Skip to content
2000
image of Exploring the Phytochemical Composition, Antioxidant Properties, and Anticancer Mechanism of Clerodendrum viscosum Vent.: A Comprehensive Review

Abstract

(), hill glory bower, locally known as bhant, has a rich ethno-medicinal history across tropical and subtropical regions. It has been widely studied for its diverse bioactive phytochemicals and their potential in cancer therapy. This review consolidates current research on , encompassing its phytochemical composition, antioxidant properties, and anticancer mechanisms documented globally. We comprehensively searched various scholarly databases, including Scopus, PubMed, Science Direct, and Google Scholar. The plant exhibits a range of secondary metabolites, including phenolics, phenylpropanoids, flavonoids, tannins, quercetin, saponins, alkaloids, terpenoids, and steroids. These compounds demonstrate antioxidant properties by scavenging reactive oxygen species (ROS). Notably, gallic acid, tannic acid, ellagic acid, and quercetin contribute to antioxidant efficacy. Several phytochemicals, such as flavonoids and phenolic compounds, show anticancer activities by inhibiting cancer cell proliferation, inducing apoptosis, and causing cell cycle arrest. For example, apigenin and acacetin, identified from , exhibited remarkable anticancer effects, including ROS generation, apoptosis initiation, and G2/M-phase cell cycle arrest. Also, extracts from different parts of the plant demonstrated selective cytotoxicity against various cancer cells, emphasizing their potential as natural anticancer agents. Therefore, this study could provide summative information regarding the pharmacological and therapeutic potential of as a natural source of various active chemicals. However, further research is warranted to explore the therapeutic applications of these plant-derived compounds in cancer treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode . This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838357493250122122451
2025-01-01
2025-04-19
The full text of this item is not currently available.

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. International Agency for Research on Cancer World health organization global cancer observatory (2022). Available from: http://gco.iarc.who.int/tomorrow/en/dataviz/trends?multiple_populations=1 [Accessed on: April 25, 2024]. 2022
  3. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  4. Huang M.Y. Zhang L.L. Ding J. Lu J.J. Anticancer drug discovery from Chinese medicinal herbs. Chin. Med. 2018 13 1 35 10.1186/s13020‑018‑0192‑y 29997684
    [Google Scholar]
  5. Raeisi E. Soureshjani H.S. Sherwin M.C. Bagheri Z. Radiotherapy enhancing and radioprotective properties of berberine: A systematic review. Rec. Patents Anticanc. Drug Discov. 2024 19 0115748928315442240624120104 10.2174/0115748928315442240624120104 38984581
    [Google Scholar]
  6. Asma Syeda Tasmia Natural products/bioactive compounds as a source of anticancer drugs. Cancers 2022 14 24 6203 10.3390/cancers14246203
    [Google Scholar]
  7. Raeisi E. Soureshjani H.S. Sherwin C.M.T. Khaghani A. Anti-cancer effects of soy isoflavones against cancer by radiosensitizing properties: A systematic review. Curr. Cancer Ther. Rev. 2024 20 0115733947313316240603101926 10.2174/0115733947313316240603101926
    [Google Scholar]
  8. Islam J. Shila T.T. Islam Z. Kabir E. Haque N. Khatun M. Khan S. Jubayar A.M. Islam F. Nikkon F. Hossain K. Saud Z.A. Clerodendrum viscosum leaves attenuate lead-induced neurotoxicity through upregulation of BDNF-Akt-Nrf2 pathway in mice. J. Ethnopharmacol. 2023 304 116024 10.1016/j.jep.2022.116024 36549369
    [Google Scholar]
  9. Rahman M. Antihemolytic activity of Clerodendrum viscosum Vent. is mediated by its antioxidant effect. European J. Med. Plants 2013 3 1 127 134 10.9734/EJMP/2013/2403
    [Google Scholar]
  10. Akihisa T. Matsubara Y. Ghosh P. Thakur S. Shimizu N. Tamura T. Matsumoto T. The 24α- and 24β-epimers of 24-ethylcholesta-5,22-dien-3β-ol in two Clerodendrum species. Phytochemistry 1988 27 4 1169 1172 10.1016/0031‑9422(88)80296‑6
    [Google Scholar]
  11. Ghosh G. GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharm. Res. 2015 7 1 110
    [Google Scholar]
  12. Jacke G. Rimpler H. Distribution of iridoid glycosides in Clerodendrum species. Phytochemistry 1983 22 8 1729 1734 10.1016/S0031‑9422(00)80260‑5
    [Google Scholar]
  13. Nandi S. Lyndem K.M.L. Clerodendrum viscosum : Traditional uses, pharmacological activities and phytochemical constituents. Nat. Prod. Res. 2016 30 5 497 506 10.1080/14786419.2015.1025229 25825067
    [Google Scholar]
  14. Ashoor L.S. Mohammd T.U. Baker R.K. Extraction, antimicrobialactivity and phytochemical of Clerodendrum viscosum. Plant Archiv. 2018 18 2 2087 2090
    [Google Scholar]
  15. Sumi S.A. Evaluation of analgesic and antioxidant properties in the ethanolic root extract of clerodendrum viscosum vent. Cell 2015 61 0469173485
    [Google Scholar]
  16. Das J.K. Choudhury S. Adhikary S. Das B. Samanta S. Mandal S.C. Dey S.P. Anthelmintic activity of Clerodendrum viscosum. Orient. Pharm. Exp. Med. 2011 11 2 119 122 10.1007/s13596‑011‑0021‑7
    [Google Scholar]
  17. Kar P. Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview. Int. J. Green Pharm. 2014 8 4
    [Google Scholar]
  18. Roy S. Kundu L.M. Roy G.C. Barman M. Ray S. Cell cycle delay, pro-metaphase arrest and C-metaphase inducing effects of petroleum ether fraction of leaf aqueous extract of Clerodendrum viscosum Vent. Cytologia 2022 87 2 73 79 10.1508/cytologia.87.73
    [Google Scholar]
  19. Chandrashekar R. Rai M. Kalal B.S. Acute and chronic toxicity studies on ethanolic leaf extracts of clerodendrum viscosum and leucas indica in swiss albino mice. Int J Biochem Mol Biol 2022 13 4 40 48
    [Google Scholar]
  20. Ali R. Hossain M. Runa J.F. Assessment of anthelmintic potential of Averrhoa bilimbi, Clerodendrum viscosum and Drynaria quercifolia: As an alternative source for anthelmintics. Res. J. Pharm. Phytochem. 2013 5 4 178 181
    [Google Scholar]
  21. Islam R. Rahman A. A GC-MS study: Identification of the essential oil compositions of Clerodendrum viscosum Vent flower. J. Essent. Oil-Bear. Plants 2015 18 5 1271 1274 10.1080/0972060X.2015.1024448
    [Google Scholar]
  22. Das S.C. Qais M.N. Kuddus M.R. Hasan C.M. Isolation and characterization of (22E, 24S)-Stigmasta-5, 22, 25-trien-3β-ol from Clerodendrum viscosum Vent. Asian J. Chem. 2013 25 11 6447 6448 10.14233/ajchem.2013.14188
    [Google Scholar]
  23. Rahman M.M. Rumzhum N.N. Zinna K-E-K. Evaluation of antioxidant and antinociceptive properties of methanolic extract of Clerodendrum viscosum Vent. Stamford J. Pharm. Sci. 1970 4 1 74 78 10.3329/sjps.v4i1.8873
    [Google Scholar]
  24. Ahmed F. Shahid I.Z. Biswas U.K. Roy B.A. Das A.K. Choudhuri M.S.K. Anti-inflammatory, antinociceptive, and neuropharmacological activities of Clerodendron viscosum. Pharm. Biol. 2007 45 7 587 593 10.1080/13880200701501342
    [Google Scholar]
  25. Gouthamchandra K. Mahmood R. Manjunatha H. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L. Environ. Toxicol. Pharmacol. 2010 30 1 11 18 10.1016/j.etap.2010.03.005 21787623
    [Google Scholar]
  26. Haque N. Chowdhury S.A.R. Nutan M.T.H. Rahman G.M.S. Rahman K.M. Rashid M.A. Evaluation of antitumor activity of some medicinal plants of Bangladesh by potato disk bioassay. Fitoterapia 2000 71 5 547 552 10.1016/S0367‑326X(00)00162‑3 11449504
    [Google Scholar]
  27. Praveen M. Preliminary phytochemical, antimicrobial and toxicity studies on Clerodendrum paniculatum Linn. leaves. SEMANTIC SCHOLAR 2012
    [Google Scholar]
  28. Yen G.C. Duh P.D. Tsai H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002 79 3 307 313 10.1016/S0308‑8146(02)00145‑0
    [Google Scholar]
  29. Kahkeshani N. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019 22 3 225
    [Google Scholar]
  30. Liang H. Huang Q. Zou L. Wei P. Lu J. Zhang Y. Methyl gallate: Review of pharmacological activity. Pharmacol. Res. 2023 194 106849 10.1016/j.phrs.2023.106849 37429335
    [Google Scholar]
  31. Baldwin A. Booth B.W. Biomedical applications of tannic acid. J. Biomater. Appl. 2022 36 8 1503 1523 10.1177/08853282211058099 34991392
    [Google Scholar]
  32. Vattem D.A. Shetty K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005 29 3 234 266 10.1111/j.1745‑4514.2005.00031.x
    [Google Scholar]
  33. Strawbridge R. Javed R.R. Cave J. Jauhar S. Young A.H. The effects of reserpine on depression: A systematic review. J. Psychopharmacol. 2023 37 3 248 260 10.1177/02698811221115762 36000248
    [Google Scholar]
  34. Kim J.K. Park S.U. Quercetin and its role in biological functions: An updated review. EXCLI J. 2018 17 856 863 30233284
    [Google Scholar]
  35. Roy R. Flavonoids of Clerodendron infortunatum. Orient. J. Chem. 1994 10 169 169
    [Google Scholar]
  36. Kim J.H. Medicarpin increases antioxidant genes by inducing NRF2 transcriptional level in HeLa cells. Antioxidants 2022 11 2 421 10.3390/antiox11020421
    [Google Scholar]
  37. Subramanian S.S. Nair A.G. Scutellarin and hispidulin-7-O-glucuronide from the leaves of Clerodendrum indicum and Clerodendron infortunatum. Phytochemistry. 1973 12 1195 10.1016/0031‑9422(73)85054‑X
    [Google Scholar]
  38. Bhilwade A.N.H. Tatewaki N. Nishida H. Konishi T. Squalene as novel food factor. Curr. Pharm. Biotechnol. 2010 11 8 875 880 10.2174/138920110793262088 20874681
    [Google Scholar]
  39. Dey P. Dutta S. Chaudhuri T. K. Comparative phytochemical profiling of Clerodendrum infortunatum L. using GC-MS method coupled with multivariate statistical approaches. Metabolomics 2015 5 3 1000147
    [Google Scholar]
  40. Rocha L.D. Monteiro M.C. Teodoro A.J. Anticancer properties of hydroxycinnamic acids-A review. Cancer Clin. Oncol. 2012 1 2 109 121 10.5539/cco.v1n2p109
    [Google Scholar]
  41. Lee K.W. Lee H.J. Cho H.Y. Kim Y.J. Role of the conjugated linoleic acid in the prevention of cancer. Crit. Rev. Food Sci. Nutr. 2005 45 2 135 144 10.1080/10408690490911800 15941017
    [Google Scholar]
  42. Jirovetz L. Essential oil analysis of the leaves and the root bark of the plant Clerodendrum infortunatum used in ayurvedic medicine. Herba Pol. 1999 2 45 87 94
    [Google Scholar]
  43. Vieira A.J. Beserra F.P. Souza M.C. Totti B.M. Rozza A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018 283 97 106 10.1016/j.cbi.2018.02.007 29427589
    [Google Scholar]
  44. Allenspach M. Steuer C. α-Pinene: A never-ending story. Phytochemistry 2021 190 112857 10.1016/j.phytochem.2021.112857 34365295
    [Google Scholar]
  45. Salehi Bahare Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019 9 11 738 10.3390/biom9110738
    [Google Scholar]
  46. Zhang F. Chen F. Liu W. Guo J. Wan F. ρ-Cymene inhibits growth and induces oxidative stress in rice seedling plants. Weed Sci. 2012 60 4 564 570 10.1614/WS‑D‑12‑00029.1
    [Google Scholar]
  47. Surendran S. Qassadi F. Surendran G. Lilley D. Heinrich M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021 8 699666 10.3389/fnut.2021.699666 34350208
    [Google Scholar]
  48. Fidyt K. Fiedorowicz A. Strządała L. Szumny A. β -caryophyllene and β -caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Med. 2016 5 10 3007 3017 10.1002/cam4.816 27696789
    [Google Scholar]
  49. Li R. Natschke M.S.L. Lee K.H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016 33 10 1166 1226 10.1039/C5NP00137D 27433555
    [Google Scholar]
  50. Sindhu T.J. Arathi K.N. Akhilesh K.J. Jose A. Binsiya K.P. Thomas B. Wilson E. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: in silico approaches. Asian J. Pharm. Technol. 2020 10 2 60 64 10.5958/2231‑5713.2020.00012.4
    [Google Scholar]
  51. Khuda M.M. Constituents of Clerodendron infortunatum (BHAT)—II. Tetrahedron 1966 22 7 2377 2386 10.1016/S0040‑4020(01)82158‑X
    [Google Scholar]
  52. Choudhury M.D. Isolation, characterization and bio-activity screening of compound from Clerodendrum viscosum Vent. Assam Univ. J. Sci. Technol. 2010 4 1 29 34
    [Google Scholar]
  53. Sannigrahi S. Mazumder U.K. Pal D. Mishra S.L. Terpenoids of methanol extract of Clerodendrum infortunatum exhibit anticancer activity against Ehrlich’s ascites carcinoma (EAC) in mice. Pharm. Biol. 2012 50 3 304 309 10.3109/13880209.2011.604089 22321031
    [Google Scholar]
  54. Liu J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 1995 49 2 57 68 10.1016/0378‑8741(95)90032‑2 8847885
    [Google Scholar]
  55. Santos C.C.D.M.P. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J. 2013 2013 949452
    [Google Scholar]
  56. Hordyjewska A. Ostapiuk A. Horecka A. Betulin and betulinic acid in cancer research. J. Pre-Clinical Clin. Res. 2018 12 2 72 75 10.26444/jpccr/92743
    [Google Scholar]
  57. Uddin M.J. Çiçek S.S. Willer J. Shulha O. Abdalla M.A. Sönnichsen F. Girreser U. Zidorn C. Phenylpropanoid and flavonoid glycosides from the leaves of Clerodendrum infortunatum (Lamiaceae). Biochem. Syst. Ecol. 2020 92 104131 10.1016/j.bse.2020.104131
    [Google Scholar]
  58. Chae S. Kim J.S. Kang K.A. Bu H.D. Lee Y. Hyun J.W. Kang S.S. Antioxidant activity of jionoside D from Clerodendron trichotomum. Biol. Pharm. Bull. 2004 27 10 1504 1508 10.1248/bpb.27.1504 15467185
    [Google Scholar]
  59. Roy R. Antifungal activity of the flavonoids from Clerodendron infortunatum roots. Fitoterapia 1996 67 473 474
    [Google Scholar]
  60. Saeidnia S. The story of beta-sitosterol-A review. European J. Med. Plants 2014 4 5 590 609 10.9734/EJMP/2014/7764
    [Google Scholar]
  61. Xu C. Wu P. Gao J. Zhang L. Ma T. Ma B. Yang S. Shao G. Yu Y. Huang X. Yang X. Zhang B. Heptadecanoic acid inhibits cell proliferation in PC‑9 non‑small‑cell lung cancer cells with acquired gefitinib resistance. Oncol. Rep. 2019 41 6 3499 3507 10.3892/or.2019.7130 31002344
    [Google Scholar]
  62. Sinha N. Seth K. Pandey V. Dasgupta B. Shah A. Flavonoids from the flowers of Clerodendron infortunatum. Planta Med. 1981 42 7 296 298 10.1055/s‑2007‑971645 17401979
    [Google Scholar]
  63. Yan X. Qi M. Li P. Zhan Y. Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017 7 1 50 10.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  64. Vo T.K. Anti-hepatocellular-cancer activity exerted by β-sitosterol and β-sitosterol-glucoside from Indigofera zollingeriana Miq. Molecules 2020 25 13 3021 10.3390/molecules25133021
    [Google Scholar]
  65. Bakrim S. Benkhaira N. Bourais I. Benali T. Lee L.H. Omari E.N. Sheikh R.A. Goh K.W. Ming L.C. Bouyahya A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022 11 10 1912 10.3390/antiox11101912 36290632
    [Google Scholar]
  66. Sinha N.K. Chemical constituents of the flowers of Clerodendron [Clerodendrum] infortunatum. 1981 96 97
    [Google Scholar]
  67. Linker R.A. Lee D.H. Ryan S. Dam v.A.M. Conrad R. Bista P. Zeng W. Hronowsky X. Buko A. Chollate S. Ellrichmann G. Brück W. Dawson K. Goelz S. Wiese S. Scannevin R.H. Lukashev M. Gold R. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011 134 3 678 692 10.1093/brain/awq386 21354971
    [Google Scholar]
  68. Silva H. Lopes N.M.F. Cardiovascular effects of caffeic acid and its derivatives: A comprehensive review. Front. Physiol. 2020 11 595516 10.3389/fphys.2020.595516 33343392
    [Google Scholar]
  69. Mancini A. Imperlini E. Nigro E. Montagnese C. Daniele A. Orrù S. Buono P. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 2015 20 9 17339 17361 10.3390/molecules200917339 26393565
    [Google Scholar]
  70. Campos S.H. Souza P.R. Peghini B.C. Silva d.J.S. Cardoso C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013 13 2 201 210 23278117
    [Google Scholar]
  71. Choque B. Catheline D. Rioux V. Legrand P. Linoleic acid: Between doubts and certainties. Biochimie 2014 96 14 21 10.1016/j.biochi.2013.07.012 23900039
    [Google Scholar]
  72. Panda P. Appalashetti M. Judeh Z.M. Phenylpropanoid sucrose esters: Plant-derived natural products as potential leads for new therapeutics. Curr. Med. Chem. 2011 18 21 3234 3251 10.2174/092986711796391589 21671860
    [Google Scholar]
  73. Neelam A.K. Khatkar A. Sharma K.K. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr. 2020 60 16 2655 2675 10.1080/10408398.2019.1653822 31456411
    [Google Scholar]
  74. Uddin M.J. Bioactive abietane-type diterpenoid glycosides from leaves of Clerodendrum infortunatum (Lamiaceae). Molecules 2021 26 14 4121 10.3390/molecules26144121
    [Google Scholar]
  75. Teixeira J. Gaspar A. Garrido E.M. Garrido J. Borges F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013 2013 1 11 10.1155/2013/251754 23956973
    [Google Scholar]
  76. Nijveldt R.J. Nood v.E. Hoorn v.D.E.C. Boelens P.G. Norren v.K. Leeuwen v.P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001 74 4 418 425 10.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  77. Gupta S. Gupta R. Detection and quantification of quercetin in roots, leaves and flowers of Clerodendrum infortunatum L. Asian Pac. J. Trop. Dis. 2012 2 S940 S943 10.1016/S2222‑1808(12)60296‑5
    [Google Scholar]
  78. Wang J.H. Luan F. He X.D. Wang Y. Li M.X. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J. Tradit. Complement. Med. 2018 8 1 24 38 10.1016/j.jtcme.2017.04.001 29321986
    [Google Scholar]
  79. Roy S. Mukhopadhyay A. Gurusubramanian G. Field efficacy of a biopesticide prepared from Clerodendrum viscosum Vent. (Verbenaceae) against two major tea pests in the sub Himalayan tea plantation of North Bengal, India. J. Pest Sci. 2010 83 4 371 377 10.1007/s10340‑010‑0306‑5
    [Google Scholar]
  80. Spencer J.P.E. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010 104 S3 S40 S47 10.1017/S0007114510003934 20955649
    [Google Scholar]
  81. Sehgal S. Sehgal S. Quantitative estimation of quercetin in Mimusops elengi L. (Bakul) leaves by HPTLC. Pharm. Lett. 2011 12 19
    [Google Scholar]
  82. Smeriglio A. Barreca D. Bellocco E. Trombetta D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017 174 11 1244 1262 10.1111/bph.13630 27646690
    [Google Scholar]
  83. Hazarika A. Saha D. Preliminary phytochemical screening and evaluation of anti-diarrhoeal activity of ethanolic extract of leaves of Clerodendrum infortunatum. Int. J. Curr. Pharm. Res. 2017 9 4 143 6 10.22159/ijcpr.2017v9i4.20980
    [Google Scholar]
  84. Leung A.Y. Foster S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. 2nd Ed. Wiley-Interscience 1995
    [Google Scholar]
  85. Marston A. Cabo M. Lubrano C. Robin J-R. Fromageot C. Hostettmann K. Clarification of the saponin composition of Ranunculus ficaria tubers. Nat. Prod. Commun. 2006 1 1 1934578X0600100105 10.1177/1934578X0600100105
    [Google Scholar]
  86. Tamura Y. Miyakoshi M. Yamamoto M. Application of saponin-containing plants in foods and cosmetics. Alt. Med. Semantic Scholar 2012 85 101 10.5772/53333
    [Google Scholar]
  87. Mazumder U.K. CNS activities of Cassia fistula in mice. Phytother. Res. 1998 12 7 520 522 10.1002/(SICI)1099‑1573(199811)12:7<520::AID‑PTR345>3.0.CO;2‑O
    [Google Scholar]
  88. Kar A. Pharmacognosy and pharmacobiotechnology. New Age International 2003 216
    [Google Scholar]
  89. Kokate C.K. Purohit A.P. Gokhale S.B. Pharmacognosy, nirali prakashan, pune. Med. J 2002 43 2 077 085
    [Google Scholar]
  90. Pal D. Sahoo M. Mishra A.K. Analgesic and anticonvulsant effects of saponin isolated from the stems of Opuntia vulgaris Mill in mice. Eur Bull Drug Res 2005 13 91 97
    [Google Scholar]
  91. Elekofehinti O.O. Iwaloye O. Olawale F. Ariyo E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021 28 2 250 272 10.3390/pathophysiology28020017 35366261
    [Google Scholar]
  92. Xu X.H. Saponins from Chinese medicines as anticancer agents. Molecules 2016 21 10 1326 10.3390/molecules21101326
    [Google Scholar]
  93. Gevrenova R. Weng A. Nazabadioko V.L. Thakur M. Doytchinova I. Quantitative structure–activity relationship study on saponins as cytotoxicity enhancers. Lett. Drug Des. Discov. 2014 12 3 166 171 10.2174/1570180811666140915221432
    [Google Scholar]
  94. Xu K. Shu Z. Xu Q.M. Liu Y.L. Li X.R. Wang Y.L. Yang S.L. Cytotoxic activity of Pulsatilla chinensis saponins and their structure–activity relationship. J. Asian Nat. Prod. Res. 2013 15 6 680 686 10.1080/10286020.2013.790901 23659376
    [Google Scholar]
  95. Nag S.A. Qin J.J. Wang W. Wang M.H. Wang H. Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2012 3 25 10.3389/fphar.2012.00025 22403544
    [Google Scholar]
  96. Abbaszadeh G. Srivastava C. Walia S. Insecticidal and antifeedant activities of clerodane diterpenoids isolated from the Indian bhant tree, Clerodendron infortunatum, against the cotton bollworm, Helicoverpa armigera. J. Insect Sci. 2014 14 1 29
    [Google Scholar]
  97. Ghosh G. Antibacterial and antioxidant activities of methanol extract and fractions of Clerodendrum viscosum Vent. leaves. Indian J. Nat. Prod. Resour. 2014 5 2 134 142
    [Google Scholar]
  98. Choi J.W. Cho E.J. Lee D.G. Choi K. Ku J. Park K-W. Lee S. Antibacterial activity of triterpenoids from Clerodendron trichotomum. J. Appl. Biol. Chem. 2012 55 3 169 172 10.3839/jabc.2012.026
    [Google Scholar]
  99. Bhattacharjee D. Clerodendrum infortunatum linn: A review. J Adv Pharm Healthcare Res 2011 1 3 82 85
    [Google Scholar]
  100. Akhil B.S. Ravi R.P. Lekshmi A. Abeesh P. Guruvayoorappan C. Radhakrishnan K.V. Sujathan K. Exploring the phytochemical profile and biological activities of Clerodendrum infortunatum. ACS Omega 2023 8 11 10383 10396 10.1021/acsomega.2c08080 36969395
    [Google Scholar]
  101. Yang W. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020 15 3 1934578X20903555 10.1177/1934578X20903555
    [Google Scholar]
  102. Gupta R. Singh H.K. Detection and quantitation of ß-sitosterol in clerodendrum infortunatum and alternanthera sessilis by HPTLC. Pharmacogn. Commun. 2012 2 1 31 36 10.5530/pc.2012.1.6
    [Google Scholar]
  103. Thakur S. Configurations at c-24 of 24-alkylsterols from clerodendrum-infortunatum linn. Indian J. Chem. Sect. B-Org. Chem. Includ. Med. Chem. 1988 27 1 17 20
    [Google Scholar]
  104. Wang H. Wang Z. Zhang Z. Liu J. Hong L. Beta-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects. Adv. Nutr. 2023 14 5 1085 1110 10.1016/j.advnut.2023.05.013 37247842
    [Google Scholar]
  105. Goyal A.K. Basistha B.C. Sen A. Middha S.K. Antioxidant profiling of Hippophae salicifolia growing in sacred forests of Sikkim, India. Funct. Plant Biol. 2011 38 9 697 701 10.1071/FP11016 32480925
    [Google Scholar]
  106. Halliwell B. Free radicals and antioxidants: A personal view. Nutr. Rev. 1994 52 8 253 265 10.1111/j.1753‑4887.1994.tb01453.x 7970288
    [Google Scholar]
  107. Dreosti i.e. Antioxidant polyphenols in tea, cocoa, and wine Nutrition 2000 16 7-8 692 4 10.1016/S0899‑9007(00)00304‑X
    [Google Scholar]
  108. Diplock A.T. Will the ‘good fairies’ please prove to us that vitamin E lessens human degenerative disease? Free Radic. Res. 1997 27 5 511 532 10.3109/10715769709065791 9518068
    [Google Scholar]
  109. Hsiao J.Y. Lin M.L. A chemotaxonomic study of essential oils from the leaves of genus Clerodendrum (Verbenaceae) native to Taiwan. Bot. Bull. Acad. Sin. 1995 36 247 251
    [Google Scholar]
  110. Perchellet J-P. Antitumor-promoting activities of tannic acid, ellagic acid, and several gallic acid derivatives in mouse skin. Basic Life Sci 1992 59 783 801
    [Google Scholar]
  111. Narayanan B.A. Geoffroy O. Willingham M.C. Re G.G. Nixon D.W. p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett. 1999 136 2 215 221 10.1016/S0304‑3835(98)00323‑1 10355751
    [Google Scholar]
  112. Swargiary A. Study of phytochemical content, antioxidant and larvicidal property of different solvent extracts of Clerodendrum infortunatum and Citrus grandis. Indian J. Tradit. Knowl. 2021 20 2 329 334
    [Google Scholar]
  113. Formica J.V. Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995 33 12 1061 1080 10.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  114. Pankaj P. Antioxidant potential of Clerodendron viscosum vent. Roots. Pharmacologyonline 2007 2 226 235
    [Google Scholar]
  115. Kabir E. Islam J. Shila T.T. Beauty S.A. Sadi J. Gofur M.R. Islam F. Hossain S. Nikkon F. Hossain K. Saud Z.A. Ameliorating effects of Clerodendrum viscosum leaves on lead-induced hepatotoxicity. Food Sci. Nutr. 2024 12 9 6472 6481 10.1002/fsn3.4285 39554341
    [Google Scholar]
  116. Mandal N. Shendge A.K. Basu T. Chaudhuri D. Panja S. in vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves. Pharmacogn. Mag. 2017 13 50 344 10.4103/pm.pm_395_16 28808404
    [Google Scholar]
  117. Sun C. First ayurvedic approach towards green drugs: Anti cervical cancer-cell properties of Clerodendrum viscosum root extract. Anti-Canc. Agents Med. Chem. 2013 13 10 1469 1476 10.2174/18715206113139990138
    [Google Scholar]
  118. Schuchmann M. Galle P.R. Sensitizing to apoptosis—sharpening the medical sword. J. Hepatol. 2004 40 2 335 336 10.1016/j.jhep.2003.11.022 14739108
    [Google Scholar]
  119. Shendge A.K. Panja S. Basu T. Mandal N. A tropical lichen, dirinaria consimilis selectively induces apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Anticancer. Agents Med. Chem. 2020 20 10 1173 1187 10.2174/1871520620666200318095410 32188391
    [Google Scholar]
  120. Lu Yong Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. European J. Pharmacol. 2010 641.2-3 102 107 10.1016/j.ejphar.2010.05.043
    [Google Scholar]
  121. Maurya D.K. Nandakumar N. Devasagayam T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 2010 48 1 85 90 10.3164/jcbn.11‑004FR 21297918
    [Google Scholar]
  122. Nguyen T.T.T. Tran E. Nguyen T.H. Do P.T. Huynh T.H. Huynh H. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 2003 25 5 647 659 10.1093/carcin/bgh052 14688022
    [Google Scholar]
  123. Jeong J.H. An J.Y. Kwon Y.T. Rhee J.G. Lee Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem. 2009 106 1 73 82 10.1002/jcb.21977 19009557
    [Google Scholar]
  124. Shendge A.K. Chaudhuri D. Mandal N. The natural flavones, acacetin and apigenin, induce Cdk-Cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells. Mol. Biol. Rep. 2021 48 1 539 549 10.1007/s11033‑020‑06087‑x 33394232
    [Google Scholar]
  125. Shendge A.K. Chaudhuri D. Basu T. Mandal N. A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Clin. Transl. Oncol. 2021 23 4 718 730 10.1007/s12094‑020‑02461‑0 32715386
    [Google Scholar]
  126. Wang B. Zhao X.H. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol. Rep. 2017 37 2 1132 1140 10.3892/or.2016.5303 27959417
    [Google Scholar]
  127. Souza R.P. Mendonça B.P.S. Gimenes F. Ratti B.A. Kaplum V. Bruschi M.L. Nakamura C.V. Silva S.O. Engler M.S.S. Consolaro M.E.L. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid. Med. Cell. Longev. 2017 2017 1 1512745 10.1155/2017/1512745 28191273
    [Google Scholar]
  128. Choi S.I. Jeong C.S. Cho S.Y. Lee Y.S. Mechanism of apoptosis induced by apigenin in hepg2 human hepatoma cells: Involvement of reactive oxygen species generated by NADPH oxidase. Arch. Pharm. Res. 2007 30 10 1328 1335 10.1007/BF02980274 18038912
    [Google Scholar]
  129. Tavsan Z. Kayali H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019 116 109004 10.1016/j.biopha.2019.109004 31128404
    [Google Scholar]
  130. Madunić O.V.I. Madunić J. Antunović M. Paradžik M. Vrhovac G.V. Breljak D. Marijanović I. Gajski G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch. Pharmacol. 2018 391 5 537 550 10.1007/s00210‑018‑1486‑4 29541820
    [Google Scholar]
  131. Chan K.T. Meng F.Y. Li Q. Ho C.Y. Lam T.S. To Y. Lee W.H. Li M. Chu K.H. Toh M. Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett. 2010 294 1 118 124 10.1016/j.canlet.2010.01.029 20153103
    [Google Scholar]
  132. Vogelstein B. Lane D. Levine A.J. Surfing the p53 network. Nature 2000 408 6810 307 310 10.1038/35042675 11099028
    [Google Scholar]
  133. Palma T.V. Lenz L.S. Bottari N.B. Pereira A. Schetinger M.R.C. Morsch V.M. Ulrich H. Pillat M.M. Andrade d.C.M. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol. Biol. Rep. 2020 47 6 4393 4400 10.1007/s11033‑020‑05500‑9 32410137
    [Google Scholar]
  134. Pan M.H. Lai C.S. Hsu P.C. Wang Y.J. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J. Agric. Food Chem. 2005 53 3 620 630 10.1021/jf048430m 15686411
    [Google Scholar]
  135. Shim H.Y. Park J.H. Paik H.D. Nah S.Y. Kim D.S.H.L. Han Y.S. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol. Cells 2007 24 1 95 104 10.1016/S1016‑8478(23)10760‑6 17846503
    [Google Scholar]
  136. Xu Y. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PloS one 2011 6 12 e29169 10.1371/journal.pone.0029169
    [Google Scholar]
  137. Lu H.F. Chie Y.J. Yang M.S. Lu K.W. Fu J.J. Yang J.S. Chen H.Y. Hsia T.C. Ma C.Y. Ip S.W. Chung J.G. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum. Exp. Toxicol. 2011 30 8 1053 1061 10.1177/0960327110386258 20937639
    [Google Scholar]
  138. Lim S. Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 2013 140 15 3079 3093 10.1242/dev.091744 23861057
    [Google Scholar]
  139. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  140. Liu K-C. Huang A.C. Wu P.P. Lin H.Y. Chueh F.S. Yang J.S. Lu C.C. Chiang J.H. Meng M. Chung J.G. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol. Rep. 2011 26 1 177 184 21503582
    [Google Scholar]
  141. Subramanian A.P. John A.A. Vellayappan M.V. Balaji A. Jaganathan S.K. Supriyanto E. Yusof M. Gallic acid: Prospects and molecular mechanisms of its anticancer activity. RSC Advances 2015 5 45 35608 35621 10.1039/C5RA02727F
    [Google Scholar]
  142. Jiang Y. Pei J. Zheng Y. Miao Y. Duan B. Huang L. Gallic acid: A potential anti-cancer agent. Chin. J. Integr. Med. 2022 28 7 661 671 10.1007/s11655‑021‑3345‑2 34755289
    [Google Scholar]
  143. Wang K. Zhu X. Zhang K. Zhu L. Zhou F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol. 2014 28 9 387 393 10.1002/jbt.21575 24864015
    [Google Scholar]
  144. Zhang T. Ma L. Wu P. Li W. Li T. Gu R. Dan X. Li Z. Fan X. Xiao Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non‑small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol. Rep. 2019 41 3 1779 1788 10.3892/or.2019.6976 30747218
    [Google Scholar]
  145. Shendge A.K. Basu T. Panja S. Chaudhuri D. Mandal N. An ellagic acid isolated from Clerodendrum viscosum leaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway. Biomed. Pharmacother. 2018 106 454 465 10.1016/j.biopha.2018.06.133 29990833
    [Google Scholar]
  146. Edderkaoui M. Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells. World J. Gastroenterol. 2008 14 23 3672
    [Google Scholar]
  147. Lotfi N. Yousefi Z. Golabi M. Khalilian P. Ghezelbash B. Montazeri M. Shams M.H. Baghbadorani P.Z. Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front. Immunol. 2023 14 1077531 10.3389/fimmu.2023.1077531 36926328
    [Google Scholar]
  148. Srivastava N.S. Srivastava R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019 52 117 128 10.1016/j.phymed.2018.09.224 30599890
    [Google Scholar]
  149. Maurya A.K. Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol. Biol. Rep. 2015 42 9 1419 1429 10.1007/s11033‑015‑3921‑7 26311153
    [Google Scholar]
  150. Liang H. Chen Z. Yang R. Huang Q. Chen H. Chen W. Zou L. Wei P. Wei S. Yang Y. Zhang Y. Methyl gallate suppresses the migration, invasion, and epithelial-mesenchymal transition of hepatocellular carcinoma cells via the ampk/nf-κb signaling pathway in vitro and in vivo. Front. Pharmacol. 2022 13 894285 10.3389/fphar.2022.894285 35770085
    [Google Scholar]
  151. Jiang W. Li X. Dong S. Zhou W. Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed. Pharmacother. 2021 142 111990 10.1016/j.biopha.2021.111990 34388528
    [Google Scholar]
  152. Zheng Y. Liu P. Wang N. Wang S. Yang B. Li M. Chen J. Situ H. Xie M. Lin Y. Wang Z. Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid. Med. Cell. Longev. 2019 2019 1 15 10.1155/2019/8781690 31531187
    [Google Scholar]
  153. Abe M. Asada N. Kimura M. Fukui C. Yamada D. Wang Z. Miyake M. Takarada T. Ono M. Aoe M. Kitamura W. Matsuda M. Moriyama T. Matsumura A. Maeda Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci. 2024 115 4 1317 1332 10.1111/cas.16086 38279512
    [Google Scholar]
  154. Machado T.Q. Felisberto J.R.S. Guimarães E.F. Queiroz G.A. Fonseca A.C.C. Ramos Y.J. Marques A.M. Moreira D.L. Robbs B.K. Apoptotic effect of β-pinene on oral squamous cell carcinoma as one of the major compounds from essential oil of medicinal plant Piper rivinoides Kunth. Nat. Prod. Res. 2022 36 6 1636 1640 10.1080/14786419.2021.1895148 33678083
    [Google Scholar]
  155. Nasiruddin M. Azadi M.A. Nely M.S. Piscicidal effects of extracts of karenja plant Pongamia pinnata (L.) Pierre and Vat plant Clerodendrum viscosum (Vent.) on singhi fish heteropneustes fossilis (Bloch). Chittagong Univ. J. Biol. Sci. 2024 7 1 65 78 10.3329/cujbs.v7i1.73145
    [Google Scholar]
  156. Nasiruddin M. Histopathological effects of extracts of two indigenous plants, pongamia pinnata (l.) Pierre and clerodendrum viscosum (vent.) On the cat fish, heteropneustes fossilis (bloch). J. Asiat. Soc. Bangladesh. Sci. 2013 39 1 105 115
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838357493250122122451
Loading
/content/journals/ctm/10.2174/0122150838357493250122122451
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Clerodendrum viscosum ; anticancer ; Antioxidant ; anti-Inflammatory ; pharmacological
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test