Skip to content
2000
image of Advanced Technologies in Rectal Drug Delivery Systems: A Comprehensive Review of Recent Innovations and Future Prospects

Abstract

Rectal Drug Delivery System (RDDS) emerges as an alternative administration route due to the rectum's small surface area and limited enzyme activity, which contribute to efficient drug absorption. RDDS offers various advantages, such as reduced first-pass metabolism, rapid absorption of low molecular weight drugs, and the ability to accommodate large retention volumes and facilitate absorption the lymphatic system. Moreover, RDDS is preferable for drugs with low stability, solubility, and permeability oral administration, as well as effectively addressing concerns related to gastric irritation or degradation. This review delves into the factors influencing drug absorption in RDDS, including drug properties, formulation types, and physiological and pathology-associated considerations. It further explores conventional RDDS, including enemas, suppositories, tablets, gels, sprays, ointments, and creams, as well as novel approaches involving nanoparticles, liposomes, microspheres, and solid lipid nanoparticles (SLNs) in rectal dosage forms. Furthermore, the challenges and prospects of RDDS in treating rectal diseases are discussed. This review provides valuable insights into the potential of RDDS, highlighting the importance of continuous research and development in enhancing patient outcomes and advancing healthcare practices.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031328871241023075235
2024-10-31
2025-01-24
Loading full text...

Full text loading...

References

  1. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  2. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  3. Mignani S. El Kazzouli S. Bousmina M. Majoral J-P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev. 2013 65 10 1316 1330 10.1016/j.addr.2013.01.001 23415951
    [Google Scholar]
  4. Kim J. De Jesus O. Medication Routes of Administration. StatPearls Publishing, Treasure Island (FL) 2024 33760436
    [Google Scholar]
  5. Rathi R. Sanshita. Kumar A. Vishvakarma V. Huanbutta K. Singh I. Sangnim T. Advancements in rectal drug delivery systems: Clinical trials, and patents perspective. Pharmaceutics 2022 14 10 2210 10.3390/pharmaceutics14102210
    [Google Scholar]
  6. Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Front. Pharmacol. 2019 10 1196 10.3389/fphar.2019.01196 31680970
    [Google Scholar]
  7. Glyk A. Solle D. Scheper T. Beutel S. Evaluation of driving forces for protein partition in PEG-salt aqueous twophase systems and optimization by design of experiments. J. Chromatogr. Sep. Tech. 2017 8 6 10.4172/2157‑7064.1000389
    [Google Scholar]
  8. Lakshmi Prasanna J. Deepthi B. Rama Rao N. Rectal drug delivery: A promising route for enhancing drug absorption. Asian J. Res. Pharm. Sci. 2012 2 143 149
    [Google Scholar]
  9. Jannin V. Lemagnen G. Gueroult P. Larrouture D. Tuleu C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev. 2014 73 34 49 10.1016/j.addr.2014.05.012 24871671
    [Google Scholar]
  10. Lam J.K.W. Cheung C.C.K. Chow M.Y.T. Harrop E. Lapwood S. Barclay S.I.G. Wong I.C.K. Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic. Adv. Drug Deliv. Rev. 2020 160 234 243 10.1016/j.addr.2020.10.018 33137363
    [Google Scholar]
  11. Preeti S.S. Sambhakar S. Saharan R. Narwal S. Malik R. Gahlot V. Khalid A. Najmi A. Zoghebi K. Halawi M.A. Albratty M. Mohan S. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm. J. 2023 31 12 101870 10.1016/j.jsps.2023.101870 38053738
    [Google Scholar]
  12. Sandri G. Bonferoni M.C. Ferrari F. Rossi S. Caramella C.M. The role of particle size in drug release and absorption. Particulate Products: Tailoring Properties for Optimal Performance. Merkus H.G. Meesters G.M.H. Cham Springer 2014 323 341 10.1007/978‑3‑319‑00714‑4_11
    [Google Scholar]
  13. Baviskar P. Bedse A. Sadique S. Kunde V. Jaiswal S. Drug delivery on rectal absorption: Suppositories. Int. J. Pharm. Sci. Rev. Res. 2013 21 70 76
    [Google Scholar]
  14. Huanbutta K. Sangnim T. Bioadhesive films for drug delivery systems. Bioadhesives in Drug Delivery Wiley Mittal K.L. Bakshi I.S. Narang J.K. 2020 10.1002/9781119640240.ch4
    [Google Scholar]
  15. Arévalo-Pérez R. Maderuelo C. Lanao J.M. Recent advances in colon drug delivery systems. J. Control. Release 2020 327 703 724 10.1016/j.jconrel.2020.09.026 32941930
    [Google Scholar]
  16. Amidon S. Brown J.E. Dave V.S. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech 2015 16 4 731 741 10.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  17. Ahn Y. Hong G.S. Lee J.H. Lee C.W. Kim S.O. Ischemic colitis after enema administration: Incidence, timing, and clinical features. World J. Gastroenterol. 2020 26 41 6442 6454 10.3748/wjg.v26.i41.6442 33244204
    [Google Scholar]
  18. Donnelly R.F. Stability of levodopa/carbidopa rectal suspensions. Hosp. Pharm. 2016 51 11 915 921 10.1310/hpj5111‑915 28057951
    [Google Scholar]
  19. Qin S.B. Gao X.S. Li H.Z. Liu C.X. Hou D.L. Nian W.D. Li X.Y. Wang D. Intra-rectal use of epinephrine in radiotherapy of prostate cancer. Cancer Manag. Res. 2019 11 4847 4854 10.2147/CMAR.S187049 31213905
    [Google Scholar]
  20. Vuong M.T. McBride A. Mishal N. Philipson G. Topiramate rectal suspensions in pediatric patients. Seizure 2021 85 45 47 10.1016/j.seizure.2020.12.022 33418165
    [Google Scholar]
  21. Havaldar V. Yadav A. Dias R. Mali K. Ghorpade V. Salunkhe N. Rectal suppository as an effective alternative for oral administration. Res. J. Pharma. Technol. 2015 8 759 766 10.5958/0974‑360X.2015.00122.5
    [Google Scholar]
  22. Melnyk G. Yarnykh T. Herasymova I. Analytical review of the modern range of suppository bases. Syst. Rev. Pharm. 2020 11 503 508 10.31838/srp.2020.4.76
    [Google Scholar]
  23. Ham A.S. Buckheit R.W. Designing and developing suppository formulations for anti-HIV drug delivery. Ther. Deliv. 2017 8 9 805 817 10.4155/tde‑2017‑0056 28825395
    [Google Scholar]
  24. Abou el Ela Ael.S. Allam A.A. Ibrahim E.H. Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system. Drug Deliv. 2016 23 1 69 78 10.3109/10717544.2014.904021 24758140
    [Google Scholar]
  25. Alwan L.A. Al-Akkam E.J. Formulation and in vitro evaluation of piroxicam conventional and hollow suppositories. 2019 Int. J. Drug Deliv. Technol. 10 2 200 209 10.25258/ijddt.10.2.3
    [Google Scholar]
  26. Nief R.A. Design and in vitro characterization of bisacodyl as a hollow type suppositories. J. Pharm. Res. 2018 12 5 702 706
    [Google Scholar]
  27. Matsumoto A. Murakami K. Watanabe C. Murakami M. Improved systemic delivery of insulin by condensed drug loading in a dimpled suppository. Drug Discov. Ther. 2017 11 6 293 299 10.5582/ddt.2017.01072 29332886
    [Google Scholar]
  28. Bialik M. Kuras M. Sobczak M. Oledzka E. Achievements in thermosensitive gelling systems for rectal administration. Int. J. Mol. Sci. 2021 22 11 5500 10.3390/ijms22115500 34071110
    [Google Scholar]
  29. Akl M.A. Ismael H.R. Abd Allah F.I. Kassem A.A. Samy A.M. Tolmetin sodium-loaded thermosensitive mucoadhesive liquid suppositories for rectal delivery; strategy to overcome oral delivery drawbacks. Drug Dev. Ind. Pharm. 2019 45 2 252 264 10.1080/03639045.2018.1534858 30303407
    [Google Scholar]
  30. Birnbaum A.K. Kriel R.L. Burkhardt R.T. Remmel R.P. Rectal absorption of lamotrigine compressed tablets. Epilepsia 2000 41 7 850 853 10.1111/j.1528‑1157.2000.tb00252.x 10897156
    [Google Scholar]
  31. Khan R.U. El-Refaey H. Sharma S. Sooranna D. Stafford M. Oral, rectal, and vaginal pharmacokinetics of misoprostol. Obstet. Gynecol. 2004 103 5 Pt 1 866 870 10.1097/01.AOG.0000124783.38974.53 15121558
    [Google Scholar]
  32. Bulić M. Tuleu C. Rectal drug delivery to pediatric population. Croat. Med. J. 2021 1 76 80
    [Google Scholar]
  33. Metta S. Khan M. Lakshmi M.S. Devi P. Kanna S. A Review: Pharmaceutical gels and its types with prominence role of its drug delivery systems. Int. J. Res. Anal. Rev. 10 2 2023 686 701
    [Google Scholar]
  34. Ciolacu D.E. Nicu R. Ciolacu F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials (Basel) 2020 13 22 13 10.3390/ma13225270 33233413
    [Google Scholar]
  35. Reanmongkol W. Kaewnopparat N. Ratanajamit C. Development of tramadol hydrochloride rectal gel preparations and evaluation of analgesic activity in experimental animals. J. Drug Deliv. Sci. Technol. 2011 21 503 507
    [Google Scholar]
  36. Al-Joufi F. Elmowafy M. Alruwaili N.K. Alharbi K.S. Shalaby K. Alsharari S.D. Ali H.M. Mucoadhesive in situ rectal gel loaded with rifampicin: Strategy to improve bioavailability and alleviate liver toxicity. Pharmaceutics 2021 13 3 13 10.3390/pharmaceutics13030336 33807729
    [Google Scholar]
  37. Sakran W. Abdel-Rashid R.S. Saleh F. Abdel-Monem R. Ethosomal gel for rectal transmucosal delivery of domperidone: Design of experiment, invitro, and invivo evaluation. Drug Deliv. 2022 29 1 1477 1491 10.1080/10717544.2022.2072542 35543451
    [Google Scholar]
  38. Salatin S. Tarzamani M. Farjami A. Jelvehgari M. Development and characterization of a novel mucoadhesive sol-gel suppository of sumatriptan: Design, optimization, in vitroand ex-vivo evaluation for rectal drug delivery. Ther. Deliv. 2022 13 2 95 108 10.4155/tde‑2021‑0069 35128946
    [Google Scholar]
  39. Batchelor H. Rectal drug delivery. Pediatric Formulations: A Roadmap. Bar-Shalom D. Rose K. New York Springer 2014 303 310
    [Google Scholar]
  40. Mahalingam R. Li X. Jasti B.R. Semisolid dosages: Ointments, creams, and gels. Pharmaceutical Manufacturing Handbook John Wiley & Sons, Inc. New Jersey Gad S.C. 267 312 2008
    [Google Scholar]
  41. Amaturo A. Meucci M. Mari F.S. Treatment of haemorrhoidal disease with micronized purified flavonoid fraction and sucralfate ointment. Acta Biomed. 2020 91 1 139 141 10.23750/abm.v91i1.9361 32191669
    [Google Scholar]
  42. Pietroletti R. Giuliani A. Buonanno A. Mattei A. Fiasca F. Gallo G. Efficacy and tolerability of a new formulation in rectal ointment based on Zn-L-carnosine (Proctilor®) in the treatment of haemorrhoidal disease. Front. Surg. 2022 9 818887 10.3389/fsurg.2022.818887 35402488
    [Google Scholar]
  43. Lawrance I.C. Copeland T-S. Rectal tacrolimus in the treatment of resistant ulcerative proctitis. Aliment. Pharmacol. Ther. 2008 28 10 1214 1220 10.1111/j.1365‑2036.2008.03841.x 18761706
    [Google Scholar]
  44. Vahabi S. Beiranvand S. Karimi A. Moradkhani M. Comparative study of 0.2% glyceryl trinitrate ointment for pain reduction after hemorrhoidectomy surgery. Surg. J. (N.Y.) 2019 5 4 e192 e196 10.1055/s‑0039‑3400532 31803842
    [Google Scholar]
  45. Kestřánek J. Hemorrhoid management in women: The role of tribenoside + lidocaine. Drugs Context 2019 8 212602 10.7573/dic.212602 31555338
    [Google Scholar]
  46. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers (Basel) 2023 15 7 15 37050210 10.3390/polym15071596
    [Google Scholar]
  47. Al-Kassas R. Bansal M. Shaw J. Nanosizing techniques for improving bioavailability of drugs. J. Control. Release 2017 260 202 212 10.1016/j.jconrel.2017.06.003 28603030
    [Google Scholar]
  48. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  49. Rachmawati H. Pradana A.T. Safitri D. Adnyana I.K. Multiple functions of d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer: in vivo kinetic profile and anti-ulcerative colitis analysis in animal model. Pharmaceutics 2017 9 3 24 10.3390/pharmaceutics9030024 28754010
    [Google Scholar]
  50. Seo Y.G. Kim D.W. Yeo W.H. Ramasamy T. Oh Y.K. Park Y.J. Kim J.A. Oh D.H. Ku S.K. Kim J.K. Yong C.S. Kim J.O. Choi H.G. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res. 2013 30 7 1860 1870 10.1007/s11095‑013‑1029‑0 23549753
    [Google Scholar]
  51. Zhang X.M. Liang J.W. Wang Z. Kou J.T. Zhou Z.X. Effect of preoperative injection of carbon nanoparticle suspension on the outcomes of selected patients with mid-low rectal cancer. Chin. J. Cancer 2016 35 33 10.1186/s40880‑016‑0097‑z 27044280
    [Google Scholar]
  52. Nunes R. Araújo F. Barreiros L. Bártolo I. Segundo M.A. Taveira N. Sarmento B. das Neves J. Noncovalent PEG coating of nanoparticle drug carriers improves the local pharmacokinetics of rectal Anti-HIV microbicides. ACS Appl. Mater. Interfaces 2018 10 41 34942 34953 10.1021/acsami.8b12214 30234288
    [Google Scholar]
  53. Jia Y. Wang X. Li L. Li F. Zhang J. Liang X-J. Lipid nanoparticles optimized for targeting and release of nucleic acid. Adv. Mater. 2024 36 4 e2305300 10.1002/adma.202305300 37547955
    [Google Scholar]
  54. Chavda V.P. Vihol D. Mehta B. Shah D. Patel M. Vora L.K. Pereira-Silva M. Paiva-Santos A.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine (Lond.) 2022 17 8 547 568 10.2217/nnm‑2021‑0463 35259920
    [Google Scholar]
  55. Yang C. Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials (Basel) 2020 10 7 1424 10.3390/nano10071424 32708193
    [Google Scholar]
  56. Zhou F. Kraehenbuhl J-P. Neutra M.R. Mucosal IgA response to rectally administered antigen formulated in IgA-coated liposomes. Vaccine 1995 13 7 637 644 10.1016/0264‑410x(94)00029‑m 7668033
    [Google Scholar]
  57. Gabev E.E. Svilenov D.K. Poljakova-Krusteva O.T. Vassilev I. Brain, liver and spleen detection of liposomes after rectal administration. J. Microencapsul. 1985 2 2 85 89 10.3109/02652048509031552 3880482
    [Google Scholar]
  58. Sang R. Stratton B. Engel A. Deng W. Liposome technologies towards colorectal cancer therapeutics. Acta Biomater. 2021 127 24 40 10.1016/j.actbio.2021.03.055 33812076
    [Google Scholar]
  59. Scavo M.P. Cutrignelli A. Depalo N. Fanizza E. Laquintana V. Gasparini G. Giannelli G. Denora N. Effectiveness of a controlled 5-FU delivery based on FZD10 antibody-conjugated liposomes in colorectal cancer in vitro models. Pharmaceutics 2020 12 7 12 10.3390/pharmaceutics12070650 32664186
    [Google Scholar]
  60. Alomrani A. Badran M. Harisa G.I. ALshehry M. Alhariri M. Alshamsan A. Alkholief M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J. 2019 27 5 603 611 10.1016/j.jsps.2019.02.008 31297013
    [Google Scholar]
  61. Badwaik H.R. Kumari L. Nakhate K. Verma V.S. Sakure K. Chapter 13 - Phytoconstituent plumbagin: Chemical, biotechnological and pharmaceutical aspects. Studies in Natural Products Chemistry Elsevier 2019 415 460 10.1016/B978‑0‑12‑817901‑7.00013‑7
    [Google Scholar]
  62. Jawadi Z. Yang C. Haidar Z.S. Santa Maria P.L. Massa S. Bio-inspired muco-adhesive polymers for drug delivery applications. Polymers (Basel) 2022 14 24 5459 36559825 10.3390/polym14245459
    [Google Scholar]
  63. Gao P. Nie X. Zou M. Shi Y. Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. (Tokyo) 2011 64 9 625 634 10.1038/ja.2011.58 21811264
    [Google Scholar]
  64. El-Leithy E.S. Shaker D.S. Ghorab M.K. Abdel-Rashid R.S. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium-chitosan microspheres for rectal administration. AAPS PharmSciTech 2010 11 4 1695 1702 10.1208/s12249‑010‑9544‑3 21108027
    [Google Scholar]
  65. Ofokansi K.C. Adikwu M.U. Okore V.C. Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium. Drug Dev. Ind. Pharm. 2007 33 6 691 700 10.1080/03639040701360876 17613033
    [Google Scholar]
  66. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 3 179 194 10.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  67. Mehta M. Bui T.A. Yang X. Aksoy Y. Goldys E.M. Deng W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 2023 3 6 600 619 10.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  68. Mishra V. Bansal K.K. Verma A. Yadav N. Thakur S. Sudhakar K. Rosenholm J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018 10 4 10 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  69. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A recent update: Solid lipid nanoparticles for effective drug delivery. Adv. Pharm. Bull. 2022 12 1 17 33 10.34172/apb.2022.007 35517874
    [Google Scholar]
  70. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020 7 587997 33195435 10.3389/fmolb.2020.587997
    [Google Scholar]
  71. Huang C.H. Hu P.Y. Wu Q.Y. Xia M.Y. Zhang W.L. Lei Z.Q. Li D.X. Zhang G.S. Feng J.F. Preparation, in vitro and in vivo evaluation of thermosensitive in situ gel loaded with ibuprofen-solid lipid nanoparticles for rectal delivery. Drug Des. Devel. Ther. 2022 16 1407 1431 10.2147/DDDT.S350886 35586185
    [Google Scholar]
  72. Xing R. Mustapha O. Ali T. Rehman M. Zaidi S.S. Baseer A. Batool S. Mukhtiar M. Shafique S. Malik M. Sohail S. Ali Z. Zahid F. Zeb A. Shah F. Yousaf A. Din F. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int. 2021 2021 9968602 10.1155/2021/9968602 34285920
    [Google Scholar]
  73. Din F.U. Mustapha O. Kim D.W. Rashid R. Park J.H. Choi J.Y. Ku S.K. Yong C.S. Kim J.O. Choi H.G. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur. J. Pharm. Biopharm. 2015 94 64 72 10.1016/j.ejpb.2015.04.019 25979136
    [Google Scholar]
  74. Melo M. Nunes R. Sarmento B. Neves J.D. Rectal administration of nanosystems: From drug delivery to diagnostics. Mater. Today Chem. 2018 10 128 141 10.1016/j.mtchem.2018.09.001
    [Google Scholar]
  75. Lambert B.J. Hansen J.M. Bryans T.D. Lam S. Sterility assurance across-sectors-new paradigms and tools. Front. Med. Technol. 2021 3 622710 10.3389/fmedt.2021.622710 35047905
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031328871241023075235
Loading
/content/journals/ddl/10.2174/0122103031328871241023075235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test