Skip to content
2000
image of Inulin: A Versatile Biopolymer for Pharmaceutical Application

Abstract

For many years, inulin has been a versatile oligosaccharide that is mainly utilized in food. When compared to other biodegradable polysaccharides, inulin's unique and flexible structure, protective/stabilizing properties, along with organ-targeting abilities make it an ideal drug delivery vehicle. Inulin has drawn a lot of attention as a promising multifunctional natural biopolymer with a wide range of uses in drug delivery, prebiotics, and therapies. The three hydroxyl groups on each fructose unit present in inulin enable chemical modifications like (Esterification, Conjugation, crosslinking, Oxidation, or Reduction), allowing it to be tailored for drug delivery applications. Thus, therapeutics and biomolecules can be released in a sustained and controlled manner, increasing their bioavailability and cellular absorption at the targeted site. It clarifies the complex interactions between the host and inulin, microbiota, and medicinal drugs, exposing a multidimensional biopolymer with transformative potential. They are excellent carriers in healthcare and biomedicine due to their flexible structure, biocompatibility, remarkable target ability, innate ability to govern release behaviour, customizable degradation kinetics, and protective capacity. Drug targeting is the process of delivering a medication to the desired site of action. One of the advantages of drug targeting is that the medicinal molecule is released at a consistent and regulated rate, preventing overdose. The potential of inulin as an encapsulating material was examined in terms of its enzymatic degradability and drug-release characteristics. Inulin has a wide range of therapeutic applications. These include use as a dietary fibre with extra health benefits, as a diagnostic and analytical tool, and as a carrier in a drug delivery system. Inulin has been the subject of extensive research as a drug delivery carrier for colon-specific drug administration. Inulin has a wide range of applications in the pharmaceutical industry overall, and research on it is still ongoing, especially concerning chemically modified inulin. Therefore, it's conceivable that this flexible oligosaccharide will find even more uses.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031325982241211174118
2024-12-13
2025-01-24
Loading full text...

Full text loading...

References

  1. Khan F.F. Sohail A. Ghazanfar S. Ahmad A. Riaz A. Abbasi K.S. Ibrahim M.S. Uzair M. Arshad M. Recent innovations in non-dairy prebiotics and probiotics: Physiological potential, applications, and characterization. Probiotics Antimicr. Prot. 2023 15 2 239 263 10.1007/s12602‑022‑09983‑9 36063353
    [Google Scholar]
  2. de Almeida G.K. Losi G.R. Oda J.M.M. Fiori L.L. Ketelut C.N. de Castro V.D. Soni N.J. Watanabe M.A.E. Inulin: Therapeutic potential, prebiotic properties and immunological aspects. Food Agric. Immunol. 2013 24 1 21 31 10.1080/09540105.2011.640993
    [Google Scholar]
  3. Żbikowska A. Szymańska I. Kowalska M. Impact of inulin addition on properties of natural yogurt. Appl. Sci. 2020 10 12 4317 10.3390/app10124317
    [Google Scholar]
  4. Gandhi K.J. Deshmane S.V. Biyani K.R. Polymers in pharmaceutical drug delivery system: A review. Int. J. Pharm. Sci. Rev. Res. 2012 14 2 57 66
    [Google Scholar]
  5. Carboni A.D. Salinas M.V. Puppo M.C. Inulin Fiber 40. Handbook of Food Bioactive Ingredients. 1st Ed. H9P 1H6, Canada Dokumen Pub 2023 1301 1585
    [Google Scholar]
  6. Kaur N. Gupta A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002 27 7 703 714 10.1007/BF02708379 12571376
    [Google Scholar]
  7. Ahmad I. Massey S. Asghar A. Ahmad I. Phytochemistry, medicinal and nutritional importance of Asparagus racemosus 2023 175 192 10.59674/pbk2
    [Google Scholar]
  8. Van L.J. Coussement P. De Leenheer L. Hoebregs H. Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 1995 35 6 525 552 10.1080/10408399509527714 8777017
    [Google Scholar]
  9. Moshfegh A.J. Friday J.E. Goldman J.P. Ahuja J.K.C. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 1999 129 7 Suppl. 1407S 1411S 10.1093/jn/129.7.1407S 10395608
    [Google Scholar]
  10. de Oliveira FL Dalvi LP Pratissoli D Andrade GS Ataide JO Potentials insect pests of yacon Smallanthus sonchifolius (poeppig & endlicher) h. robinson in brazil. Inter. J. Adv. Eng. Res. Sci. 2020 7 4 119 21
    [Google Scholar]
  11. Zalles V.C. Peñarrieta D.A. Bracho B.E. Ibarra R.D. Dávila P.R. Villegas S.R. Nieto Z.J. A gastroschisis bundle: Effects of a quality improvement protocol on morbidity and mortality. J. Pediatr. Surg. 2018 53 11 2117 2122 10.1016/j.jpedsurg.2018.06.014 30318281
    [Google Scholar]
  12. De Leenheer E.M.R. Janssens S. Padalko E. Loose D. Leroy B.P. Dhooge I.J. Etiological diagnosis in the hearing impaired newborn: Proposal of a flow chart. Int. J. Pediatr. Otorhinolaryngol. 2011 75 1 27 32 10.1016/j.ijporl.2010.05.040 21047691
    [Google Scholar]
  13. Martinez M. Poirrier P. Chamy R. Prüfer D. Schulze G.C. Jorquera L. Ruiz G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015 169 244 262 10.1016/j.jep.2015.03.067 25858507
    [Google Scholar]
  14. Lim T.K. Lim T.K. Musa acuminata (AAA Group)‘Dwarf Cavendish’. Edible Med And Non Med Plants: Fruits 2012 3 502 527 10.1007/978‑94‑007‑2534‑8_66
    [Google Scholar]
  15. Kuniyal C.P. Purohit V. Butola J.S. Sundriyal R.C. Seed size correlates seedling emergence in Terminalia bellerica. S. Afr. J. Bot. 2013 87 92 94 10.1016/j.sajb.2013.03.016
    [Google Scholar]
  16. Paniagua Z.NY Kikvidze Z Khojimatov OK Bussmann RW Allium ampeloprasum L. Allium cepa L. Allium denudatum Redouté Allium oleraceum L. Allium sativum L. Allium schoenoprasum L. Allium scorodoprasum L. Allium siculum Ucria Allium sphaerocephalon L. Allium ursinum L., Allium victorialis L. and Allium vineale L. Amaryllidaceae. Ethnobotany of the Mountain Regions of Eastern Europe: Carpathians Cham Springer International Publishing. 2024 1 32
    [Google Scholar]
  17. Olayemi J.O. Ajaiyeoba E.O. Anti-inflammatory studies of yam (Dioscorea esculenta) extract on wistar rats. Afr. J. Biotechnol. 2007 6 16 10.5897/AJB2007.000‑2289
    [Google Scholar]
  18. Hendry GA Wallace RK The origin, distribution, and evolutionary significance of fructans. Sci tech fructans. 1993 119 139
    [Google Scholar]
  19. Gültepe M. Coşkunçelebi K. Makbul S. Terzioğlu S. Taxonomic notes on Tragopogon, and two newly described taxa from Anatolia. Nord. J. Bot. 2016 34 5 529 537 10.1111/njb.01133
    [Google Scholar]
  20. Krawiec M. Dziwulska H.A. Palonka S. Kaplan M. Baryla P. Effect of laser irradiation on seed germination and root yield of scorzonera (Scorzonera hispanica L.). Acta Agrophysica. 2016 23 4
    [Google Scholar]
  21. Myint P.P. Dao T.T.P. Kim Y.S. Anticancer activity of Smallanthus sonchifolius methanol extract against human hepatocellular carcinoma cells. Molecules 2019 24 17 3054 10.3390/molecules24173054 31443460
    [Google Scholar]
  22. Buckman E.S. Oduro I. Plahar W.A. Tortoe C. Determination of the chemical and functional properties of yam bean ( Pachyrhizus erosus (L.) Urban) flour for food systems. Food Sci. Nutr. 2018 6 2 457 463 10.1002/fsn3.574 29564113
    [Google Scholar]
  23. Reberg H.S.C. Burton J.D. Danehower D.A. Ma G. Monks D.W. Murphy J.P. Ranells N.N. Williamson J.D. Creamer N.G. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 2005 31 1 179 193 10.1007/s10886‑005‑0983‑3 15839489
    [Google Scholar]
  24. de Almeida A.B.A. Sánchez H.M. Martín A.R. Luiz F.A. Trigo J.R. Vilegas W. dos Santos L.C. Souza B.A.R.M. de la Lastra C.A. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. J. Ethnopharmacol. 2013 146 1 300 310 10.1016/j.jep.2012.12.048 23313393
    [Google Scholar]
  25. Gunnarsson I.B. Svensson S.E. Johansson E. Karakashev D. Angelidaki I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 2014 56 231 240 10.1016/j.indcrop.2014.03.010
    [Google Scholar]
  26. Ahmad S. Ahmad R. Ashraf M.Y. Ashraf M. Waraich E.A. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak. J. Bot. 2009 41 2 647 654
    [Google Scholar]
  27. Aydın Ç. Özcan G.T. Turan M. Mammadov R. Phenolic contents and antioxidant properties of Echinops ritro L. and E. tournefortii Jaup. Et. Spach extract. Int J. Sec. Metabolite. 2016 3 2 74 81 10.21448/http‑ijate‑net‑index‑php‑ijsm.243309
    [Google Scholar]
  28. Carvalho M.A. Pinto M.M Figueiredo-Ribeiro R.D. Inulin production by Vernonia herbacea as influenced by mineral fertilization and time of harvest. Braz. J. Bot. 1998 21 275 280
    [Google Scholar]
  29. Sedej I. Sakač M. Mandić A. Mišan A. Tumbas V. Čanadanović-Brunet J. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities. J. Food Sci. 2012 77 9 C954 C959 10.1111/j.1750‑3841.2012.02867.x 22888949
    [Google Scholar]
  30. Itaya N.M. Buckeridge M.S. Figueiredo-Ribeiro R.C. Biosynthesis in vitro of high-molecular-mass fructan by cell-free extracts from tuberous roots of Viguiera discolor (Asteraceae). New Phytol. 1997 136 1 53 60
    [Google Scholar]
  31. Walia H. Wilson C. Wahid A. Condamine P. Cui X. Close T.J. Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics 2006 6 2 143 156 10.1007/s10142‑005‑0013‑0 16450154
    [Google Scholar]
  32. Boeckner LS Schnepf MI Tungland BC Inulin: A review of nutritional and health implications. 2001 43 1 63 10.1016/S1043‑4526(01)43002‑6 11285681
    [Google Scholar]
  33. Brunton D.F. Oldham M.J. Gilman A.V. Himalayan elecampane, Inula racemosa (Asteraceae), in north america. Rhodora 2022 123 993 19 30 10.3119/20‑33
    [Google Scholar]
  34. Paseephol T. Characterisation of prebiotic compounds from plant sources and food industry wastes: Inulin from Jerusalem artichoke and lactulose from milk concentration permeate. RMIT University researchers 2008
    [Google Scholar]
  35. Sánchez Martínez.M.J. Soto J.S. Antolinos V. Martínez H.G.B. López G.A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng. Rev. 2020 12 2 149 172 10.1007/s12393‑020‑09209‑0
    [Google Scholar]
  36. Murphy D.J. The extracellular pollen coat in members of the Brassicaceae: Composition, biosynthesis, and functions in pollination. Protoplasma 2006 228 1-3 31 39 10.1007/s00709‑006‑0163‑5 16937052
    [Google Scholar]
  37. Akram W. Joshi R. Garud N. Inulin: A promising carrier for controlled and targeted drug delivery system. J. Drug Deliv. Ther. 2019 9 1-s 437 441 10.22270/jddt.v9i1‑s.2398
    [Google Scholar]
  38. Livingston D.P. III Hincha D.K. Heyer A.G. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 2009 66 13 2007 2023 10.1007/s00018‑009‑0002‑x 19290476
    [Google Scholar]
  39. Praznik W. Loeppert R. Viernstein H. Haslberger A.G. Unger F.M. Dietary fiber and prebiotics. Polysaccharides: Bioactivity and Biotechnology. Cham Springer International Publishing 2015 891 925 10.1007/978‑3‑319‑16298‑0_54
    [Google Scholar]
  40. Laitenberger K. The potential of growing Yacon and other Lost Crops of the Incas and Jerusalem Artichoke as crops and functional foods in Ireland. 2019 Available from: https://www.nuffieldscholar.org/sites/default/files/reports/2018_IE_Klaus-Laitenberger_The-Potential-Of-Growing-Yacon-And-Other-Lost-Crops-Of-The-Incas-And-Jerusalem-Artichoke-As-Crops-And-Functional-Foods-In-Ireland.pdf
  41. Kosaric N. Cosentino G.P. Wieczorek A. Duvnjak Z. The Jerusalem artichoke as an agricultural crop. Biomass 1984 5 1 1 36 10.1016/0144‑4565(84)90066‑0
    [Google Scholar]
  42. Destani F. Gabriele B. Salerno G. Cassano A. Bartolino R. Recovery of molecules of pharmacological interest from blood orange juice by integrated membrane operations. Research, Innovation and Social Impact Area Università della Calabria 2012 1 51 10.13126/UNICAL.IT/DOTTORATI/1142
    [Google Scholar]
  43. Osman A.I. El-Monaem E.M.A. Elgarahy A.M. Aniagor C.O. Hosny M. Farghali M. Rashad E. Ejimofor M.I. López M.E.A. Ihara I. Yap P.S. Rooney D.W. Eltaweil A.S. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023 21 4 2337 2398 10.1007/s10311‑023‑01603‑4
    [Google Scholar]
  44. Zimmermann A. Visscher C. Kaltschmitt M. Plant-based fructans for increased animal welfare: Provision processes and remaining challenges. Biomass Convers. Biorefin. 2023 13 2667 2685 10.1007/s13399‑021‑01473‑2
    [Google Scholar]
  45. Siddharth S. Sharma D. Racial disparity and triple-negative breast cancer in African-American women: A multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers 2018 10 12 514 10.3390/cancers10120514 30558195
    [Google Scholar]
  46. Melilli M.G. Buzzanca C. Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr. Polym. 2024 332 121918 10.1016/j.carbpol.2024.121918 38431396
    [Google Scholar]
  47. Mykhalevych A. Polishchuk G. Nassar K. Osmak T. Buniowska O.M. β-Glucan as a techno-functional ingredient in dairy and milk-based products: A review. Molecules 2022 27 19 6313 10.3390/molecules27196313 36234850
    [Google Scholar]
  48. Mensink M.A. Frijlink H.W. van der Voort Maarschalk K. Hinrichs W.L.J. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr. Polym. 2015 134 418 428 10.1016/j.carbpol.2015.08.022 26428143
    [Google Scholar]
  49. Lowenstein J. Grantham J.J. The rebirth of interest in renal tubular function. Am. J. Physiol. Renal Physiol. 2016 310 11 F1351 F1355 10.1152/ajprenal.00055.2016 26936872
    [Google Scholar]
  50. Mensink M.A. Frijlink H.W. van der Voort Maarschalk K. Hinrichs W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015 130 405 419 10.1016/j.carbpol.2015.05.026 26076642
    [Google Scholar]
  51. Hughes S.R. Qureshi N. López N.J.C. Jones M.A. Jarodsky J.M. Galindo L.L.Á. Lindquist M.R. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J. Microbiol. Biotechnol. 2017 33 4 78 10.1007/s11274‑017‑2241‑6 28341907
    [Google Scholar]
  52. Gueimonde M. Delgado S. Mayo B. Ruas M.P. Margolles A. de los Reyes-Gavilán C.G. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res. Int. 2004 37 9 839 850 10.1016/j.foodres.2004.04.006
    [Google Scholar]
  53. Oliveira R.P.S. Perego P. de Oliveira M.N. Converti A. Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Res. Int. 2012 48 1 21 27 10.1016/j.foodres.2012.02.012
    [Google Scholar]
  54. Singh R.S. Singh T. Kennedy J.F. Enzymatic synthesis of fructooligosaccharides from inulin in a batch system. Carbohy. Poly. Techn. Appli. 2020 1 100009 10.1016/j.carpta.2020.100009
    [Google Scholar]
  55. Valluru R. Van den Ende W. Plant fructans in stress environments: Emerging concepts and future prospects. J. Exp. Bot. 2008 59 11 2905 2916 10.1093/jxb/ern164 18603617
    [Google Scholar]
  56. Bharathidasan A.K. Production of Biobutanol from inulin-rich biomass and industrial food processing wastes. The Ohio State Uni. 2013
    [Google Scholar]
  57. Apolinário A.C. de Lima Damasceno B.P.G. de Macêdo B.N.E. Pessoa A. Converti A. da Silva J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym. 2014 101 368 378 10.1016/j.carbpol.2013.09.081 24299785
    [Google Scholar]
  58. Márquez L.R.E. Loyola V.V.M. Santiago G.P.A. Interaction between fructan metabolism and plant growth regulators. Planta 2022 255 2 49 10.1007/s00425‑022‑03826‑1 35084581
    [Google Scholar]
  59. Mohammadalinejhad S. Kurek M.A. Microencapsulation of anthocyanins: Critical review of techniques and wall materials. Appl. Sci. 2021 11 9 3936 10.3390/app11093936
    [Google Scholar]
  60. Santivarangkna C. Higl B. Foerst P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol. 2008 25 3 429 441 10.1016/j.fm.2007.12.004 18355668
    [Google Scholar]
  61. Mainini F. Eccles M.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules 2020 25 11 2692 10.3390/molecules25112692 32532030
    [Google Scholar]
  62. Kasper J.C. Schaffert D. Ogris M. Wagner E. Friess W. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability—A step closer from promising technology to application. J. Control. Release 2011 151 3 246 255 10.1016/j.jconrel.2011.01.003 21223985
    [Google Scholar]
  63. Favaro T.C.S. Okuro P.K. Matos F.E. Jr Encapsulation via spray chilling/cooling/congealing. Handbook of Encapsulation and Controlled Release. Mishra M. Boca Raton, FL, USA CRC Press 2015 71 87 10.1201/b19038‑8
    [Google Scholar]
  64. van Drooge D.J. Hinrichs W.L.J. Dickhoff B.H.J. Elli M.N.A. Visser M.R. Zijlstra G.S. Frijlink H.W. Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation. Eur. J. Pharm. Sci. 2005 26 2 231 240 10.1016/j.ejps.2005.06.007 16084699
    [Google Scholar]
  65. Aungst B.J. Intestinal permeation enhancers. J. Pharm. Sci. 2000 89 4 429 442 10.1002/(SICI)1520‑6017(200004)89:4<429::AID‑JPS1>3.0.CO;2‑J 10737905
    [Google Scholar]
  66. Dahan A. Miller J.M. Amidon G.L. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs. AAPS J. 2009 11 4 740 746 10.1208/s12248‑009‑9144‑x 19876745
    [Google Scholar]
  67. Salawi A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv. 2022 29 1 1811 1823 10.1080/10717544.2022.2083724 35666090
    [Google Scholar]
  68. Janssens S. Van den Mooter G. Review: Physical chemistry of solid dispersions. J. Pharm. Pharmacol. 2009 61 12 1571 1586 10.1211/jpp.61.12.0001 19958579
    [Google Scholar]
  69. Kashapov R. Gaynanova G. Gabdrakhmanov D. Kuznetsov D. Pavlov R. Petrov K. Zakharova L. Sinyashin O. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int. J. Mol. Sci. 2020 21 18 6961 10.3390/ijms21186961 32971917
    [Google Scholar]
  70. Gessner M.O. Chauvet E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl. 2002 12 2 498 510 10.1890/1051‑0761(2002)012[0498:ACFULB]2.0.CO;2
    [Google Scholar]
  71. Poka M.S. Milne M. Wessels A. Aucamp M. Sugars and polyols of natural origin as carriers for solubility and dissolution enhancement. Pharmaceutics 2023 15 11 2557 10.3390/pharmaceutics15112557 38004536
    [Google Scholar]
  72. Stanković M. Tomar J. Hiemstra C. Steendam R. Frijlink H.W. Hinrichs W.L.J. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants. Eur. J. Pharm. Biopharm. 2014 87 2 329 337 10.1016/j.ejpb.2014.02.012 24602675
    [Google Scholar]
  73. Afinjuomo F. Abdella S. Youssef S.H. Song Y. Garg S. Inulin and its application in drug delivery. Pharmaceuticals 2021 14 9 855 10.3390/ph14090855 34577554
    [Google Scholar]
  74. Giteau A. Venier J.M.C. Aubert P.A. Benoit J.P. How to achieve sustained and complete protein release from PLGA-based microparticles? Int. J. Pharm. 2008 350 1-2 14 26 10.1016/j.ijpharm.2007.11.012 18162341
    [Google Scholar]
  75. Yamaguchi Y. Takenaga M. Kitagawa A. Ogawa Y. Mizushima Y. Igarashi R. Insulin-loaded biodegradable PLGA microcapsules: Initial burst release controlled by hydrophilic additives. J. Control. Release 2002 81 3 235 249 10.1016/S0168‑3659(02)00060‑3 12044564
    [Google Scholar]
  76. Farra R. Musiani F. Perrone F. Čemažar M. Kamenšek U. Tonon F. Abrami M. Ručigaj A. Grassi M. Pozzato G. Bonazza D. Zanconati F. Forte G. El Boustani M. Scarabel L. Garziera M. Russo S.C. De Stefano L. Salis B. Toffoli G. Rizzolio F. Grassi G. Dapas B. Polymer-mediated delivery of siRNAs to hepatocellular carcinoma: Variables affecting specificity and effectiveness. Molecules 2018 23 4 777 10.3390/molecules23040777 29597300
    [Google Scholar]
  77. Akram W. Pandey V. Sharma R. Joshi R. Mishra N. Garud N. Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int. J. Biol. Macromol. 2024 259 Pt 1 129131 10.1016/j.ijbiomac.2023.129131 38181920
    [Google Scholar]
  78. Giri S. Dutta P. Giri T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol. 2021 64 102595 10.1016/j.jddst.2021.102595
    [Google Scholar]
  79. Roupar D. Berni P. Martins J.T. Caetano A.C. Teixeira J.A. Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci. Technol. 2021 112 808 822 10.1016/j.tifs.2021.04.035
    [Google Scholar]
  80. Savina I.N. Zoughaib M. Yergeshov A.A. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials. Gels 2021 7 3 79 10.3390/gels7030079 34203439
    [Google Scholar]
  81. Chourasia M.K. Jain S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004 11 2 129 148 10.1080/10717540490280778 15200012
    [Google Scholar]
  82. Barclay T. Ginic M.M. Cooper P. Petrovsky N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem. 2016 1 3
    [Google Scholar]
  83. Figueiredo M Moura MJ Ferreira PJ Selecting a particle sizer for the pharmaceutical industry. Char Phar Nano Micro 2021 1 25 10.1002/9781119414018.ch1
    [Google Scholar]
  84. Morgan B.A. Experimental and numerical modelling of the spray drying process for the production of thermally stable vaccine powders. Chemical Engineering McMaster University 1280 Main Street West, Hamilton, Ontario 2021 139
    [Google Scholar]
  85. Chan H.W. Chow S. Zhang X. Zhao Y. Tong H.H.Y. Chow S.F. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research. AAPS PharmSciTech 2023 24 4 98 10.1208/s12249‑023‑02559‑y 37016029
    [Google Scholar]
  86. Saluja V. Amorij J-P. Kapteyn J.C. de Boer A.H. Frijlink H.W. Hinrichs W.L.J. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J. Control. Release 2010 144 2 127 133 10.1016/j.jconrel.2010.02.025 20219608
    [Google Scholar]
  87. Zijlstra G.S.J. Ponsioen B.J. Hummel S.A. Sanders N. Hinrichs W.L. de Boer A.H. Frijlink H.W. Formulation and process development of (recombinant human) deoxyribonuclease I as a powder for inhalation. Pharm. Dev. Technol. 2009 14 4 358 368 10.1080/10837450802662820 19552563
    [Google Scholar]
  88. Quigley E.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. 2013 9 9 560 569 24729765
    [Google Scholar]
  89. Carabin I.G. Flamm W.G. Evaluation of safety of inulin and oligofructose as dietary fiber. Regul. Toxicol. Pharmacol. 1999 30 3 268 282 10.1006/rtph.1999.1349 10620476
    [Google Scholar]
  90. Connolly B.M. Jenson A.B. Peters C.J. Geyer S.J. Barth F. McPherson R.A. Pathogenesis of Pichinde virus infection in strain 13 guinea pigs: An immunocytochemical, virologic, and clinical chemistry study. Am. J. Trop. Med. Hyg. 1993 49 1 10 24 10.4269/ajtmh.1993.49.10 8394659
    [Google Scholar]
  91. Pascal G. Prebiotics and food safety. InHandbook of Prebiotics CRC Press 1st Ed. 2008 467 488 10.1201/9780849381829.ch23
    [Google Scholar]
  92. Azuma K. Kagi N. Yanagi U. Osawa H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018 121 Pt 1 51 56 10.1016/j.envint.2018.08.059 30172928
    [Google Scholar]
  93. Parker RM Testing for reproductive toxicity. Developmental and reproductive toxicology: A practical approach. 3rd Ed. CRC Press 2006 425 487 10.1201/9781420040548.ch10
    [Google Scholar]
  94. Franck A. Technological functionality of inulin and oligofructose. Br. J. Nutr. 2002 87 S2 Suppl. 2 S287 S291 10.1079/BJN/2002550 12088531
    [Google Scholar]
  95. Naskar B. Dan A. Ghosh S. Moulik S.P. Characteristic physicochemical features of the biopolymer inulin in solvent added and depleted states. Carbohydr. Polym. 2010 81 3 700 706 10.1016/j.carbpol.2010.03.041
    [Google Scholar]
  96. Bouchard A. Hofland G.W. Witkamp G.J. Properties of sugar, polyol, and polysaccharide water− ethanol solutions. J. Chem. Eng. Data 2007 52 5 1838 1842 10.1021/je700190m
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031325982241211174118
Loading
/content/journals/ddl/10.2174/0122103031325982241211174118
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: control release ; drug delivery ; Inulin ; stabilizer ; biopolymer ; therapeutic effect
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test