Skip to content
2000
image of Antibacterial, Antibiotic-Potentiating, and Antiviral Activities of Selected Endemic Primary Rainforest Plants of Peninsular Malaysia

Abstract

Background

There is a need to identify original molecules to develop drugs for the treatment of microbial infections. Such chemical entities could be found in secondary metabolites of rainforest plants that are not so well-known. This study examines the antibacterial and antibiotic-potentiating effects, and antiviral activities of six rainforest plants endemic to the primary rainforest of Malaysia.

Methods

Leaves, bark, fruits, and wood of , , , , , and were extracted successively with hexane, chloroform, and methanol, and tested against six human pathogenic bacteria species by disc diffusion and broth microdilution. The extracts were tested against influenza virus A/Puerto Rico/8/34 (H1N1) using MDCK cells.

Results

Of the 42 extracts tested, the hexane extract of fruits of inhibited the growth of with the MIC value of 39 µg/mL. The chloroform extract of leaves of potentiated the activity of levofloxacin against . The strongest antiviral activity was observed with the chloroform extract of leaves of with the IC value of 6.3 µg/mL. The chloroform extract of bark of with the IC value of 0.6 µg/mL was the most cytotoxic.

Conclusion

Preserving the primary rainforest of Malaysia is a means to preserve natural products with the ability to be developed as antimicrobial leads. In particular, , , and could be examined for their active antimicrobial constituents.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838298401240924105857
2025-02-20
2025-04-16
The full text of this item is not currently available.

References

  1. Pathmanathan S.G. Samat N.A. Mohamed R. Antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa from a Malaysian Hospital. Malays. J. Med. Sci. 2009 16 2 27 32 22589655
    [Google Scholar]
  2. Rohani M.Y. Raudzah A. Lau M.G. Zaidatul A.A.R. Salbiah M.N. Keah K.C. Noraini A. Zainuldin T. Susceptibility pattern of Staphylococcus aureus isolated in Malaysian hospitals. Int. J. Antimicrob. Agents 2000 13 3 209 213 10.1016/S0924‑8579(99)00129‑6 10724026
    [Google Scholar]
  3. World Health Organization Antimicrobial resistance. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed Jun 5, 2020).
  4. Weber D.J. Hoffmann K.K. Rutala W.A. Pyatt D.G. Control of healthcare-associated Staphylococcus aureus: Survey of practices in North Carolina hospitals. Infect. Control Hosp. Epidemiol. 2009 30 9 909 911 10.1086/599772 19622048
    [Google Scholar]
  5. Centers for Disease Control and Prevention Centers for Disease Control and Prevention. Invasive Staphylococcus aureus (MRSA/MSSA) infection tracking . Available from: https://www.cdc.gov/hai/eip/saureus.html (accessed Jun 16, 2020).
  6. Vincent J.L. Nosocomial infections in adult intensive-care units. Lancet 2003 361 9374 2068 2077 10.1016/S0140‑6736(03)13644‑6 12814731
    [Google Scholar]
  7. Gray D.A. Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis. 2020 6 6 1346 1365 10.1021/acsinfecdis.0c00001 32156116
    [Google Scholar]
  8. World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed Jun 5, 2020).
  9. World Health Organization Antimicrobial resistance: Global report on surveillance. 2014 Available from: https://www.who.int/publications/i/item/9789241564748
  10. Butler M.S. Paterson D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. 2020 73 6 329 364 10.1038/s41429‑020‑0291‑8 32152527
    [Google Scholar]
  11. Theuretzbacher U. Outterson K. Engel A. Karlén A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020 18 5 275 285 10.1038/s41579‑019‑0288‑0 31745331
    [Google Scholar]
  12. Kinch M.S. Patridge E. Plummer M. Hoyer D. An analysis of FDA-approved drugs for infectious disease: Antibacterial agents. Drug Discov. Today 2014 19 9 1283 1287 10.1016/j.drudis.2014.07.005 25043770
    [Google Scholar]
  13. Theuretzbacher U. Piddock L.J.V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 2019 26 1 61 72 10.1016/j.chom.2019.06.004 31295426
    [Google Scholar]
  14. Neu H.C. Fu K.P. Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob. Agents Chemother. 1978 14 5 650 655 10.1128/AAC.14.5.650 310279
    [Google Scholar]
  15. Reading C. Cole M. Clavulanic acid: A beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 1977 11 5 852 857 10.1128/AAC.11.5.852 879738
    [Google Scholar]
  16. Sikkema J. de Bont J.A. Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995 59 2 201 222 10.1128/mr.59.2.201‑222.1995 7603409
    [Google Scholar]
  17. Prakash Singh M. Rapid test for distinguishing membrane-active antibacterial agents. J. Microbiol. Methods 2006 67 1 125 130 10.1016/j.mimet.2006.03.011 16631264
    [Google Scholar]
  18. Koh L.P. Wilcove D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008 1 2 60 64 10.1111/j.1755‑263X.2008.00011.x
    [Google Scholar]
  19. Hansen M. C. Potapov P. V. Moore R. Hancher M. Turubanova S. A. Tyukavina A. Thau D. Stehman S. V. Goetz S. J. Loveland T. R. High-resolution global maps of 21st-century forest cover change. Science 2013 342 850 853 10.1126/science.1244693
    [Google Scholar]
  20. Miettinen J. Shi C. Liew S.C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 2011 17 7 2261 2270 10.1111/j.1365‑2486.2011.02398.x
    [Google Scholar]
  21. Bryan J.E. Shearman P.L. Asner G.P. Knapp D.E. Aoro G. Lokes B. Extreme differences in forest degradation in Borneo: Comparing practices in Sarawak, Sabah, and Brunei. PLoS One 2013 8 7 e69679 10.1371/journal.pone.0069679 23874983
    [Google Scholar]
  22. Cushman S.A. Macdonald E.A. Landguth E.L. Malhi Y. Macdonald D.W. Multiple-scale prediction of forest loss risk across Borneo. Landsc. Ecol. 2017 32 8 1581 1598 10.1007/s10980‑017‑0520‑0
    [Google Scholar]
  23. Keong C.H. A Malaysian Assessment of The World List of Threatened Trees. Selangor, Malaysia TRAFFIC Southeast Asia 2004
    [Google Scholar]
  24. International Union for Conservation of Nature and Natural Resources The IUCN Red List of Threatened Species Available from: https://www.iucnredlist.org (accessed Jun 1, 2020).
    [Google Scholar]
  25. Milow P. Malek S. Ramli R.M. Medicinal plants of the indigenous tribes in peninsular Malaysia: Current and future perspectives. Active Ingredients from Aromatic and Medicinal Plants InTech 2017 10.5772/66658
    [Google Scholar]
  26. Singh B. Borthakur S.K. Phukan S.J. Cleistanthus Nokrensis (Euphorbiaceae), a New Species from Indian Himalaya. Taiwania 2014 59 197 205 10.6165/tai.2014.59.197
    [Google Scholar]
  27. World Conservation Monitoring Centre. Cleistanthus bracteosus. 10.2305/IUCN.UK.1998.RLTS.T31471A9636486.en
  28. Raghunathan M. Muthuswamy. An Ethnomedicinal Survey of Medicinal Plants Utilized by Folk People of the Thrissur Forest Circle. Eur. J. Pharm. Med. Res. 2017 4 401 409
    [Google Scholar]
  29. Chrispal A. Cleistanthus collinus poisoning. J. Emerg. Trauma Shock 2012 5 2 160 166 10.4103/0974‑2700.96486 22787347
    [Google Scholar]
  30. Thamburaj S. Bio-Prospecting of cleistanthus collinus and its antibacterial activity. Asian J. Pharm. Clin. Res. 2013 6 206 209
    [Google Scholar]
  31. Mohanraja R. Anti HIV-1 activity, anti-bacterial activity and phytochemical analysis of leaf extracts from Cleistanthus Collinus (Roxb.) Benth. exHook.f. Indian J. Tradit. Knowl. 2018 17 770 775
    [Google Scholar]
  32. Panda S.K. Padhi L. Leyssen P. Liu M. Neyts J. Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the similipal biosphere reserve, Odisha, India. Front. Pharmacol. 2017 8 658 10.3389/fphar.2017.00658 29109684
    [Google Scholar]
  33. Salleh N. Azeman S. Kiew R. Kamin I. Cheng Kong R. Plant R. Plant checklist of the bukit nanas forest reserve, Kuala Lumpur, Malaysia. One Ecosystem 2017 2 e13708 10.3897/oneeco.2.e13708
    [Google Scholar]
  34. Harborne A.J. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. 3rd ed Springer Netherlands 1998
    [Google Scholar]
  35. Darwish A.M. Farmer B.D. Hawke J.P. Improved method for determining antibiotic susceptibility of Flavobacterium columnare isolates by broth microdilution. J. Aquat. Anim. Health 2008 20 4 185 191 10.1577/H07‑047.1 19306607
    [Google Scholar]
  36. Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobicallytle, Ninth. Wayne, PA Clinical and Laboratory Standards Institute 2012
    [Google Scholar]
  37. Saquib S.A. AlQahtani N.A. Ahmad I. Kader M.A. Al Shahrani S.S. Asiri E.A. Evaluation and comparison of antibacterial efficacy of herbal extracts in combination with antibiotics on periodontal pathobionts: An in vitro microbiological study. Antibiotics 2019 8 3 89 10.3390/antibiotics8030089 31266146
    [Google Scholar]
  38. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  39. Fabry W. Okemo P.O. Ansorg R. Antibacterial activity of East African medicinal plants. J. Ethnopharmacol. 1998 60 1 79 84 10.1016/S0378‑8741(97)00128‑1 9533435
    [Google Scholar]
  40. Ríos J.L. Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005 100 1-2 80 84 10.1016/j.jep.2005.04.025 15964727
    [Google Scholar]
  41. Kuete V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010 76 14 1479 1491 10.1055/s‑0030‑1250027 20533165
    [Google Scholar]
  42. Parthasarathy V.A. Chempakam B. Chemistry of Spices. Wallingford, UK CAB International 2008 10.1079/9781845934057.0000
    [Google Scholar]
  43. Jorgensen J.H. Ferraro M.J. Jorgensen J.H. Ferraro M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009 49 11 1749 1755 10.1086/647952 19857164
    [Google Scholar]
  44. Lorian V. Antibiotics in Laboratory Medicine. 5th ed Philadelphia Lippincott Williams & Wilkins 2005
    [Google Scholar]
  45. Haque M. Sartelli M. McKimm J. Abu Bakar M.B. Health care-associated infections – An overview. Infect. Drug Resist. 2018 11 2321 2333 10.2147/IDR.S177247 30532565
    [Google Scholar]
  46. Hussain A.G. Noor N.M. Hussin K. Nature’s Medicine: A Collection of Medicinal Plants from Malaysia’s Rainforest. 1st ed Malaysia Landskap Malaysia 2015
    [Google Scholar]
  47. Hossan M.S. Jindal H. Maisha S. Samudi Raju C. Devi Sekaran S. Nissapatorn V. Kaharudin F. Su Yi L. Khoo T.J. Rahmatullah M. Wiart C. Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh. Pharm. Biol. 2018 56 1 201 208 10.1080/13880209.2018.1446030 29529970
    [Google Scholar]
  48. Johnson T. CRC Ethnobotany Desk Reference. CRC Press 2019 10.1201/9781351070942
    [Google Scholar]
  49. Milow P. Malek S.B. Edo J. Ong H.C. Malaysian species of plants with edible fruits or seeds and their valuation. Int. J. Fruit Sci. 2014 14 1 1 27 10.1080/15538362.2013.801698
    [Google Scholar]
  50. Gobalakrishnan R. Kulandaivelu M. Bhuvaneswari R. Kandavel D. Kannan L. Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L. J. Pharm. Anal. 2013 3 6 460 465 10.1016/j.jpha.2013.07.001 29403856
    [Google Scholar]
  51. Liu Y. Young K. Rakotondraibe L.H. Brodie P.J. Wiley J.D. Cassera M.B. Callmander M.W. Rakotondrajaona R. Rakotobe E. Rasamison V.E. TenDyke K. Shen Y. Kingston D.G.I. Antiproliferative Compounds from Cleistanthus boivinianus from the madagascar dry forest1. J. Nat. Prod. 2015 78 7 1543 1547 10.1021/np501020m 26091020
    [Google Scholar]
  52. Hemmati S. Seradj H. Justicidin B. Justicidin B: A Promising bioactive lignan. Molecules 2016 21 7 820 10.3390/molecules21070820 27347906
    [Google Scholar]
  53. Rashed K. Ćirić A. Glamočlija J. Soković M. Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Ind. Crops Prod. 2014 59 210 215 10.1016/j.indcrop.2014.05.021
    [Google Scholar]
  54. Odelola H.A. Okorosobo V.I. Preliminary investigation of in-vitro antimicrobial activity of two Nigerian Diospyros species (Ebenaceae). Afr. J. Med. Med. Sci. 1988 17 3 167 170 2845757
    [Google Scholar]
  55. Bagla V.P. Lubisi V.Z. Ndiitwani T. Mokgotho M.P. Mampuru L. Mbazima V. Antibacterial and antimetastatic potential of Diospyros lycioides extract on cervical cancer cells and associated pathogens. Evid. Based Complement. Alternat. Med. 2016 2016 1 10 10.1155/2016/5342082 27239210
    [Google Scholar]
  56. Gu J.Q. Graf T.N. Lee D. Chai H.B. Mi Q. Kardono L.B.S. Setyowati F.M. Ismail R. Riswan S. Farnsworth N.R. Cordell G.A. Pezzuto J.M. Swanson S.M. Kroll D.J. Falkinham J.O. III Wall M.E. Wani M.C. Kinghorn A.D. Oberlies N.H. Cytotoxic and antimicrobial constituents of the bark of Diospyros maritima collected in two geographical locations in Indonesia. J. Nat. Prod. 2004 67 7 1156 1161 10.1021/np040027m 15270571
    [Google Scholar]
  57. Lajubutu B.A. Pinney R.J. Roberts M.F. Odelola H.A. Oso B.A. Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother. Res. 1995 9 5 346 350 10.1002/ptr.2650090508
    [Google Scholar]
  58. Hu W. Li C. Dai J. Cui H. Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019 130 34 41 10.1016/j.indcrop.2018.12.078
    [Google Scholar]
  59. Su Y.C. Ho C.L. Essential oil compositions and antimicrobial activities of various parts of Litsea cubeba from Taiwan. Nat. Prod. Commun. 2016 11 4 1934578X1601100 10.1177/1934578X1601100425 27396208
    [Google Scholar]
  60. Kuspradini H. Wulandari I. Putri A.S. Tiya S.Y. Kusuma I.W. Phytochemical, antioxidant and antimicrobial properties of Litsea angulata extracts. F1000 Res. 2018 7 1839 10.12688/f1000research.16620.1 30774930
    [Google Scholar]
  61. Wang H. Liu Y. Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chem. Biodivers. 2010 7 1 229 235 10.1002/cbdv.200800349 20087994
    [Google Scholar]
  62. Krishnan N. Ramanathan S. Sasidharan S. Murugaiyah V. Mansor S.M. Antimicrobial activity evaluation of cassia spectabilis leaf extracts. Int. J. Pharmacol. 2010 6 4 510 514 10.3923/ijp.2010.510.514
    [Google Scholar]
  63. Devika M. Nalini M.S. In vivo evaluation of anxiolytic activity of aqueous and ethanolic extracts of Litsea floribunda (Bl.) Gamble -Lauraceae. Asian J. Pharm. Pharmacol. 2018 4 1 31 37 10.31024/ajpp.2018.4.1.6
    [Google Scholar]
  64. Wang Y.S. Wen Z.Q. Li B.T. Zhang H.B. Yang J.H. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update. J. Ethnopharmacol. 2016 181 66 107 10.1016/j.jep.2016.01.032 26812679
    [Google Scholar]
  65. Joshi R.K. Chemical composition, In vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Indian J. Pharm. Sci. 2013 75 4 457 462 10.4103/0250‑474X.119834 24302801
    [Google Scholar]
  66. Udvardy A. Miskovics A. Sipos A. Antibacterial porphinoids – Progress and perspectives based on structure-activity analysis. Int. Bull. Drug Res. 2014 4 1 34
    [Google Scholar]
  67. Tan K.H. Nishida R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012 12 56 1 60 10.1673/031.012.5601 22963669
    [Google Scholar]
  68. Anjaneyulu A.S.R. Ramaiah P.A. Row L.R. Venkateswarlu R. Pelter A. Ward R.S. New lignans from the heartwood of cleistanthus collinus. Tetrahedron 1981 37 21 3641 3652 10.1016/S0040‑4020(01)98893‑3
    [Google Scholar]
  69. Candy H. A. Pakshong J. M. Pegel K. H. Pimarane diterpenes from cleistanthus schlechteri. J. Chem. Soc. C Org. 1970 1970 18 2536 10.1039/j39700002536
    [Google Scholar]
  70. Gupta V.K. Tiwari N. Gupta P. Verma S. Pal A. Srivastava S.K. Darokar M.P. A clerodane diterpene from Polyalthia longifolia as a modifying agent of the resistance of methicillin resistant Staphylococcus aureus. Phytomedicine 2016 23 6 654 661 10.1016/j.phymed.2016.03.001 27161406
    [Google Scholar]
  71. Sun Z.L. He J.M. Wang S.Y. Ma R. Khondkar P. Kaatz G.W. Gibbons S. Mu Q. Benzocyclohexane oxide derivatives and neolignans from Piper betle inhibit efflux-related resistance in Staphylococcus aureus. RSC Advances 2016 6 49 43518 43525 10.1039/C6RA10199B
    [Google Scholar]
  72. Kozubek A. Tyman J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 1999 99 1 1 26 10.1021/cr970464o 11848979
    [Google Scholar]
  73. Alanis A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005 36 6 697 705 10.1016/j.arcmed.2005.06.009 16216651
    [Google Scholar]
  74. Corona F. Blanco P. Alcalde-Rico M. Hernando-Amado S. Lira F. Bernardini A. Sánchez M.B. Martínez J.L. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med. Chem. 2016 8 10 1133 1151 10.4155/fmc‑2016‑0027 27304087
    [Google Scholar]
  75. Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr. Pharm. Biotechnol. 2002 3 2 77 98 10.2174/1389201023378454 12022261
    [Google Scholar]
  76. Seukep A.J. Kuete V. Nahar L. Sarker S.D. Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J. Pharm. Anal. 2019 10.1016/j.jpha.2019.11.002 32923005
    [Google Scholar]
  77. Khameneh B. Iranshahy M. Soheili V. Fazly Bazzaz B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019 8 1 118 10.1186/s13756‑019‑0559‑6 31346459
    [Google Scholar]
  78. Zulkipli M. Mahbub N. Fatima A. Wan-Lin S.L. Khoo T.J. Mahboob T. Rajagopal M. Samudi C. Kathirvalu G. Abdullah N.H. Pinho A.R. Oliveira S.M.R. Pereira M.L. Rahmatullah M. Hasan A. Paul A.K. Butler M.S. Nawaz M. Wilairatana P. Nissapatorn V. Wiart C. Isolation and characterization of werneria chromene and dihydroxyacidissimol from Burkillanthus malaccensis (Ridl.) swingle. Plants 2022 11 11 1388 10.3390/plants11111388 35684161
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838298401240924105857
Loading
/content/journals/ctm/10.2174/0122150838298401240924105857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test