Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Objective

Casson nanofluids are used to investigate the effects of Magneto hydrodynamics (MHD), viscous dissipation, temperature and concentration on convective heat transfer flow through a stretching/shrinking vertical sheet.

Methods

The BVP4C method in MATLAB is used to obtain numerical solutions for solving the governing Ordinary Differential Equations (ODEs) by converting them into the governing Partial Differential Equations (PDEs) using similarity transformations. To examine the effects of pertinent variables, including the Magnetic parameter, the Brownian motion parameter, the Cassson fluid parameter, the chemical reaction constant, the Prandtl number, the concentration to thermal Buoyancy ratio, the microorganism to thermal Buoyancy ratio, the Lewis number, the bioconvection Peclet number, the bioconvection Lewis number, the local skin friction, the local Nusselt number, the local Sherwood number and the local density number of the motile microorganisms.

Results

Quantitative data are plotted according to the bioconvection flow, temperature, concentration and velocity profiles.

Conclusion

It is observed that this patent study helps to compare the variations in the chemical reactions of the MHD Casson nanofluid by using graphs. Which in turn also leads to providing a concept of developing a patent over Casson nanofluids.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121253729231030113406
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. EinsteinA. CowperA.D. Investigation on the theory of the Brownian movement., vol. Vol. 83.Sci. Mon.1956
    [Google Scholar]
  2. JangS.P. ChoiS.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids.Appl. Phys. Lett.200484214316431810.1063/1.1756684
    [Google Scholar]
  3. BuongiornoJ. Convective transport in nanofluids.J. Heat Transfer2006128324025010.1115/1.2150834
    [Google Scholar]
  4. ZaimiK. IshakA. PopI. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid., vol. Vol. 4.Sci. Rep.2014
    [Google Scholar]
  5. NandkeolyarR. MotsaS.S. SibandaP. Viscous and joule heating in the stagnation point nanofluid flow through a stretching sheet with homogenous-heterogeneous reactions and nonlinear convection.J. Nanotechnol. Eng. Med.4404100410.1115/1.4027435
    [Google Scholar]
  6. AnimasaunI.L. RajuC.S.K. SandeepN. Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex. Eng. J.20165521595160610.1016/j.aej.2016.01.018
    [Google Scholar]
  7. ChoiS.U.S. EastmanJ.A. Enhancing thermal conductivity of fluids with nanoparticle ASME Special Conference, vol. Vol. 66, pp. 99-105 San Francisco, USA, 1995.1995
    [Google Scholar]
  8. NguyenH.A. MintsaC.T. RoyG. New temperature dependent thermal conductivity data of water based nanofluids ”, Thermal Engineering and Environment", Fifth IASME/WSEAS Int. Conference on Heat Transfer, vol. Vol. 2902007, 2009pp. 25-27 Athens, Greece2009
    [Google Scholar]
  9. EringenA.C. Simple microfluids.Int. J. Eng. Sci.19642220521710.1016/0020‑7225(64)90005‑9
    [Google Scholar]
  10. HayatT. KhanM.I. WaqasM. AlsaediA. KhanM.I. Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment.Int. J. Hydrogen Energy20174226168211683310.1016/j.ijhydene.2017.05.006
    [Google Scholar]
  11. RafiqueK. AnwarM.I. MisiranM. KhanI. SeikhA.H. SherifE.S.M. NisarK.S. Numerical analysis with Keller-box scheme for stagnation point effect on flow of micropolar nanofluid over an inclined surface.Symmetry 20191111137910.3390/sym11111379
    [Google Scholar]
  12. LundL.A. OmarZ. KhanI. DeroS. Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface.J. Cent. South Univ.20192651283129310.1007/s11771‑019‑4087‑6
    [Google Scholar]
  13. NadeemS. MehmoodR. AkbarN.S. Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions.Int. J. Therm. Sci.2014789010010.1016/j.ijthermalsci.2013.12.001
    [Google Scholar]
  14. MakandaG. ShawS. SibandaP. Diffusion of chemically reactive species in Casson fluid flow over an unsteady stretching surface in porous medium in the presence of a magnetic field.Math. Probl. Eng.2015201511010.1155/2015/724596
    [Google Scholar]
  15. HayatT. AsadS. AlsaediA. Flow of Casson fluid with nanoparticles.Appl. Math. Mech.201637445947010.1007/s10483‑016‑2047‑9
    [Google Scholar]
  16. GireeshaB.J. RameshG.K. BagewadiC.S. Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation.Adv. Appl. Sci. Res.2012323922401
    [Google Scholar]
  17. AhmedA. Phase-fitted and amplification-fitted higher order two-derivative runge-kutta method for the numerical solution of orbital and related periodical IVPs.Math. Probl. Eng.2017201711210.1155/2017/1871278
    [Google Scholar]
  18. GhoraiS. HillN.A. Wavelengths of gyrotactic plumes in bioconvection.Bull. Math. Biol.200062342945010.1006/bulm.1999.0160 10812715
    [Google Scholar]
  19. KuznetsovA.V. AvramenkoA.A. Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth.Int. Commun. Heat Mass Transf.200431111010.1016/S0735‑1933(03)00196‑9
    [Google Scholar]
  20. KhanW.A. MakindeO.D. MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet.Int. J. Therm. Sci.20148111812410.1016/j.ijthermalsci.2014.03.009
    [Google Scholar]
  21. KhanW.A. MakindeO.D. KhanZ.H. MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip.Int. J. Heat Mass Transf.20147428529110.1016/j.ijheatmasstransfer.2014.03.026
    [Google Scholar]
  22. MutukuW.N. MakindeO.D. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms.Comput. Fluids201495889710.1016/j.compfluid.2014.02.026
    [Google Scholar]
  23. MakindeO.D. KhanW.A. CulhamJ.R. MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer.Int. J. Heat Mass Transf.20169359560410.1016/j.ijheatmasstransfer.2015.10.050
    [Google Scholar]
  24. DasS. JanaR.N. MakindeO.D. Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects.J. Mech.201632219721010.1017/jmech.2015.49
    [Google Scholar]
  25. KhanW.A. MakindeO.D. KhanZ.H. Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat.Int. J. Heat Mass Transf.20169652553410.1016/j.ijheatmasstransfer.2016.01.052
    [Google Scholar]
  26. MotsaS. AnimasaunI. A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface Therm. Sci., vol. 19, suppl. Suppl. 1, pp. 249-258, 2015.10.2298/TSCI15S1S49M
    [Google Scholar]
  27. MakindeO.D. MaboodF. KhanW.A. TshehlaM.S. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat.J. Mol. Liq.201621962463010.1016/j.molliq.2016.03.078
    [Google Scholar]
  28. SandeepN. SulochanaC. AnimasaunI.L. Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction.Inter. J. Engineering Res. Africa2015209311110.4028/www.scientific.net/JERA.20.93
    [Google Scholar]
  29. MakindeO.D. AnimasaunI.L. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution.J. Mol. Liq.201622173374310.1016/j.molliq.2016.06.047
    [Google Scholar]
  30. KumarK.A. SugunammaV. SandeepN. ReddyJ.V.R. Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects.Multidiscip. Model. Mater. Struct.20182103132
    [Google Scholar]
  31. LundL.A. OmarZ. KhanU. KhanI. BaleanuD. NisarK.S. Stability analysis and dual solutions of micropolar nanofluid over the inclined stretching/shrinking surface with convective boundary condition.Symmetry 20201217410.3390/sym12010074
    [Google Scholar]
  32. Syed Asif Ali ShahN. AhammadA. El SayedM. Din. TagEl FehmiG. AwanA.U. BaghA. Bioconvection effects on Prandtl Hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet.Nanomaterials 202212119
    [Google Scholar]
  33. HossamA.N AlshberS.I. AhmedM.R. El Nasser. MahdAbd Influence of bioconvection and chemical reaction on magneto- Carreau nanofluid flow through an inclined cylinderMDPI Mathematics202210114
    [Google Scholar]
  34. DhlaminiM. MondalH. SibandaP. SandileS. “Mosta and Sachin Shaw, “A mathematical model for bioconvection flow with activation energy for chemical reaction and microbial activity””, Indian Acad. Sci., Pramana –.J. Phys.2022June96112
    [Google Scholar]
  35. Varun KumarR.S. Gunderi DhananjayaP. Naveen KumarR. Punith GowdaR.J. PrasannakumaraB.C. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction.Int. J. Comput. Methods Eng. Sci. Mech.2022231121910.1080/15502287.2021.1900451
    [Google Scholar]
  36. LiP. DuraihemF.Z. AwanA.U. Al-ZubaidiA. AbbasN. AhmadD. Heat transfer of Hybrid nanomaterials base Maxwell micropolar fluid flow over an exponentially stretching surface.Nanomaterials 202212711310.3390/nano12071207 35407325
    [Google Scholar]
  37. AliL. AliB. GhoriM.B. Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach.Comput. Math. Appl.202210926026910.1016/j.camwa.2022.01.009
    [Google Scholar]
  38. AliA. KhanH.S. SaleemS. HussanM. EMHD nanofluid flow with radiation and variable heat flux effects along a slandering stretching sheet.Nanomaterials 20221221387210.3390/nano12213872 36364648
    [Google Scholar]
  39. AsjadM.I. ZahidM. JaradF. AlsharifA.M. Bioconvection flow of MHD viscous nanofluid in the presence of chemical reaction and activation energy.Math. Probl. Eng.202220221910.1155/2022/1707894
    [Google Scholar]
  40. AtifS.M. HussainS. SagheerM. Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms.AIP Adv.20199202520810.1063/1.5085742
    [Google Scholar]
/content/journals/eng/10.2174/0118722121253729231030113406
Loading
/content/journals/eng/10.2174/0118722121253729231030113406
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test