Skip to content
2000
image of Exploring Biological Activities of a Thai Traditional Remedy Called “Ruean-Mhoon-Nok” and its Plant Ingredient Extracts for the Treatment of Dermatitis

Abstract

Background

Ruean-Mhoon-Nok (RMN) remedy has been used to treat skin inflammatory diseases (, dermatitis and psoriasis). However, its bioactivities related to traditional use remain unclear.

Objective

To investigate the biological activities related to dermatitis treatment of the RMN and its plant ingredient extracts, including the determination of bioactive compounds and stability study.

Methods

anti-inflammatory activities were assessed through the inhibition of NO using Griess reagent in RAW 264.7 cells, as well as IL-6 and TNF-α production using an ELISA test kit. The anti-allergic activity was performed degranulation assay in RBL-2H3 cells. The microtiter plate-based antibacterial assay was used to assess MIC and MBC. The bioactive compound in the RMN extract was measured by HPLC, while its stability was evaluated under accelerated storage conditions.

Results

The RMN extract exhibited a potential inhibitory effect on NO and IL-6 production, while it had a limited effect on inhibition of β-hexosaminidase release. In addition, the RMN extract displayed antibacterial activity against Gram-positive bacteria, including , and MRSA. Among individual plants, extract displayed outstanding results in all assays compared to the others. The HPLC results confirmed that hydroxychavicol is a major RMN extract constituent, demonstrating potent inhibitory activity on NO and IL-6 productions. However, the RMN extract was unstable when stored under accelerated conditions.

Conclusion

The RMN remedy and its bioactive compound, hydroxychavicol, have highly promising anti-inflammatory and anti-bacterial properties that might support its traditional use. However, further investigations related to the pathogenesis of dermatitis are required, including preclinical and clinical studies.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838337932241218172008
2025-03-04
2025-03-28
The full text of this item is not currently available.

References

  1. Griffiths C.E.M. van de Kerkhof P. Czarnecka-Operacz M. Psoriasis and atopic dermatitis. Dermatol. Ther. 2017 7 S1 Suppl. 1 31 41 10.1007/s13555‑016‑0167‑9 28150106
    [Google Scholar]
  2. Frazier W. Bhardwaj N. Atopic dermatitis: Diagnosis and treatment. Am. Fam. Physician 2020 101 10 590 598 32412211
    [Google Scholar]
  3. Ishijima T. Nakajima K. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci. Prog. 2021 104 4 00368504211054985 10.1177/00368504211054985 34821182
    [Google Scholar]
  4. Man M.Q. Wakefield J.S. Mauro T.M. Elias P.M. Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 2022 45 3 949 964 10.1007/s10753‑021‑01615‑8 35094214
    [Google Scholar]
  5. Yakupu A. Aimaier R. Yuan B. Chen B. Cheng J. Zhao Y. Peng Y. Dong J. Lu S. The burden of skin and subcutaneous diseases: Findings from the global burden of disease study 2019. Front. Public Health 2023 11 1145513 10.3389/fpubh.2023.1145513 37139398
    [Google Scholar]
  6. Department of Thai Traditional and Alternative Medicine Nationality Thai traditional medicine formulary special edition to commemorate the auspicious occasion of the coronation of H.M. King Rama X. Samcharoen Panich (Bangkok) Co., Ltd. 2019 97 98
    [Google Scholar]
  7. Matsuda H. Morikawa T. Managi H. Yoshikawa M. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-α and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. Lett. 2003 13 19 3197 3202 10.1016/S0960‑894X(03)00710‑8 12951092
    [Google Scholar]
  8. Yadav P.N. Liu Z. Rafi M.M. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J. Pharmacol. Exp. Ther. 2003 305 3 925 931 10.1124/jpet.103.049171 12626645
    [Google Scholar]
  9. Matsuda H. Ando S. Kato T. Morikawa T. Yoshikawa M. Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorg. Med. Chem. 2006 14 1 138 142 10.1016/j.bmc.2005.08.003 16182539
    [Google Scholar]
  10. Yang B.Y. Guo R. Li T. Wu J.J. Zhang J. Liu Y. Wang Q.H. Kuang H.X. New anti-inflammatory withanolides from the leaves of Datura metel L. Steroids 2014 87 26 34 10.1016/j.steroids.2014.05.003 24844203
    [Google Scholar]
  11. Hossen M.J. Kim S.C. Son Y.J. Baek K.S. Kim E. Yang W.S. Jeong D. Park J.G. Kim H.G. Chung W.J. Yoon K. Ryou C. Lee S.Y. Kim J.H. Cho J.Y. AP-1-targeting anti-inflammatory activity of the methanolic extract of Persicaria chinensis. Evid. Based Complement. Alternat. Med. 2015 2015 1 11 10.1155/2015/608126 25878717
    [Google Scholar]
  12. Thamaraikani I. Kulandhaivel M. Purification of hydroxychavicol from Piper betle Linn and evaluation of antimicrobial activity against some food poison causing bacteria. J. Pure Appl. Microbiol. 2017 11 4 1883 1889 10.22207/JPAM.11.4.28
    [Google Scholar]
  13. Yang B.Y. Cheng Y.G. Liu Y. Liu Y. Tan J-Y. Guan W. Guo S. Kuang H-X. Datura metel L. ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MyD88-NF-κB-NLRP3 inflammasome pathway. Molecules 2019 24 11 2157 10.3390/molecules24112157
    [Google Scholar]
  14. Taingthum A. Sakpakdeejaroen I. Panthong S. Kanokkangsadal P. Assessment of in vitro antioxidant activities and quantification of total phenolic and flavonoid contents in extracts from the Thai traditional remedy “Ruean-Khi-Nok” and its plant constituents. AMJAM 2024 24 1 9 18
    [Google Scholar]
  15. Makchuchit S. Rattarom R. Itharat A. The anti-allergic and anti-inflammatory effects of Benjakul extract (a Thai traditional medicine), its constituent plants and its some pure constituents using in vitro experiments. Biomed. Pharmacother. 2017 89 1018 1026 10.1016/j.biopha.2017.02.066 28292010
    [Google Scholar]
  16. Panthong S. Itharat A. Naknarin S. Kuropakornpong P. Ooraikul B. Sakpakdeejaroen I. Bactericidal effect and anti-inflammatory activity of Cassia garettiana heartwood extract. ScientificWorldJournal 2020 2020 1 12 10.1155/2020/1653180 32765193
    [Google Scholar]
  17. Sarker S.D. Nahar L. Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007 42 4 321 324 10.1016/j.ymeth.2007.01.006 17560319
    [Google Scholar]
  18. Annex V: ASEAN guidelines on stability and shelf-life of traditional medicines. 2013 Available from: https://asean.org/wp-content/uploads/2017/09/ASEAN-Guidelines-on-Stability-and-Shelf-Life-TM-V1.0-with-disclaimer.pdf
  19. Zamora R. Vodovotz Y. Billiar T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000 6 5 347 373 10.1007/BF03401781 10952018
    [Google Scholar]
  20. Jiménez M. Cervantes-García D. Córdova-Dávalos L.E. Pérez-Rodríguez M.J. Gonzalez-Espinosa C. Salinas E. Responses of mast cells to pathogens: Beneficial and detrimental roles. Front. Immunol. 2021 12 685865 10.3389/fimmu.2021.685865 34211473
    [Google Scholar]
  21. Oizumi A. Nakayama H. Okino N. Iwahara C. Kina K. Matsumoto R. Ogawa H. Takamori K. Ito M. Suga Y. Iwabuchi K. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. PLoS One 2014 9 2 e89402 10.1371/journal.pone.0089402 24586752
    [Google Scholar]
  22. Kim J. Kim B.E. Ahn K. Leung D.Y.M. Interactions between atopic dermatitis and Staphylococcus aureus infection: Clinical implications. Allergy Asthma Immunol. Res. 2019 11 5 593 603 10.4168/aair.2019.11.5.593 31332972
    [Google Scholar]
  23. Cau L. Williams M.R. Butcher A.M. Nakatsuji T. Kavanaugh J.S. Cheng J.Y. Shafiq F. Higbee K. Hata T.R. Horswill A.R. Gallo R.L. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J. Allergy Clin. Immunol. 2021 147 3 955 966.e16 10.1016/j.jaci.2020.06.024 32634452
    [Google Scholar]
  24. Byrd A.L. Deming C. Cassidy S.K.B. Harrison O.J. Ng W.I. Conlan S. Belkaid Y. Segre J.A. Kong H.H. NISC Comparative Sequencing Program Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 2017 9 397 eaal4651 10.1126/scitranslmed.aal4651 28679656
    [Google Scholar]
  25. Nongmai C. Kanokmedhakul K. Promgool T. Paluka J. Suwanphakdee C. Kanokmedhakul S. Chemical constituents and antibacterial activity from the stems and leaves of Piper wallichii. J. Asian Nat. Prod. Res. 2022 24 4 344 352 10.1080/10286020.2021.1933959 34085561
    [Google Scholar]
  26. Singh D. Narayanamoorthy S. Gamre S. Majumdar A.G. Goswami M. Gami U. Cherian S. Subramanian M. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radic. Biol. Med. 2018 120 62 71 10.1016/j.freeradbiomed.2018.03.021 29550331
    [Google Scholar]
  27. Ali I. Satti N.K. Dutt P. Prasad R. Khan I.A. Hydroxychavicol: A phytochemical targeting cutaneous fungal infections. Sci. Rep. 2016 6 1 37867 10.1038/srep37867 27897199
    [Google Scholar]
  28. Vadlapudi V. Kaladhar D.S.V.G.K. Antimicrobial study of plant extracts of Datura metel L. against some important disease causing pathogens. Asian Pac. J. Trop. Dis. 2012 2 S94 S97 10.1016/S2222‑1808(12)60130‑3
    [Google Scholar]
  29. Oonmetta-aree J. Suzuki T. Gasaluck P. Eumkeb G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. Lebensm. Wiss. Technol. 2006 39 10 1214 1220 10.1016/j.lwt.2005.06.015
    [Google Scholar]
  30. Rao K. Ch B. Narasu L.M. Giri A. Antibacterial activity of Alpinia galanga (L) Willd crude extracts. Appl. Biochem. Biotechnol. 2010 162 3 871 884 10.1007/s12010‑009‑8900‑9 20387130
    [Google Scholar]
  31. Zhang D. Zou L. Wu D.T. Zhuang Q-G. Li H-B. Mavumengwana V. Corke H. Gan R-Y. Discovery of 1′-acetoxychavicol acetate (ACA) as a promising antibacterial compound from galangal (Alpinia galanga (Linn.) Willd). Ind. Crops Prod. 2021 171 113883 10.1016/j.indcrop.2021.113883
    [Google Scholar]
  32. Cirak C. Radusiene J. Factors affecting the variation of bioactive compounds in Hypericum species. Biologia Futura 2019 70 3 198 209 10.1556/019.70.2019.25 34554448
    [Google Scholar]
  33. Pietrzak W. Nowak R. Impact of harvest conditions and host tree species on chemical composition and antioxidant activity of extracts from Viscum album L. Molecules 2021 26 12 3741 10.3390/molecules26123741 34205329
    [Google Scholar]
  34. Zamakshshari N. Ahmed I.A. Nasharuddin M.N.A. Mohd Hashim N. Mustafa M.R. Othman R. Noordin M.I. Effect of extraction procedure on the yield and biological activities of hydroxychavicol from Piper betle L. leaves. J. Appl. Res. Med. Aromat. Plants 2021 24 100320 10.1016/j.jarmap.2021.100320
    [Google Scholar]
  35. Kaur I. Suthar N. Kaur J. Bansal Y. Bansal G. Accelerated stability studies on dried extracts of Centella asiatica through chemical, HPLC, HPTLC, and biological activity analyses. J. Evid. Based Complementary Altern. Med. 2016 21 4 NP127 NP137 10.1177/2156587216661468 27486096
    [Google Scholar]
  36. Nishad J. Chapter 5 - Stability of plant extracts. Plant extracts: Applications in the food industry Academic Press 2022 89 126
    [Google Scholar]
  37. Ali A. Chong C. Mah S. Abdullah L. Choong T. Chua B. Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried Piper betle extracts. Molecules 2018 23 2 484 10.3390/molecules23020484 29473847
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838337932241218172008
Loading
/content/journals/ctm/10.2174/0122150838337932241218172008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test