219
    [Google Scholar]
  113. ZhangM. KuaiX. WangF. YuanX. Variance state propagation for channel estimation in underwater acoustic massive mimo-ofdm with clustered channel sparsity2021 IEEE/CIC Int. Conf. Commun. China (ICCC Workshops)Xiamen, Chinapp. 233238202110.1109/ICCCWorkshops52231.2021.9538905
    [Google Scholar]
  114. LeT. MakulaP. BuiT. RichterovaM. TranX. Group successive ICI cancellation for MIMO-OFDM systems in underwater acoustic channelsConf. MechatronicsMechatronika (ME)152016
    [Google Scholar]
  115. YangY. LiY. ZhangW. QinF. ZhuP. WangC.X. Generative-adversarial-network-based wireless channel modeling: challenges and opportunities.IEEE Commun. Mag.2019573222710.1109/MCOM.2019.1800635
    [Google Scholar]
/content/journals/eng/10.2174/1872212118666230705141644
Loading
/content/journals/eng/10.2174/1872212118666230705141644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test