Skip to content
2000
image of Nanotheranostic  Approach  for  Targeting  Tauopathies  in  Alzheimer's Disease: Mechanistic Insight and Recent Advances

Abstract

The most prevalent type of dementia, Alzheimer's disease (AD), is typified by the presence of intracellular tau protein neurofibrillary tangles and extracellular amyloid plaques. There are currently about 50 million people who have dementia, and by 2030, that number is predicted to rise to 75 million, placing a significant financial strain on the nation's healthcare system. Novel disease-modifying treatments are desperately needed to combat this illness, given the consequences on patients' quality of life and the mounting financial strain. There are currently no disease-modifying medications available; instead, the majority of available therapies are symptomatic ones such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers. The primary focus of therapeutic research against AD has shifted to tau-targeting strategies following multiple unsuccessful attempts to create medications against amyloidopathy. This article first provides an introduction to tauopathy in AD before summarizing current research on the creation of tau-oriented multi-target directed ligands and small compounds as therapies that target tau alteration, aggregation, and degradation. The overall goal of this work is to present a thorough and critical review of small compounds that are being investigated as potential treatment candidates for AD tauopathy.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031331346241122152643
2024-11-26
2025-01-24
Loading full text...

Full text loading...

References

  1. Kovacs G.G. Tauopathies. Handb. Clin. Neurol. 2018 145 355 368 10.1016/B978‑0‑12‑802395‑2.00025‑0 28987182
    [Google Scholar]
  2. Sonawane S.K. Ahmad A. Chinnathambi S. Protein-capped metal nanoparticles inhibit tau aggregation in alzheimer’s disease. ACS Omega 2019 4 7 12833 12840 10.1021/acsomega.9b01411 31460408
    [Google Scholar]
  3. Jeyaraman M Lakshmi Rajendran R Muthu, S.; Jeyaraman, N.; Sharma, S.; Kumar Jha, S.; Muthukanagaraj, P.; Moon Hong, C.; Furtado da Fonseca, L.;Fábio Santos Duarte Lana, J.; Ahn, B.;-C.; & Gangadaran, P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease Heliyon 2023 9 7 e17808 10.1016/j.heliyon.2023.e17808 37449130
    [Google Scholar]
  4. Modi G. Pillay V. Choonara Y.E. Ndesendo V.M.K. du Toit L.C. Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog. Neurobiol. 2009 88 4 272 285 10.1016/j.pneurobio.2009.05.002 19486920
    [Google Scholar]
  5. Xie Y. Lu W. Jiang X. Improvement of cationic albumin conjugated pegylated nanoparticles holding nc-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice. Behav. Brain Res. 2006 173 1 76 84 10.1016/j.bbr.2006.06.001 16828890
    [Google Scholar]
  6. Nowacek A. Kosloski L.M. Gendelman H.E. Neurodegenerative disorders and nanoformulated drug development. Nanomedicine (Lond.) 2009 4 5 541 555 10.2217/nnm.09.37 19572820
    [Google Scholar]
  7. Swartz R.H. Black S.E. St George-Hyslop P. Apolipoprotein e and alzheimer’s disease: A genetic, molecular and neuroimaging review. Can. J. Neurol. Sci. 1999 26 2 77 88 10352866
    [Google Scholar]
  8. Cui Z. Lockman P. Atwood C. Hsu C. Gupte A. Allen D. Mumper R. Novel -penicillamine carrying nanoparticles for metal chelation therapy in alzheimer’s and other cns diseases. Eur. J. Pharm. Biopharm. 2005 59 2 263 272 10.1016/j.ejpb.2004.07.009 15661498
    [Google Scholar]
  9. Köpke E. Tung Y.C. Shaikh S. Alonso A.C. Iqbal K. Grundke-Iqbal I. Microtubule-associated protein tau. abnormal phosphorylation of a non-paired helical filament pool in alzheimer disease. J. Biol. Chem. 1993 268 32 24374 24384 10.1016/S0021‑9258(20)80536‑5 8226987
    [Google Scholar]
  10. Noble W Hanger DP Miller CC Lovestone S The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol. 2013 4 83 10.3389/fneur.2013.00083 23847585
    [Google Scholar]
  11. Cohen T.J. Guo J.L. Hurtado D.E. Kwong L.K. Mills I.P. Trojanowski J.Q. Lee V.M.Y. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2011 2 1 252 10.1038/ncomms1255 21427723
    [Google Scholar]
  12. Frost B Feature review alzheimer’s disease and related tauopathies: Disorders of disrupted neuronal identity. Trends Neurosci. 2023 46 10 797 813 10.1016/j.tins.2023.07.006 37591720
    [Google Scholar]
  13. Grundke-Iqbal I. Iqbal K. Tung Y.C. Quinlan M. Wisniewski H.M. Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986 83 13 4913 4917 10.1073/pnas.83.13.4913 3088567
    [Google Scholar]
  14. Kosik K.S. Joachim C.L. Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in alzheimer disease. Proc. Natl. Acad. Sci. USA 1986 83 11 4044 4048 10.1073/pnas.83.11.4044 2424016
    [Google Scholar]
  15. Biernat J. Gustke N. Drewes G. Mandelkow Mandelkow E. Phosphorylation of ser262 strongly reduces binding of tau to microtubules: Distinction between phf-like immunoreactivity and microtubule binding. Neuron 1993 11 1 153 163 10.1016/0896‑6273(93)90279‑Z 8393323
    [Google Scholar]
  16. Lindwall G. Cole R.D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 1984 259 8 5301 5305 10.1016/S0021‑9258(17)42989‑9 6425287
    [Google Scholar]
  17. Hoover B.R. Reed M.N. Su J. Penrod R.D. Kotilinek L.A. Grant M.K. Pitstick R. Carlson G.A. Lanier L.M. Yuan L.L. Ashe K.H. Liao D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010 68 6 1067 1081 10.1016/j.neuron.2010.11.030 21172610
    [Google Scholar]
  18. Min S.W. Cho S.H. Zhou Y. Schroeder S. Haroutunian V. Seeley W.W. Huang E.J. Shen Y. Masliah E. Mukherjee C. Meyers D. Cole P.A. Ott M. Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010 67 6 953 966 10.1016/j.neuron.2010.08.044 20869593
    [Google Scholar]
  19. Mena R. Edwards P.C. Harrington C.R. Mukaetova-Ladinska E.B. Wischik C.M. Staging the pathological assembly of truncated tau protein into paired helical filaments in alzheimer’s disease. Acta Neuropathol. 1996 91 6 633 641 10.1007/s004010050477 8781663
    [Google Scholar]
  20. García-Sierra F. Wischik C.M. Harrington C.R. Luna-Muñoz J. Mena R. Accumulation of c-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in alzheimer’s disease. J. Chem. Neuroanat. 2001 22 1-2 65 77 10.1016/S0891‑0618(01)00096‑5 11470555
    [Google Scholar]
  21. Chung C.W. Song Y.H. Kim I.K. Yoon W.J. Ryu B.R. Jo D.G. Woo H.N. Kwon Y.K. Kim H.H. Gwag B.J. Mook-Jung I.H. Jung Y.K. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol. Dis. 2001 8 1 162 172 10.1006/nbdi.2000.0335 11162250
    [Google Scholar]
  22. Rissman R.A. Poon W.W. Blurton-Jones M. Oddo S. Torp R. Vitek M.P. LaFerla F.M. Rohn T.T. Cotman C.W. Caspase-cleavage of tau is an early event in alzheimer disease tangle pathology. J. Clin. Invest. 2004 114 1 121 130 10.1172/JCI200420640 15232619
    [Google Scholar]
  23. Gamblin T.C. Chen F. Zambrano A. Abraha A. Lagalwar S. Guillozet A.L. Lu M. Fu Y. Garcia-Sierra F. LaPointe N. Miller R. Berry R.W. Binder L.I. Cryns V.L. Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2003 100 17 10032 10037 10.1073/pnas.1630428100 12888622
    [Google Scholar]
  24. Jadhav S. Katina S. Kovac A. Kazmerova Z. Novak M. Zilka N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front. Cell. Neurosci. 2015 9 24 10.3389/fncel.2015.00024 25755633
    [Google Scholar]
  25. Wang J.Z. Grundke-Iqbal I. Iqbal K. Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in alzheimer’s disease. Nat. Med. 1996 2 8 871 875 10.1038/nm0896‑871 8705855
    [Google Scholar]
  26. Wang A.C. Jensen E.H. Rexach J.E. Vinters H.V. Hsieh-Wilson L.C. Loss of o -glcnac glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc. Natl. Acad. Sci. USA 2016 113 52 15120 15125 10.1073/pnas.1606899113 27956640
    [Google Scholar]
  27. Liu F. Shi J. Tanimukai H. Gu J. Gu J. Grundke-Iqbal I. Iqbal K. Gong C.X. Reduced o-glcnacylation links lower brain glucose metabolism and tau pathology in alzheimer’s disease. Brain 2009 132 7 1820 1832 10.1093/brain/awp099 19451179
    [Google Scholar]
  28. Ryan P. Xu M. Davey A.K. Danon J.J. Mellick G.D. Kassiou M. Rudrawar S. O-glcnac modification protects against protein misfolding and aggregation in neurodegenerative disease. ACS Chem. Neurosci. 2019 10 5 2209 2221 10.1021/acschemneuro.9b00143 30985105
    [Google Scholar]
  29. Mori H. Kondo J. Ihara Y. Ubiquitin is a component of paired helical filaments in alzheimer’s disease. Science 1987 235 4796 1641 1644 10.1126/science.3029875 3029875
    [Google Scholar]
  30. Cripps D. Thomas S.N. Jeng Y. Yang F. Davies P. Yang A.J. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through lys-48, lys-11, and lys-6 ubiquitin conjugation. J. Biol. Chem. 2006 281 16 10825 10838 10.1074/jbc.M512786200 16443603
    [Google Scholar]
  31. Thomas S.N. Funk K.E. Wan Y. Liao Z. Davies P. Kuret J. Yang A.J. Dual modification of alzheimer’s disease phf-tau protein by lysine methylation and ubiquitylation: A mass spectrometry approach. Acta Neuropathol. 2012 123 1 105 117 10.1007/s00401‑011‑0893‑0 22033876
    [Google Scholar]
  32. Lee L. Sakurai M. Matsuzaki S. Arancio O. Fraser P. Sumo and alzheimer’s disease. Neuromolecular Med. 2013 15 4 720 736 10.1007/s12017‑013‑8257‑7 23979993
    [Google Scholar]
  33. Luo H.B. Xia Y.Y. Shu X.J. Liu Z.C. Feng Y. Liu X.H. Yu G. Yin G. Xiong Y.S. Zeng K. Jiang J. Ye K. Wang X.C. Wang J.Z. Sumoylation at k340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl. Acad. Sci. USA 2014 111 46 16586 16591 10.1073/pnas.1417548111 25378699
    [Google Scholar]
  34. Reyes J.F. Fu Y. Vana L. Kanaan N.M. Binder L.I. Tyrosine nitration within the proline-rich region of tau in alzheimer’s disease. Am. J. Pathol. 2011 178 5 2275 2285 10.1016/j.ajpath.2011.01.030 21514440
    [Google Scholar]
  35. Sasaki N. Fukatsu R. Tsuzuki K. Hayashi Y. Yoshida T. Fujii N. Koike T. Wakayama I. Yanagihara R. Garruto R. Amano N. Makita Z. Advanced glycation end products in alzheimer’s disease and other neurodegenerative diseases. Am. J. Pathol. 1998 153 4 1149 1155 10.1016/S0002‑9440(10)65659‑3 9777946
    [Google Scholar]
  36. Huseby C.J. Hoffman C.N. Cooper G.L. Cocuron J.C. Alonso A.P. Thomas S.N. Yang A.J. Kuret J. Quantification of tau protein lysine methylation in aging and alzheimer’s disease. J. Alzheimers Dis. 2019 71 3 979 991 10.3233/JAD‑190604 31450505
    [Google Scholar]
  37. Lu P.J. Wulf G. Zhou X.Z. Davies P. Lu K.P. The prolyl isomerase pin1 restores the function of alzheimer-associated phosphorylated tau protein. Nature 1999 399 6738 784 788 10.1038/21650 10391244
    [Google Scholar]
  38. Nakamura K. Greenwood A. Binder L. Bigio E.H. Denial S. Nicholson L. Zhou X.Z. Lu K.P. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in alzheimer’s disease. Cell 2012 149 1 232 244 10.1016/j.cell.2012.02.016 22464332
    [Google Scholar]
  39. Holtzman D.M. Mandelkow E. Selkoe D.J. Alzheimer disease in 2020. Cold Spring Harb. Perspect. Med. 2012 2 11 a011585 10.1101/cshperspect.a011585 23125202
    [Google Scholar]
  40. Alonso A.C. Zaidi T. Novak M. Grundke-Iqbal I. Iqbal K. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA 2001 98 12 6923 6928 10.1073/pnas.121119298 11381127
    [Google Scholar]
  41. Khosravi-Darani K. Pardakhty A. Honarpisheh H. Rao V.S.N.M. Mozafari M.R. The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 2007 38 8 804 818 10.1016/j.micron.2007.06.009 17669661
    [Google Scholar]
  42. Mehrabi M. Esmaeilpour P. Akbarzadeh A. Saffari Z. Farahnak M. Farhangi A. Chiani M. Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turk. J. Med. Sci. 2016 46 2 567 571 10.3906/sag‑1412‑67 27511525
    [Google Scholar]
  43. Siegel D.P. Tenchov B.G. Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases. Biophys. J. 2008 94 10 3987 3995 10.1529/biophysj.107.118034 18234828
    [Google Scholar]
  44. Panahi Y. Farshbaf M. Mohammadhosseini M. Mirahadi M. Khalilov R. Saghfi S. Akbarzadeh A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017 45 4 788 799 10.1080/21691401.2017.1282496 28278586
    [Google Scholar]
  45. Thompson A.K. Mozafari M.R. Singh H. The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 2007 87 4-5 349 360 10.1051/lait:2007013
    [Google Scholar]
  46. Nasrabadi H.T. Abbasi E. Davaran S. Kouhi M. Akbarzadeh A. Bimetallic nanoparticles: Preparation, properties, and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2016 44 1 376 380 10.3109/21691401.2014.953632 25203939
    [Google Scholar]
  47. Sanchez-Purra M. Ramos V. Petrenko V. Torchilin V. Borros S. Double-targeted polymersomes and liposomes for multiple barrier crossing, int. j. pharm. 511 (2016) 946–956. [53] r.p. singh, g. sharma, l. kumari, b. koch, s. singh, s. bharti, p.s. rajinikanth, b.l. pandey, m.s. muthu, rgd-tpgs decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces 2016 147 129 141
    [Google Scholar]
  48. Zhong Z. liu Zhang X. huang Yu X. li Xiong D. Sun X. Luo Y. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomedicine 2016 11 3111 3129 10.2147/IJN.S108445 27471381
    [Google Scholar]
  49. Daraee H. Eatemadi A. Abbasi E. Fekri Aval S. Kouhi M. Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 410 422 10.3109/21691401.2014.955107 25229833
    [Google Scholar]
  50. Gobbi M. Re F. Canovi M. Beeg M. Gregori M. Sesana S. Sonnino S. Brogioli D. Musicanti C. Gasco P. Salmona M. Masserini M.E. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials 2010 31 25 6519 6529 10.1016/j.biomaterials.2010.04.044 20553982
    [Google Scholar]
  51. Matsuzaki K. Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim. Biophys. Acta Biomembr. 2007 1768 8 1935 1942 10.1016/j.bbamem.2007.02.009 17382287
    [Google Scholar]
  52. Lin M.S. Chiu H.M. Fan F.J. Tsai H.T. Wang S.S.S. Chang Y. Chen W.Y. Kinetics and enthalpy measurements of interaction between β-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry. Colloids Surf. B Biointerfaces 2007 58 2 231 236 10.1016/j.colsurfb.2007.03.014 17482435
    [Google Scholar]
  53. Balducci C. Mancini S. Minniti S. La Vitola P. Zotti M. Sancini G. Mauri M. Cagnotto A. Colombo L. Fiordaliso F. Grigoli E. Salmona M. Snellman A. Haaparanta-Solin M. Forloni G. Masserini M. Re F. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in alzheimer’s disease mouse models. J. Neurosci. 2014 34 42 14022 14031 10.1523/JNEUROSCI.0284‑14.2014 25319699
    [Google Scholar]
  54. Mancini S. Minniti S. Gregori M. Sancini G. Cagnotto A. Couraud P.O. Ordóñez-Gutiérrez L. Wandosell F. Salmona M. Re F. The hunt for brain aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for alzheimer disease. Nanomedicine 2016 12 1 43 52 10.1016/j.nano.2015.09.003 26410276
    [Google Scholar]
  55. Tanifum E.A. Dasgupta I. Srivastava M. Bhavane R.C. Sun L. Berridge J. Pourgarzham H. Kamath R. Espinosa G. Cook S.C. Eriksen J.L. Annapragada A. Intravenous delivery of targeted liposomes to amyloid-β pathology in app/psen1 transgenic mice. PLoS One 2012 7 10 e48515 e48528 10.1371/journal.pone.0048515 23119043
    [Google Scholar]
  56. Lockhart A. Imaging alzheimer’s disease pathology: One target, many ligands. Drug Discov. Today 2006 11 23-24 1093 1099 10.1016/j.drudis.2006.10.008 17129828
    [Google Scholar]
  57. Tanifum E.A. Ghaghada K. Vollert C. Head E. Eriksen J.L. Annapragada A. A novel liposomal nanoparticle for the imaging of amyloid plaque by magnetic re sonance imaging. J. Alzheimers Dis. 2016 52 2 731 745 10.3233/JAD‑151124 27031484
    [Google Scholar]
  58. Zheng X. Shao X. Zhang C. Tan Y. Liu Q. Wan X. Zhang Q. Xu S. Jiang X. Intranasal h102 peptide-loaded liposomes for brain delivery to treat alzheimer’s disease. Pharm. Res. 2015 32 12 3837 3849 10.1007/s11095‑015‑1744‑9 26113236
    [Google Scholar]
  59. Hajji S. Younes I. Ghorbel-Bellaaj O. Hajji R. Rinaudo M. Nasri M. Jellouli K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol. 2014 65 298 306 10.1016/j.ijbiomac.2014.01.045 24468048
    [Google Scholar]
  60. Zainol I. Ghani S.M. Mastor A. Derman M.A. Yahya M.F. Enzymatic degradation study of porous chitosan membrane. Mater. Res. Innov. 2009 13 3 316 319 10.1179/143307509X440631
    [Google Scholar]
  61. Sarvaiya J. Agrawal Y.K. Chitosan as a suitable nanocarrier material for anti-alzheimer drug delivery. Int. J. Biol. Macromol. 2015 72 454 465 10.1016/j.ijbiomac.2014.08.052 25199867
    [Google Scholar]
  62. Yang H.C. Hon M.H. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem. J. 2009 92 1 87 91 10.1016/j.microc.2009.02.001
    [Google Scholar]
  63. Taşkın P. Canısağ H. Şen M. The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiat. Phys. Chem. 2014 94 236 239 10.1016/j.radphyschem.2013.04.007
    [Google Scholar]
  64. Nance J.P. Vannella K.M. Worth D. David C. Carter D. Noor S. Hubeau C. Fitz L. Lane T.E. Wynn T.A. Wilson E.H. Chitinase dependent control of protozoan cyst burden in the brain. PLoS Pathog. 2012 8 11 e1002990 e1003005 10.1371/journal.ppat.1002990 23209401
    [Google Scholar]
  65. Watabe-Rudolph M. Song Z. Lausser L. Schnack C. Begus-Nahrmann Y. Scheithauer M.O. Rettinger G. Otto M. Tumani H. Thal D.R. Attems J. Jellinger K.A. Kestler H.A. von Arnim C.A.F. Rudolph K.L. Chitinase enzyme activity in csf is a powerful biomarker of alzheimer disease. Neurology 2012 78 8 569 577 10.1212/WNL.0b013e318247caa1 22323746
    [Google Scholar]
  66. Kumar A. Dogra S. Prakash A. Neuroprotective effects of centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis. 2009 2009 1 8 10.4061/2009/972178 20798885
    [Google Scholar]
  67. Wilson B. Samanta M.K. Santhi K. Sampath Kumar K.P. Ramasamy M. Suresh B. Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating alzheimer’s disease. J. Neurosci. Methods 2009 177 2 427 433 10.1016/j.jneumeth.2008.10.036 19041670
    [Google Scholar]
  68. Wilson B. Samanta M.K. Santhi K. Kumar K.P.S. Ramasamy M. Suresh B. Chitosan nanoparticles as a new delivery system for the anti-alzheimer drug tacrine. Nanomedicine 2010 6 1 144 152 10.1016/j.nano.2009.04.001 19446656
    [Google Scholar]
  69. Elnaggar Y.S.R. Etman S.M. Abdelmonsif D.A. Abdallah O.Y. Intranasal piperineloaded chitosan nanoparticles as brain-targeted therapy in alzheimer’s disease:optimization, biological efficacy, and potential toxicity. J. Pharm. Sci. 2015 104 10 3544 3556 10.1002/jps.24557
    [Google Scholar]
  70. Dineley K.T. Pandya A.A. Yakel J.L. Nicotinic ach receptors as therapeutic targets in cns disorders. Trends Pharmacol. Sci. 2015 36 2 96 108 10.1016/j.tips.2014.12.002 25639674
    [Google Scholar]
  71. Bhattacharya S. Haertel C. Maelicke A. Montag D. Galantamine slows down plaque formation and behavioral decline in the 5xfad mouse model of alzheimer’s disease. PLoS One 2014 9 2 e89454 e89465 10.1371/journal.pone.0089454 24586789
    [Google Scholar]
  72. Leonard A.K. Sileno A.P. Brandt G.C. Foerder C.A. Quay S.C. Costantino H.R. in vitro formulation optimization of intranasal galantamine leading to enhanced bioavailability and reduced emetic response in vivo. Int. J. Pharm. 2007 335 1-2 138 146 10.1016/j.ijpharm.2006.11.013 17174048
    [Google Scholar]
  73. Hanafy A.S. Farid R.M. Helmy M.W. ElGamal S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in alzheimer’s disease management. Drug Deliv. 2016 23 8 3111 3122 10.3109/10717544.2016.1153748 26942549
    [Google Scholar]
  74. Wang A.Z. Langer R. Farokhzad O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012 63 1 185 198 10.1146/annurev‑med‑040210‑162544 21888516
    [Google Scholar]
  75. Craig L.A. Hong N.S. Kopp J. McDonald R.J. Cholinergic depletion of the medial septum followed by phase shifting does not impair memory or rest–activity rhythms measured under standard light/dark conditions in rats. Brain Res. Bull. 2009 79 1 53 62 10.1016/j.brainresbull.2008.10.013 19038315
    [Google Scholar]
  76. Bodor N. Buchwald P. Brain-targeted delivery of estradiol. Am. J. Drug Deliv. 2006 4 3 161 175 10.2165/00137696‑200604030‑00004
    [Google Scholar]
  77. Mittal G. Carswell H. Brett R. Currie S. Kumar M.N.V.R. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of alzheimer’s pathology. J. Control. Release 2011 150 2 220 228 10.1016/j.jconrel.2010.11.013 21111014
    [Google Scholar]
  78. Kim H.R. Andrieux K. Gil S. Taverna M. Chacun H. Desmaële D. Taran F. Georgin D. Couvreur P. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: Role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 2007 8 3 793 799 10.1021/bm060711a 17309294
    [Google Scholar]
  79. Brambilla D. Verpillot R. Le Droumaguet B. Nicolas J. Taverna M. Kóňa J. Lettiero B. Hashemi S.H. De Kimpe L. Canovi M. Gobbi M. Nicolas V. Scheper W. Moghimi S.M. Tvaroška I. Couvreur P. Andrieux K. Pegylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for alzheimer’s disease. ACS Nano 2012 6 7 5897 5908 10.1021/nn300489k 22686577
    [Google Scholar]
  80. Zhang C. Wan X. Zheng X. Shao X. Liu Q. Zhang Q. Qian Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of alzheimer’s disease mice. Biomaterials 2014 35 1 456 465 10.1016/j.biomaterials.2013.09.063 24099709
    [Google Scholar]
  81. Jiang Y. Mullaney K.A. Peterhoff C.M. Che S. Schmidt S.D. Boyer-Boiteau A. Ginsberg S.D. Cataldo A.M. Mathews P.M. Nixon R.A. Alzheimer’s-related endosome dysfunction in down syndrome is aβ-independent but requires app and is reversed by bace-1 inhibition. Proc. Natl. Acad. Sci. USA 2010 107 4 1630 1635 10.1073/pnas.0908953107 20080541
    [Google Scholar]
  82. Hussain I. Hawkins J. Harrison D. Hille C. Wayne G. Cutler L. Buck T. Walter D. Demont E. Howes C. Naylor A. Jeffrey P. Gonzalez M.I. Dingwall C. Michel A. Redshaw S. Davis J.B. Oral administration of a potent and selective non-peptidic bace-1 inhibitor decreases β-cleavage of amyloid precursor protein and amyloid-β production in vivo. J. Neurochem. 2007 100 3 802 809 10.1111/j.1471‑4159.2006.04260.x 17156133
    [Google Scholar]
  83. Charrier N. Clarke B. Cutler L. Demont E. Dingwall C. Dunsdon R. East P. Hawkins J. Howes C. Hussain I. Jeffrey P. Maile G. Matico R. Mosley J. Naylor A. O’Brien A. Redshaw S. Rowland P. Soleil V. Smith K.J. Sweitzer S. Theobald P. Vesey D. Walter D.S. Wayne G. Second generation of hydroxyethylamine bace-1 inhibitors: Optimizing potency and oral bioavailability. J. Med. Chem. 2008 51 11 3313 3317 10.1021/jm800138h 18457381
    [Google Scholar]
  84. Faghihi M.A. Modarresi F. Khalil A.M. Wood D.E. Sahagan B.G. Morgan T.E. Finch C.E. St Laurent G. III Kenny P.J. Wahlestedt C. Expression of a noncoding rna is elevated in alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 2008 14 7 723 730 10.1038/nm1784 18587408
    [Google Scholar]
  85. Gao Y. Chen L. Zhang Z. Chen Y. Li Y. Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/imdr1-pdna complex nanoparticles. Biomaterials 2011 32 6 1738 1747 10.1016/j.biomaterials.2010.11.001 21112086
    [Google Scholar]
  86. Kumar P. Wu H. McBride J.L. Jung K.E. Hee Kim M. Davidson B.L. Kyung Lee S. Shankar P. Manjunath N. Transvascular delivery of small interfering rna to the central nervous system. Nature 2007 448 7149 39 43 10.1038/nature05901 17572664
    [Google Scholar]
  87. Brunden K.R. Trojanowski J.Q. Lee V.M.Y. Advances in tau-focused drug discovery for alzheimer’s disease and related tauopathies. Nat. Rev. Drug Discov. 2009 8 10 783 793 10.1038/nrd2959 19794442
    [Google Scholar]
  88. Khan A.K. Rashid R. Murtaza G. Zahra A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res. 2014 13 7 1169 1177 10.4314/tjpr.v13i7.23
    [Google Scholar]
  89. Kumar A. Mazinder Boruah B. Liang X.J. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and hiv/aids. J. Nanomater. 2011 2011 1 17 10.1155/2011/202187
    [Google Scholar]
  90. Tedesco S. Doyle H. Blasco J. Redmond G. Sheehan D. Oxidative stress and toxicity of gold nanoparticles in mytilus edulis. Aquat. Toxicol. 2010 100 2 178 186 10.1016/j.aquatox.2010.03.001 20382436
    [Google Scholar]
  91. Ganeshkumar M. Sastry T.P. Sathish Kumar M. Dinesh M.G. Kannappan S. Suguna L. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model. Mater. Res. Bull. 2012 47 9 2113 2119 10.1016/j.materresbull.2012.06.015
    [Google Scholar]
  92. Triulzi R.C. Dai Q. Zou J. Leblanc R.M. Gu Q. Orbulescu J. Huo Q. Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf. B Biointerfaces 2008 63 2 200 208 10.1016/j.colsurfb.2007.12.006 18262396
    [Google Scholar]
  93. Geng J. Qu K. Ren J. Qu X. Rapid and efficient screening of alzheimer’s disease β-amyloid inhibitors using label-free gold nanoparticles. Mol. Biosyst. 2010 6 12 2389 2391 10.1039/c0mb00057d 20931124
    [Google Scholar]
  94. Gao N. Sun H. Dong K. Ren J. Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against alzheimer’s disease. Chemistry 2015 21 2 829 835 10.1002/chem.201404562 25376633
    [Google Scholar]
  95. Brookmeyer R. Johnson E. Ziegler-Graham K. Arrighi H.M. Forecasting the global burden of alzheimer’s disease. Alzheimers Dement. 2007 3 3 186 191 10.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  96. Bu G. Apolipoprotein e and its receptors in alzheimer’s disease: Pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 2009 10 5 333 344 10.1038/nrn2620 19339974
    [Google Scholar]
  97. Bertram L. Tanzi R.E. Thirty years of alzheimer’s disease genetics: The implications of systematic meta-analyses, nat. rev. neurosci. 9 (2008) 768–778. a. neely, c. perry, b. varisli, a.k. singh, t. arbneshi, d. senapati, j.r. kalluri, p.c. ray, ultrasensitive and highly selective detection of alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano 2009 3 2834 2840
    [Google Scholar]
  98. Wang C. Wang J. Liu D. Wang Z. Gold nanoparticle-based colorimetric sensor for studying the interactions of β-amyloid peptide with metallic ions. Talanta 2010 80 5 1626 1631 10.1016/j.talanta.2009.09.052 20152387
    [Google Scholar]
  99. Pagel K. Seri T. von Berlepsch H. Griebel J. Kirmse R. Böttcher C. Koksch B. How metal ions affect amyloid formation: Cu2+- and zn2+-sensitive peptides. ChemBioChem 2008 9 4 531 536 10.1002/cbic.200700656 18232039
    [Google Scholar]
  100. Yu H. Ren J. Qu X. Different hydration changes accompanying copper and zinc binding to amyloid β-peptide: Water contribution to metal binding. ChemBioChem 2008 9 6 879 882 10.1002/cbic.200700633 18297675
    [Google Scholar]
  101. Liu D. Chen W. Tian Y. He S. Zheng W. Sun J. Wang Z. Jiang X. A highly sensitive gold-nanoparticle-based assay for acetylcholinesterase in cerebrospinal fluid of transgenic mice with alzheimer’s disease. Adv. Healthc. Mater. 2012 1 1 90 95 10.1002/adhm.201100002 23184691
    [Google Scholar]
  102. Liao Y.H. Chang Y.J. Yoshiike Y. Chang Y.C. Chen Y.R. Negatively charged gold nanoparticles inhibit alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 2012 8 23 3631 3639 10.1002/smll.201201068 22915547
    [Google Scholar]
  103. Bartley M.G. Marquardt K. Kirchhof D. Wilkins H.M. Patterson D. Linseman D.A. Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. J. Alzheimers Dis. 2012 28 4 855 868 10.3233/JAD‑2011‑111172 22133762
    [Google Scholar]
  104. Kwon H.J. Cha M.Y. Kim D. Kim D.K. Soh M. Shin K. Hyeon T. Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano 2016 10 2 2860 2870 10.1021/acsnano.5b08045 26844592
    [Google Scholar]
  105. Swierczewska M. Choi K.Y. Mertz E.L. Huang X. Zhang F. Zhu L. Yoon H.Y. Park J.H. Bhirde A. Lee S. Chen X. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012 12 7 3613 3620 10.1021/nl301309g 22694219
    [Google Scholar]
  106. Weizmann Y. Chenoweth D.M. Swager T.M. Addressable terminally linked dna-cnt nanowires. J. Am. Chem. Soc. 2010 132 40 14009 14011 10.1021/ja106352y 20857907
    [Google Scholar]
  107. Rouse J.G. Yang J. Barron A.R. Monteiro-Riviere N.A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. in vitro 2006 20 8 1313 1320 10.1016/j.tiv.2006.04.004 16759832
    [Google Scholar]
  108. Bottini M. Bruckner S. Nika K. Bottini N. Bellucci S. Magrini A. Bergamaschi A. Mustelin T. Multi-walled carbon nanotubes induce t lymphocyte apoptosis. Toxicol. Lett. 2006 160 2 121 126 10.1016/j.toxlet.2005.06.020 16125885
    [Google Scholar]
  109. Yang Z. Zhang Y. Yang Y. Sun L. Han D. Li H. Wang C. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating alzheimer disease. Nanomedicine 2010 6 3 427 441 10.1016/j.nano.2009.11.007 20056170
    [Google Scholar]
  110. Luo J. Wärmländer S.K.T.S. Yu C.H. Muhammad K. Gräslund A. Pieter Abrahams J. The aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. Nanoscale 2014 6 12 6720 6726 10.1039/C4NR00291A 24820873
    [Google Scholar]
  111. Raz Y. Miller Y. Interactions between aβ and mutated tau lead to polymorphism and induce aggregation of aβ-mutated tau oligomeric complexes. PLoS One 2013 8 8 e73303 e73316 10.1371/journal.pone.0073303 23951348
    [Google Scholar]
  112. Miller Y. Ma B. Nussinov R. Synergistic interactions between repeats in tau protein and aβ amyloids may be responsible for accelerated aggregation via polymorphic states. Biochemistry 2011 50 23 5172 5181 10.1021/bi200400u 21506544
    [Google Scholar]
  113. Xue X. Wang L.R. Sato Y. Jiang Y. Berg M. Yang D.S. Nixon R.A. Liang X.J. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of alzheimer’s disease. Nano Lett. 2014 14 9 5110 5117 10.1021/nl501839q 25115676
    [Google Scholar]
  114. Nixon R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013 19 8 983 997 10.1038/nm.3232 23921753
    [Google Scholar]
  115. Hochfeld W.E. Lee S. Rubinsztein D.C. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol. Sin. 2013 34 5 600 604 10.1038/aps.2012.189 23377551
    [Google Scholar]
  116. Han X. Li S. Peng Z. Al-Yuobi A.O. Omar Bashammakh A.S. El-Shahawi M.S. Leblanc R.M. Interactions between carbon nanomaterials and biomolecules. J. Oleo Sci. 2016 65 1 1 7 10.5650/jos.ess15248 26666276
    [Google Scholar]
  117. Peng Z. Han X. Li S. Al-Youbi A.O. Bashammakh A.S. El-Shahawi M.S. Leblanc R.M. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev. 2017 343 256 277 10.1016/j.ccr.2017.06.001
    [Google Scholar]
  118. Yang S.T. Cao L. Luo P.G. Lu F. Wang X. Wang H. Meziani M.J. Liu Y. Qi G. Sun Y.P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009 131 32 11308 11309 10.1021/ja904843x 19722643
    [Google Scholar]
  119. Seven E.S. Sharma S.K. Meziane D. Zhou Y. Mintz K.J. Pandey R.R. Chusuei C.C. Leblanc R.M. Close-packed langmuir monolayers of saccharide based carbon dots at the rir-subphase interface. Langmuir 2019 35 20 6708 6718 10.1021/acs.langmuir.9b00920 31039318
    [Google Scholar]
  120. Lai I.P.J. Harroun S.G. Chen S.Y. Unnikrishnan B. Li Y.J. Huang C.C. Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sens. Actuators B Chem. 2016 228 465 470 10.1016/j.snb.2016.01.062
    [Google Scholar]
  121. Zhao A. Chen Z. Zhao C. Gao N. Ren J. Qu X. Recent advances in bioapplications of c-dots. Carbon 2015 85 309 327 10.1016/j.carbon.2014.12.045
    [Google Scholar]
  122. Wu Y.F. Wu H.C. Kuan C.H. Lin C.J. Wang L.W. Chang C.W. Wang T.W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016 6 1 21170 21181 10.1038/srep21170 26880047
    [Google Scholar]
  123. Li S. Peng Z. Leblanc R.M. Method to determine protein concentration in the protein–nanoparticle conjugates aqueous solution using circular dichroism spectroscopy. Anal. Chem. 2015 87 13 6455 6459 10.1021/acs.analchem.5b01451 26070096
    [Google Scholar]
  124. Wu L. Luderer M. Yang X. Swain C. Zhang H. Nelson K. Stacy A.J. Shen B. Lanza G.M. Pan D. Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 2013 3 9 677 686 10.7150/thno.6535 24019852
    [Google Scholar]
  125. Qian Z.S. Chai L.J. Huang Y.Y. Tang C. Jia Shen J. Chen J.R. Feng H. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 2015 68 675 680 10.1016/j.bios.2015.01.068 25660658
    [Google Scholar]
  126. Qian Z. Chai L. Tang C. Huang Y. Chen J. Feng H. A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sens. Actuators B Chem. 2016 222 879 886 10.1016/j.snb.2015.09.023
    [Google Scholar]
  127. Han X. Jing Z. Wu W. Zou B. Peng Z. Ren P. Wikramanayake A. Lu Z. Leblanc R.M. Biocompatible and blood–brain barrier permeable carbon dots for inhibition of aβ fibrillation and toxicity, and bace1 activity. Nanoscale 2017 9 35 12862 12866 10.1039/C7NR04352J 28850143
    [Google Scholar]
  128. Mishra S. Palanivelu K. The effect of curcumin (turmeric) on alzheimer′s disease: An overview. Ann. Indian Acad. Neurol. 2008 11 1 13 19 10.4103/0972‑2327.40220 19966973
    [Google Scholar]
  129. Rao E.V. Sudheer P. Revisiting curcumin chemistry part i: A new strategy for the synthesis of curcuminoids. Indian J. Pharm. Sci. 2011 73 3 262 270 22457548
    [Google Scholar]
  130. Zhang K. Chen M. Du Z-Y. Zheng X. Li D-L. Zhou R-P. Use of curcumin in diagnosis, prevention, and treatment of alzheimer’s disease. Neural Regen. Res. 2018 13 4 742 752 10.4103/1673‑5374.230303 29722330
    [Google Scholar]
  131. Yang C. Zhang X. Fan H. Liu Y. Curcumin upregulates transcription factor nrf2, ho-1 expression and protects rat brains against focal ischemia. Brain Res. 2009 1282 133 141 10.1016/j.brainres.2009.05.009 19445907
    [Google Scholar]
  132. Ahmed T. Enam S.A. Gilani A.H. Curcuminoids enhance memory in an amyloid-infused rat model of alzheimer’s disease. Neuroscience 2010 169 3 1296 1306 10.1016/j.neuroscience.2010.05.078 20538041
    [Google Scholar]
  133. Ray B. Bisht S. Maitra A. Maitra A. Lahiri D.K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (nanocurc™) in the neuronal cell culture and animal model: Implications for alzheimer’s disease. J. Alzheimers Dis. 2011 23 1 61 77 10.3233/JAD‑2010‑101374 20930270
    [Google Scholar]
  134. Vergoni A.V. Tosi G. Tacchi R. Vandelli M.A. Bertolini A. Costantino L. Nanoparticles as drug delivery agents specific for cns: in vivo biodistribution. Nanomedicine 2009 5 4 369 377 10.1016/j.nano.2009.02.005 19341816
    [Google Scholar]
  135. Reddy M.K. Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009 23 5 1384 1395 10.1096/fj.08‑116947 19124559
    [Google Scholar]
  136. Tiwari M.N. Agarwal S. Bhatnagar P. Singhal N.K. Tiwari S.K. Kumar P. Chauhan L.K.S. Patel D.K. Chaturvedi R.K. Singh M.P. Gupta K.C. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against mptp-induced parkinsonism. Free Radic. Biol. Med. 2013 65 704 718 10.1016/j.freeradbiomed.2013.07.042 23933227
    [Google Scholar]
  137. Hoppe J.B. Coradini K. Frozza R.L. Oliveira C.M. Meneghetti A.B. Bernardi A. Pires E.S. Beck R.C.R. Salbego C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of bdnf and akt/gsk-3β signaling pathway. Neurobiol. Learn. Mem. 2013 106 134 144 10.1016/j.nlm.2013.08.001 23954730
    [Google Scholar]
  138. Kreuter J. Application of nanoparticles for the delivery of drugs to the brain. Int. Congr. Ser. 2005 1277 85 94 10.1016/j.ics.2005.02.014
    [Google Scholar]
  139. Huo Q. A perspective on bioconjugated nanoparticles and quantum dots. Colloids Surf. B Biointerfaces 2007 59 1 1 10 10.1016/j.colsurfb.2007.04.019 17544637
    [Google Scholar]
  140. Suh W.H. Suslick K.S. Stucky G.D. Suh Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009 87 3 133 170 10.1016/j.pneurobio.2008.09.009 18926873
    [Google Scholar]
  141. Wilson B. Samanta M.K. Santhi K. Kumar K.P.S. Paramakrishnan N. Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat alzheimer’s disease. Brain Res. 2008 1200 159 168 10.1016/j.brainres.2008.01.039 18291351
    [Google Scholar]
  142. Roney C. Kulkarni P. Arora V. Antich P. Bonte F. Wu A. Mallikarjuana N.N. Manohar S. Liang H.F. Kulkarni A.R. Sung H.W. Sairam M. Aminabhavi T.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for alzheimer’s disease. J. Control. Release 2005 108 2-3 193 214 10.1016/j.jconrel.2005.07.024 16246446
    [Google Scholar]
  143. Rao K.S. Reddy M.K. Horning J.L. Labhasetwar V. Tat-conjugated nanoparticles for the cns delivery of anti-hiv drugs. Biomaterials 2008 29 33 4429 4438 10.1016/j.biomaterials.2008.08.004 18760470
    [Google Scholar]
  144. Fischer H. Gottschlich R. Seelig A. Blood-brain barrier permeation: Molecular parameters governing passive diffusion. J. Membr. Biol. 1998 165 3 201 211 10.1007/s002329900434 9767674
    [Google Scholar]
  145. Voinea M. Simionescu M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J. Cell. Mol. Med. 2002 6 4 465 474 10.1111/j.1582‑4934.2002.tb00450.x 12611636
    [Google Scholar]
  146. Mora M. Sagristá M.L. Trombetta D. Bonina F.P. De Pasquale A. Saija A. Design and characterization of liposomes containing long-chain n-acylpes for brain delivery: Penetration of liposomes incorporating gm1 into the rat brain. Pharm. Res. 2002 19 10 1430 1438 10.1023/A:1020440229102 12425459
    [Google Scholar]
  147. Mourtas S. Canovi M. Zona C. Aurilia D. Niarakis A. La Ferla B. Salmona M. Nicotra F. Gobbi M. Antimisiaris S.G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011 32 6 1635 1645 10.1016/j.biomaterials.2010.10.027 21131044
    [Google Scholar]
  148. Iqbal K. Liu F. Gong C.X. Grundke-Iqbal I. Curr. alzheimer res. 2010, 7, 656; b) m. goedert, m. g. spillantini, r. jakes, d. rutherford, r. a. crowther. Neuron 1989 3 519
    [Google Scholar]
  149. Schöll M. Lockhart S.N. Schonhaut D.R. O’Neil J.P. Janabi M. Ossenkoppele R. Baker S.L. Vogel J.W. Faria J. Schwimmer H.D. Rabinovici G.D. Jagust W.J. Pet imaging of tau deposition in the aging human brain. Neuron 2016 89 5 971 982 10.1016/j.neuron.2016.01.028 26938442
    [Google Scholar]
  150. Stokin G.B. Lillo C. Falzone T.L. Brusch R.G. Rockenstein E. Mount S.L. Raman R. Davies P. Masliah E. Williams D.S. Goldstein L.S. Science 2005, 307, 1282; b) jq trojanowski, vmy lee. Nat. Neurosci. 2005 8 1136
    [Google Scholar]
  151. Eisele Y.S. Monteiro C. Fearns C. Encalada S.E. Wiseman R.L. Powers E.T. Kelly J.W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 2015 14 11 759 780 10.1038/nrd4593 26338154
    [Google Scholar]
  152. Braak H. Braak E. Grundke-Iqbal I. Iqbal K. Neurosci. lett.1986, 65, 351; b) g cisbani, a maxan, jh kordower, e planel, tb freeman, f cicchetti, brain 2017, 140, 2982; c) cx gong, k iqbal. Curr. Med. Chem. 2008 15 2321
    [Google Scholar]
  153. Nel A. Xia T. Mädler L. Li N. Toxic potential of materials at the nanolevel. Science 2006 311 5761 622 627 10.1126/science.1114397 16456071
    [Google Scholar]
  154. Greene L.A. Tischler A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 1976 73 7 2424 2428 10.1073/pnas.73.7.2424 1065897
    [Google Scholar]
  155. Pisanic T.R. II Blackwell J.D. Shubayev V.I. Fiñones R.R. Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007 28 16 2572 2581 10.1016/j.biomaterials.2007.01.043 17320946
    [Google Scholar]
  156. Hussain S.M. Javorina A.K. Schrand A.M. Duhart H.M. Ali S.F. Schlager J.J. The interaction of manganese nanoparticles with pc-12 cells induces dopamine depletion. Toxicol. Sci. 2006 92 2 456 463 10.1093/toxsci/kfl020 16714391
    [Google Scholar]
  157. Wang J. Rahman M.F. Duhart H.M. Newport G.D. Patterson T.A. Murdock R.C. Hussain S.M. Schlager J.J. Ali S.F. Expression changes of dopaminergic system-related genes in pc12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 2009 30 6 926 933 10.1016/j.neuro.2009.09.005 19781568
    [Google Scholar]
  158. Deng X. Luan Q. Chen W. Wang Y. Wu M. Zhang H. Jiao Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009 20 11 115101 10.1088/0957‑4484/20/11/115101 19420431
    [Google Scholar]
  159. Kim Y.S. Kim J.S. Cho H.S. Rha D.S. Kim J.M. Park J.D. Choi B.S. Lim R. Chang H.K. Chung Y.H. Kwon I.H. Jeong J. Han B.S. Yu I.J. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal. Toxicol. 2008 20 6 575 583 10.1080/08958370701874663 18444010
    [Google Scholar]
  160. Kircher M.F. Mahmood U. King R.S. Weissleder R. Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003 63 23 8122 8125 14678964
    [Google Scholar]
  161. Hans M.L. Lowman A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002 6 4 319 327 10.1016/S1359‑0286(02)00117‑1
    [Google Scholar]
  162. Shirahama H. Yasuda H. 1994
  163. Roy I. Stachowiak M.K. Bergey E.J. Nonviral gene transfection nanoparticles: Function and applications in the brain. Nanomedicine 2008 4 2 89 97 10.1016/j.nano.2008.01.002 18313990
    [Google Scholar]
  164. Corso T.D. Torres G. Goulah C. Roy I. Gambino A.S. Nayda J. Buckley T. Stachowiak E.K. Bergey E.J. Pudavar H. Dutta P. Bloom D.C. Bowers W.J. Stachowiak M.K. Transfection of tyrosine kinase deleted fgf receptor-1 into rat brain substantia nigra reduces the number of tyrosine hydroxylase expressing neurons and decreases concentration levels of striatal dopamine. Brain Res. Mol. Brain Res. 2005 139 2 361 366 10.1016/j.molbrainres.2005.05.032 16039006
    [Google Scholar]
  165. Klausner EA Zhang Z Chapman RL Multack RF Volin MV Ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials 2010 31 7 1814 1820 10.1016/j.biomaterials.2009.10.031 19879644
    [Google Scholar]
  166. Park K. Chen Y. Hu Y. Mayo A.S. Kompella U.B. Longeras R. Ma J. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 2009 58 8 1902 1913 10.2337/db08‑1327 19491211
    [Google Scholar]
  167. Boado R.J. Antisense drug delivery through the blood-brain barrier. Adv. Drug Deliv. Rev. 1995 15 1-3 73 107 10.1016/0169‑409X(95)00006‑S 35524391
    [Google Scholar]
  168. Reynolds M.R. Berry R.W. Binder L.I. Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: Implications for alzheimer’s disease. Biochemistry 2005 44 5 1690 1700 10.1021/bi047982v 15683253
    [Google Scholar]
  169. Alrouji M. Al-kuraishy H.M. Al-Gareeb A.I. Alshammari M.S. Alexiou A. Papadakis M. Bahaa M.M. Batiha G.E.S. Role of uric acid in neurodegenerative diseases, focusing on alzheimer and parkinson disease: A new perspective. Neuropsychopharmacol. Rep. 2024 44 3 639 649 10.1002/npr2.12445 39075837
    [Google Scholar]
  170. Chen Q. Du Y. Zhang K. Liang Z. Li J. Yu H. Ren R. Feng J. Jin Z. Li F. Sun J. Zhou M. He Q. Sun X. Zhang H. Tian M. Ling D. Tau-targeted multifunctional nanocomposite for combinational therapy of alzheimer’s disease. ACS Nano 2018 12 2 1321 1338 10.1021/acsnano.7b07625 29364648
    [Google Scholar]
  171. Blair L.J. Zhang B. Dickey C.A. Potential synergy between tau aggregation inhibitors and tau chaperone modulators. Alzheimers Res. Ther. 2013 5 5 41 10.1186/alzrt207 24041111
    [Google Scholar]
  172. Lemoine L Gillberg P-G Svedberg M Stepanov V Jia Z Huang J Tian H Ghetti B Okamura N Higuchi M Halldin C Nordberg A Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res. Ther. 2017 9 1 96 10.1186/s13195‑017‑0325‑z 29229003
    [Google Scholar]
  173. Gorantla N.V. Khandelwal P. Poddar P. Chinnathambi S. Global conformation of tau protein mapped by raman spectroscopy. Methods Mol. Biol. 2017 1523 21 31 10.1007/978‑1‑4939‑6598‑4_2 27975242
    [Google Scholar]
  174. Gorantla N.V. Shkumatov A.V. Chinnathambi S. Conformational dynamics of intracellular tau protein revealed by cd and saxs. Methods Mol. Biol. 2017 1523 3 20 10.1007/978‑1‑4939‑6598‑4_1 27975241
    [Google Scholar]
  175. von Bergen M. Barghorn S. Biernat J. Mandelkow E.M. Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim. Biophys. Acta Mol. Basis Dis. 2005 1739 2-3 158 166 10.1016/j.bbadis.2004.09.010 15615635
    [Google Scholar]
  176. von Bergen M. Friedhoff P. Biernat J. Heberle J. Mandelkow E.M. Mandelkow E. Assembly of τ protein into alzheimer paired helical filaments depends on a local sequence motif ( 306 vqivyk 311 ) forming β structure. Proc. Natl. Acad. Sci. USA 2000 97 10 5129 5134 10.1073/pnas.97.10.5129 10805776
    [Google Scholar]
  177. Nasir I. Fatih W. Svensson A. Radu D. Linse S. Cabaleiro Lago C. Lundqvist M. High throughput screening method to explore protein interactions with nanoparticles. PLoS One 2015 10 8 e0136687 10.1371/journal.pone.0136687 26313757
    [Google Scholar]
  178. Li X. Bao X. Wang R. Experimental models of alzheimer’s disease for deciphering the pathogenesis and therapeutic screening (review). Int. J. Mol. Med. 2016 37 2 271 283 10.3892/ijmm.2015.2428 26676932
    [Google Scholar]
  179. Arantes-Rodrigues R. Colaço A. Pinto-Leite R. Oliveira P.A. in vitro and in vivo experimental models as tools to investigate the efficacy of antineoplastic drugs on urinary bladder cancer. Anticancer Res. 2013 33 4 1273 1296 23564765
    [Google Scholar]
  180. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  181. Verma S. Kumar A. Tripathi T. Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in alzheimer’s disease therapy. J. Pharm. Pharmacol. 2018 70 8 985 993 10.1111/jphp.12919 29663387
    [Google Scholar]
  182. Ali N.H. Al-Kuraishy H.M. Al-Gareeb A.I. Alnaaim S.A. Alexiou A. Papadakis M. Khalifa A.A. Saad H.M. Batiha G.E.S. Neprilysin inhibitors and risk of alzheimer’s disease: A future perspective. J. Cell. Mol. Med. 2024 28 2 e17993 10.1111/jcmm.17993 37847125
    [Google Scholar]
  183. Prince M. Bryce R. Albanese E. Wimo A. Ribeiro W. Ferri C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013 9 1 63 75.e2 10.1016/j.jalz.2012.11.007 23305823
    [Google Scholar]
  184. Snyder P.J. Giacobini D.Ph.E. Alzheimer’s & dementia: The journal of the alzheimer’s association revisiting the cholinergic hypothesis in alzheimer’s disease: Emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis. 2020 6 2 15
    [Google Scholar]
  185. Raza M. Deshpande L.S. Blair R.E. Carter D.S. Sombati S. DeLorenzo R.J. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci. Lett. 2007 418 1 77 81 10.1016/j.neulet.2007.03.005 17374449
    [Google Scholar]
  186. Thibault O. Gant J.C. Landfield P.W. Expansion of the calcium hypothesis of brain aging and alzheimer’s disease: Minding the store. Aging Cell 2007 6 3 307 317 10.1111/j.1474‑9726.2007.00295.x 17465978
    [Google Scholar]
  187. Mattson M.P. Er calcium and alzheimer’s disease: In a state of flux. Sci. Signal. 2010 3 114 pe10 10.1126/scisignal.3114pe10 20332425
    [Google Scholar]
  188. Popugaeva E. Bezprozvanny I. Role of endoplasmic reticulum ca2+ signaling in the pathogenesis of alzheimer disease. Front. Mol. Neurosci. 2013 6 29 10.3389/fnmol.2013.00029 24065882
    [Google Scholar]
  189. Nixon R.A. Autophagy, amyloidogenesis and alzheimer disease. J. Cell Sci. 2007 120 23 4081 4091 10.1242/jcs.019265 18032783
    [Google Scholar]
  190. Pickford F. Masliah E. Britschgi M. Lucin K. Narasimhan R. Jaeger P.A. Small S. Spencer B. Rockenstein E. Levine B. Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 2008 118 6 2190 2199 10.1172/JCI33585 18497889
    [Google Scholar]
  191. Ma Z. Cao M. Liu Y. He Y. Wang Y. Yang C. Wang W. Du Y. Zhou M. Gao F. Mitochondrial f1fo-atp synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta Biochim. Biophys. Sin. (Shanghai) 2010 42 8 530 537 10.1093/abbs/gmq063 20705594
    [Google Scholar]
  192. Wolfe D.M. Lee J. Kumar A. Lee S. Orenstein S.J. Nixon R.A. Autophagy failure in a lzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 2013 37 12 1949 1961 10.1111/ejn.12169 23773064
    [Google Scholar]
  193. Barua S. Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014 9 2 223 243 10.1016/j.nantod.2014.04.008 25132862
    [Google Scholar]
  194. Hettiarachchi S.D. Zhou Y. Seven E. Lakshmana M.K. Kaushik A.K. Chand H.S. Leblanc R.M. Nanoparticle-mediated approaches for alzheimer’s disease pathogenesis, diagnosis, and therapeutics. J. Control. Release 2019 314 125 140 10.1016/j.jconrel.2019.10.034 31647979
    [Google Scholar]
  195. Zhao J. Xu N. Yang X. Ling G. Zhang P. The roles of gold nanoparticles in the detection of amyloid-β peptide for alzheimer’s disease. Colloid Interface Sci. Commun. 2022 46 100579 10.1016/j.colcom.2021.100579
    [Google Scholar]
  196. Al-kuraishy H.M. Jabir M.S. Albuhadily A.K. Al-Gareeb A.I. Jawad S.F. Swelum A.A. Hadi N.R. Role of ketogenic diet in neurodegenerative diseases focusing on alzheimer diseases: The guardian angle. Ageing Res. Rev. 2024 95 102233 10.1016/j.arr.2024.102233 38360180
    [Google Scholar]
  197. Ali N.H. Al-Kuraishy H.M. Al-Gareeb A.I. Hadi N.R. Assiri A.A. Alrouji M. Welson N.N. Alexiou A. Papadakis M. Batiha G.E.S. Hypoglycemia and alzheimer disease risk: The possible role of dasiglucagon. Cell. Mol. Neurobiol. 2024 44 1 55 10.1007/s10571‑024‑01489‑y 38977507
    [Google Scholar]
  198. Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. Brayne C. Burns A. Cohen-Mansfield J. Cooper C. Costafreda S.G. Dias A. Fox N. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Ogunniyi A. Orgeta V. Ritchie K. Rockwood K. Sampson E.L. Samus Q. Schneider L.S. Selbæk G. Teri L. Mukadam N. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  199. Singh S. Kushwaha V. Sisodia S. Kumar S. Sahu K.K. Beta-site app-cleaving enzyme-1 inhibitory role of natural flavonoids in the treatment of alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 10.2174/0118715249315049240710063455 39005132
    [Google Scholar]
  200. Kushwaha V. Kumar Sahu K. A comprehensive review on preclinical alzheimer’s disease models: Evaluating their clinical relevance. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010331845240802073645 39161136
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031331346241122152643
Loading
/content/journals/ddl/10.2174/0122103031331346241122152643
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neurofibrillary tangles ; tau protein ; Nanoparticles ; Alzheimer's disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test