Skip to content
2000
image of Autophagy Modulating Potential of Mucuna pruriens in Parkinson’s Disease

Abstract

Introduction

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, surpassed only by Alzheimer's disease. It is distinguished by a diverse array of motor and non-motor symptoms that impact various aspects of neurological function. In recent years, the autophagy-enhancing potential of several medicinal plants has been tested and results in better protection against neurodegeneration in PD. Accordingly, the major objective of this work is to explore the autophagy-enhancing activity of (Mp) seed extract in the rotenone intoxicated mouse model.

Method

To evaluate our hypothesis, we categorized the mice into four distinct groups: a control group, a drug-only control group, a rotenone-intoxicated group, and a group of rotenone-intoxicated mice that were also treated with Mp. After dosing was finished, the behavioral test was measured. The mice were then sacrificed in each group, and the brains were isolated. Rotenone-intoxicated Parkinsonian mice exhibited significant behavioral impairments in the rotarod, hanging grip, and narrow beam walking tests, indicating deficits in balance, coordination, and muscle strength. Treatment with Mp markedly improved motor performance, suggesting its neuroprotective and therapeutic potential in alleviating PD-related dysfunction. Similarly, Mp effectively mitigates biochemical impairments in the Parkinsonian mouse model, improving catalase activity, reducing nitrite levels, lipid peroxidation, and enhancing glutathione reductase function. TFEB and mTORC1 are the 2 most important modulators of autophagy. The TFEB level was decreases in the rotenone group ultimately restored in the Mp group. The activity of TFEB was negatively regulated by mTORC1. The level of mTORC1 was increased in rotenone group and was significantly reduced by Mp treatment. The enzymatic level of glucocerebrosidase was also decreases in rotenone intoxicated mice and increased in Mp group. The ultimate impact of these autophagy enhancers is reflected at the level of Tyrosine hydroxylase (TH). The activity of TH is reduced in the rotenone group and consequently enhanced by Mp treatment.

Result

Our result shows the autophagy enhancing activity of Mp.

Conclusion

Further studies will be needed to search and test the additional number of regulators that are involved in the autophagy mediating activity of Mp.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838346643241211055438
2025-03-04
2025-03-28
The full text of this item is not currently available.

References

  1. Zhang L. Dong Y. Xu X. Xu Z. The role of autophagy in Parkinson’s disease. Neural Regen. Res. 2012 7 2 141 145 10.3969/j.issn.1673‑5374.2012.02.011 25767490
    [Google Scholar]
  2. Yin R. Xue J. Tan Y. Fang C. Hu C. Yang Q. Mei X. Qi D. The positive role and mechanism of herbal medicine in Parkinson’s disease. Oxid. Med. Cell. Longev. 2021 2021 1 9923331 10.1155/2021/9923331 34567415
    [Google Scholar]
  3. Fan Y. Wang N. Rocchi A. Zhang W. Vassar R. Zhou Y. He C. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy 2017 13 1 41 56 10.1080/15548627.2016.1240855 27791467
    [Google Scholar]
  4. Ramakrishna K. Karuturi P. Siakabinga Q. T A G. Krishnamurthy S. Singh S. Kumari S. Kumar G.S. Sobhia M.E. Rai S.N. Indole-3 carbinol and diindolylmethane mitigated β-amyloid-induced neurotoxicity and acetylcholinesterase enzyme activity: in silico, in vitro, and network pharmacology study. Diseases 2024 12 8 184 10.3390/diseases12080184 39195183
    [Google Scholar]
  5. Tripathi P. Lodhi A. Rai S. Nandi N. Dumoga S. Yadav P. Tiwari A. Singh S. El-Shorbagi A.N. Chaudhary S. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants. Degener. Neurol. Neuromuscul. Dis. 2024 14 47 74 10.2147/DNND.S452009 38784601
    [Google Scholar]
  6. Tripathi P.N. Srivastava P. Sharma P. Tripathi M.K. Seth A. Tripathi A. Rai S.N. Singh S.P. Shrivastava S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019 85 82 96 10.1016/j.bioorg.2018.12.017 30605887
    [Google Scholar]
  7. Singh M. Agarwal V. Pancham P. Jindal D. Agarwal S. Rai S. Singh S. Gupta V. A comprehensive review and androgen deprivation therapy and its impact on Alzheimer’s disease risk in older men with prostate cancer. Degener. Neurol. Neuromuscul. Dis. 2024 14 33 46 10.2147/DNND.S445130 38774717
    [Google Scholar]
  8. Srivastava P. Tripathi P.N. Sharma P. Rai S.N. Singh S.P. Srivastava R.K. Shankar S. Shrivastava S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem. 2019 163 116 135 10.1016/j.ejmech.2018.11.049 30503937
    [Google Scholar]
  9. Yadav S.K. Prakash J. Chouhan S. Singh S.P. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem. Int. 2013 62 8 1039 1047 10.1016/j.neuint.2013.03.015 23562769
    [Google Scholar]
  10. Yadav S.K. Rai S.N. Singh S.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J. Chem. Neuroanat. 2017 80 1 10 10.1016/j.jchemneu.2016.11.009 27919828
    [Google Scholar]
  11. Rai S.N. Birla H. Singh S.S. Zahra W. Patil R.R. Jadhav J.P. Gedda M.R. Singh S.P. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Front. Aging Neurosci. 2017 9 421 10.3389/fnagi.2017.00421 29311905
    [Google Scholar]
  12. Yadav S.K. Prakash J. Chouhan S. Westfall S. Verma M. Singh T.D. Singh S.P. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem. Int. 2014 65 1 13 10.1016/j.neuint.2013.12.001 24333323
    [Google Scholar]
  13. Rai S.N. Yadav S.K. Singh D. Singh S.P. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J. Chem. Neuroanat. 2016 71 41 49 10.1016/j.jchemneu.2015.12.002 26686287
    [Google Scholar]
  14. Zahra W. Rai S.N. Birla H. Singh S.S. Rathore A.S. Dilnashin H. Singh R. Keswani C. Singh R.K. Singh S.P. Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model. CNS Neurol. Disord. Drug Targets 2020 19 7 527 540 10.2174/1871527319666200812224457 32787765
    [Google Scholar]
  15. Ramesh S. Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023 10 3 200 231 10.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  16. Juárez Olguín H. Calderón Guzmán D. Hernández García E. Barragán Mejía G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid. Med. Cell. Longev. 2016 2016 1 9730467 10.1155/2016/9730467 26770661
    [Google Scholar]
  17. Thanvi B. Lo N. Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad. Med. J. 2007 83 980 384 388 10.1136/pgmj.2006.054759 17551069
    [Google Scholar]
  18. Borovac J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J. Biol. Med. 2016 89 1 37 47 27505015
    [Google Scholar]
  19. Tan Y.Y. Jenner P. Chen S.D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  20. Crosby N.J. Deane K. Clarke C.E. Amantadine for dyskinesia in Parkinson’s disease. Cochrane Libr. 2003 2010 1 CD003467 10.1002/14651858.CD003467 12804468
    [Google Scholar]
  21. Rai S.N. Chaturvedi V.K. Singh P. Singh B.K. Singh M.P. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective. 3 Biotech. 2020 10 12 522
    [Google Scholar]
  22. Uhegbu F.O. Elekwa I. Ukoha C. Comparative efficacy of crude aqueous extract of Mangiferea Indica, Carica Papaya and sulphadoxine pyrimethamine on mice infested with malaria parasite in vivo. Glob. J. Pure Appl. Sci 2005 11 74 76
    [Google Scholar]
  23. Patil R. Aware C. Gaikwad S. Rajebhosale M. Bapat V. Yadav S. Jadhav J. RP-HPLC analysis of anti-Parkinson’s drug l-DOPA content in Mucuna species from Indian subcontinent. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2019 89 4 1413 1420 10.1007/s40011‑018‑01071‑9
    [Google Scholar]
  24. Manna S. Bhattacharyya D. Mandal T.K. Dey S. Neuropharmacological effects of deltamethrin in rats. J. Vet. Sci. 2006 7 2 133 136 10.4142/jvs.2006.7.2.133 16645337
    [Google Scholar]
  25. Mohanasundari M. Srinivasan M.S. Sethupathy S. Sabesan M. Enhanced neuroprotective effect by combination of bromocriptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J. Neurol. Sci. 2006 249 2 140 144 10.1016/j.jns.2006.06.018 16876826
    [Google Scholar]
  26. Pisa M. Regional specialization of motor functions in the rat striatum: Implications for the treatment of parkinsonism. Prog. Neuropsychopharmacol. Biol. Psychiatry 1988 12 2-3 217 224 10.1016/0278‑5846(88)90038‑3 3290995
    [Google Scholar]
  27. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  28. Gegg M.E. Burke D. Heales S.J.R. Cooper J.M. Hardy J. Wood N.W. Schapira A.H.V. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann. Neurol. 2012 72 3 455 463 10.1002/ana.23614 23034917
    [Google Scholar]
  29. Rakesh B. Bindu K.H. Praveen N. Variations in the L-DOPA content, phytochemical constituents and antioxidant activity of different germlines of Mucuna pruriens (L.) DC. Asian J. Chem. 2021 33 8 1881 1890 10.14233/ajchem.2021.23293
    [Google Scholar]
  30. Bruno M.K. Watanabe G. Ishikawa K. Chen J.J. Gao F. Nakagawa K. Taira D. Geographic variation in prescription patterns of Parkinson’s disease medications. Mov. Disord. 2022 37 3 646 648 10.1002/mds.28880 34859504
    [Google Scholar]
  31. Testa C.M. Sherer T.B. Greenamyre J.T. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res. Mol. Brain Res. 2005 134 1 109 118 10.1016/j.molbrainres.2004.11.007 15790535
    [Google Scholar]
  32. Rocha S.M. Bantle C.M. Aboellail T. Chatterjee D. Smeyne R.J. Tjalkens R.B. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiol. Dis. 2022 167 105685 10.1016/j.nbd.2022.105685 35257879
    [Google Scholar]
  33. Gao L. Cao M. Du G. Qin X. Huangqin decoction exerts beneficial effects on rotenone-induced rat model of Parkinson’s disease by improving mitochondrial dysfunction and alleviating metabolic abnormality of mitochondria. Front. Aging Neurosci. 2022 14 911924 10.3389/fnagi.2022.911924 35912075
    [Google Scholar]
  34. Zahra W. Birla H. Singh S.S. Rathore A.S. Dilnashin H. Singh R. Keshri P.K. Singh S. Singh S.P. Anti-Parkinsonian effect of Mucuna pruriens and Ursolic acid on GSK3β/Calcium signaling in neuroprotection against Rotenone-induced Parkinsonism. Phytomedicine Plus 2022 2 4 100343 10.1016/j.phyplu.2022.100343
    [Google Scholar]
  35. Ogunruku O.O. Ogunyemi B.O. Oboh G. Babatunde O.O. Boligon A.A. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol. Rep. 2019 6 795 802 10.1016/j.toxrep.2019.07.012 31440456
    [Google Scholar]
  36. Jayaraj R.L. Beiram R. Azimullah S. M F N.M. Ojha S.K. Adem A. Jalal F.Y. Noscapine prevents rotenone-induced neurotoxicity: involvement of oxidative stress, neuroinflammation and autophagy pathways. Molecules 2021 26 15 4627 10.3390/molecules26154627 34361780
    [Google Scholar]
  37. Magdy A. Farrag E.A.E. Hamed S.M. Abdallah Z. El Nashar E.M. Alghamdi M.A. Ali A.A.H. Abd El-kader M. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front. Cell. Neurosci. 2022 16 967813 10.3389/fncel.2022.967813 36187296
    [Google Scholar]
  38. Azimullah S. Meeran M.F.N. Ayoob K. Arunachalam S. Ojha S. Beiram R. Tannic acid mitigates rotenone-induced dopaminergic neurodegeneration by inhibiting inflammation, oxidative stress, apoptosis, and glutamate toxicity in rats. Int. J. Mol. Sci. 2023 24 12 9876 10.3390/ijms24129876 37373023
    [Google Scholar]
  39. Zhang Y. Guo H. Guo X. Ge D. Shi Y. Lu X. Lu J. Chen J. Ding F. Zhang Q. Involvement of Akt/mTOR in the neurotoxicity of rotenone-induced Parkinson’s disease models. Int. J. Environ. Res. Public Health 2019 16 20 3811 10.3390/ijerph16203811 31658620
    [Google Scholar]
  40. El-Sherbeeny N.A. Soliman N. Youssef A.M. Abd El-Fadeal N.M. El-Abaseri T.B. Hashish A.A. Abdelbasset W.K. El-Saber Batiha G. Zaitone S.A. The protective effect of biochanin A against rotenone-induced neurotoxicity in mice involves enhancing of PI3K/Akt/mTOR signaling and beclin-1 production. Ecotoxicol. Environ. Saf. 2020 205 111344 10.1016/j.ecoenv.2020.111344 32977283
    [Google Scholar]
  41. Pupyshev A.B. Tenditnik M.V. Ovsyukova M.V. Akopyan A.A. Dubrovina N.I. Tikhonova M.A. Restoration of Parkinson’s disease-like deficits by activating autophagy through mTOR-dependent and mTOR-independent mechanisms in pharmacological and transgenic models of Parkinson’s disease in mice. Bull. Exp. Biol. Med. 2021 171 4 425 430 10.1007/s10517‑021‑05242‑z 34542745
    [Google Scholar]
  42. Torra A. Parent A. Cuadros T. Rodríguez-Galván B. Ruiz-Bronchal E. Ballabio A. Bortolozzi A. Vila M. Bové J. Overexpression of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinson’s disease-related neurodegeneration. Mol. Ther. 2018 26 6 1552 1567 10.1016/j.ymthe.2018.02.022 29628303
    [Google Scholar]
  43. Teil M. Arotcarena M.L. Faggiani E. Laferriere F. Bezard E. Dehay B. Targeting α-synuclein for PD therapeutics: a pursuit on all fronts. Biomolecules 2020 10 3 391 10.3390/biom10030391 32138193
    [Google Scholar]
  44. Rai S.N. Tiwari N. Singh P. Mishra D. Singh A.K. Hooshmandi E. Vamanu E. Singh M.P. Therapeutic potential of vital transcription factors in Alzheimer’s and Parkinson’s disease with particular emphasis on transcription factor EB mediated autophagy. Front. Neurosci. 2021 15 777347 10.3389/fnins.2021.777347 34970114
    [Google Scholar]
  45. Avenali M. Blandini F. Cerri S. Glucocerebrosidase defects as a major risk factor for Parkinson’s disease. Front. Aging Neurosci. 2020 12 97 10.3389/fnagi.2020.00097 32372943
    [Google Scholar]
  46. Jewett K.A. Thomas R.E. Phan C.Q. Lin B. Milstein G. Yu S. Bettcher L.F. Neto F.C. Djukovic D. Raftery D. Pallanck L.J. Davis M.Y. Glucocerebrosidase reduces the spread of protein aggregation in a Drosophila melanogaster model of neurodegeneration by regulating proteins trafficked by extracellular vesicles. PLoS Genet. 2021 17 2 e1008859 10.1371/journal.pgen.1008859 33539341
    [Google Scholar]
  47. Gatto E. Da Prat G. Etcheverry J. Drelichman G. Cesarini M. Parkinsonisms and glucocerebrosidase deficiency: A comprehensive review for molecular and cellular mechanism of glucocerebrosidase deficiency. Brain Sci. 2019 9 2 30 10.3390/brainsci9020030 30717266
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838346643241211055438
Loading
/content/journals/ctm/10.2174/0122150838346643241211055438
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: tyrosine hydroxylase ; Autophagy ; mTORC1 ; Mucuna pruriens ; glucocerebrosidase ; TFEB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test